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Abstract

We present a new Gronwall inequality for Stieltjes integrals, which improves numerous existing results,
and has a simple proof based on the quotient rule for Stieltjes integrals. As an application, we obtain
uniqueness theorems for measure differential equations and nabla dynamic equations. Finally, we
revisit the topic from the perspective of Stieltjes derivatives.
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1 Introduction

The Gronwall inequality is a fundamental tool in the theory of differential and integral equations. Its
classical statement is as follows (see, for instance, [12, Corollary 1.9.1]): If u,K,L : [t0, t0 + T ] → [0,∞)
are continuous functions satisfying the integral inequality

u(t) ≤ K(t) +

∫ t

t0

L(s)u(s) ds, t ∈ [t0, t0 + T ], (1.1)

then

u(t) ≤ K(t) +

∫ t

t0

K(s)L(s) exp

(∫ t

s

L(τ) dτ

)
ds, t ∈ [t0, t0 + T ]. (1.2)

Special cases of this result were obtained by T. H. Gronwall (see [6]) and later by R. Bellman (see [2,
p. 35]), who called it the fundamental lemma. For this reason, the result is sometimes referred to as
the Gronwall–Bellman inequality. Note that if equality holds in (1.1), then it also holds in (1.2). Thus,
in fact, the statement provides a comparison between the solutions of an integral inequality and the
corresponding integral equation, respectively. In the special case when K is a constant function, we get
the simpler estimate

u(t) ≤ K exp

(∫ t

t0

L(τ) dτ

)
, (1.3)

whose right-hand side is the solution of the integral equation u(t) = K +
∫ t

t0
L(s)u(s) ds.

In the present paper, we are interested in Gronwall-type results with ordinary integrals replaced by
Stieltjes integrals. A natural generalization of (1.1) is

u(t) ≤ K(t) +

∫ t

t0

L(s)u(s) dg(s), t ∈ [t0, t0 + T ],
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where g is a nondecreasing function. However, using the substitution theorem (see Theorem 2.2), the

integral on the right-hand side can be rewritten as
∫ t

t0
u(s) dP (s), where P (s) =

∫ s

t0
L(τ) dg(τ). Hence, it

suffices to study the simpler integral inequality

u(t) ≤ K(t) +

∫ t

t0

u(s) dP (s), t ∈ [t0, t0 + T ],

where P is a nondecreasing function.
Our goal is to obtain a priori estimates for u similar to those in (1.2) and (1.3). Several results

of this type, which are useful in the study of measure differential equations and Stieltjes differential
equations, are available in the literature, see e.g. [5, 10, 11, 14, 20, 23]. However, their assumptions are
not completely satisfactory. In short, it is usually assumed that K is a constant function, or that P is a
left-continuous or right-continuous function. We will show that these assumptions are not necessary, and
provide a concise proof of a new general version of Gronwall’s lemma.

The article is organized as follows. In Section 2, we recall the substitution theorem and quotient rule
for Stieltjes integrals, as well as the notion of the generalized exponential function. These preliminaries
are crucial for Section 3, where we establish a new version of the Gronwall inequality along with a detailed
comparison with the results available in the literature. Section 4 contains two applications – uniqueness
theorems for measure differential equations and for nabla dynamic equations on time scales. Finally,
in Section 5, we revisit the inequalities obtained before in terms of Stieltjes derivatives, and present
a differential counterpart of the earlier results.

Unless otherwise specified, all Stieltjes integrals in Sections 2, 3, 4 will be understood as gauge inte-
grals, i.e., in the Kurzweil–Stieltjes sense (or, equivalently, in the Perron–Stieltjes sense). The definition

of the Kurzweil–Stieltjes integral
∫ b

a
f dg is based on sums of the form

∑m
i=1 f(ξi)(g(ti)− g(ti−1)), where

a = t0 < · · · < tm = b is a partition of [a, b], and ξi ∈ [ti−1, ti] for each i ∈ {1, . . . ,m}. The precise defi-
nition can be found e.g. in [20, Section 6.2] or in [17, Section 7.1], but it is not too important here, since
we use only some basic properties together with the results presented in Section 2. Later, in Section 5,
we focus on Lebesgue-Stieltjes integrals. Readers interested in Gronwall inequalities for other types of
Stieltjes integrals might consult the paper [22], which deals with modified Stieltjes integrals and Dushnik
integrals. The articles [9] and [18] provide an abstract approach to Gronwall-type inequalities indepen-
dent on the choice of the integral. Additional interesting results for the abstract Lebesgue integral are
available in [7, 8]. However, none of these articles fully covers the results obtained in the present paper.

2 Preliminaries

To prove our main result, we need the following quotient rule for the Kurzweil-Stieltjes integral, which
was recently proved in [16, Theorem 6.6].

Theorem 2.1. If f, g : [a, b] → R have bounded variation and for each t ∈ [a, b], we have g(t) ̸= 0,
g(t−) ̸= 0, and g(t+) ̸= 0, then

f(b)

g(b)
− f(a)

g(a)
=

∫ b

a

df(t)

g(t+)
−
∫ b

a

f(t−) dg(t)

g(t−)g(t+)
,

with the convention that g(a−) = g(a) and g(b+) = g(b).

The following substitution theorem is well known in the case when f is bounded (see e.g. [20, Theo-
rem 6.6.1]). However, this assumption is not necessary, as shown in [17, Chapter 7, Exercise 2]. Because
the book need not be easily accessible and the final part of the proof provided there is slightly confusing,
we include the proof here.
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Theorem 2.2. Assume that g, h : [a, b] → R are such that
∫ b

a
g dh exists. Then for each function

f : [a, b] → R, we have ∫ b

a

f(x) d

(∫ x

a

g(z) dh(z)

)
=

∫ b

a

f(x)g(x) dh(x),

whenever either side of the equation exists.

Proof. Denote w(x) =
∫ x

a
g dh, x ∈ [a, b]. It suffices to check that for each ε > 0, there exists a gauge

δ : [a, b] → (0,∞) such that if (ξi, [αi−1, αi])
m
i=1 is a δ-fine partition of [a, b], then∣∣∣∣∣

m∑
i=1

f(ξi)(w(αi)− w(αi−1))−
m∑
i=1

f(ξi)g(ξi)(h(αi)− h(αi−1))

∣∣∣∣∣ ≤ ε.

The definition of
∫ b

a
g dh implies that for each n ∈ N, there exists a gauge δn : [a, b] → (0,∞) such

that if (ξi, [αi−1, αi])
m
i=1 is a δn-fine partition of [a, b], then∣∣∣∣∣

∫ b

a

g dh−
m∑
i=1

g(ξi)(h(αi)− h(αi−1))

∣∣∣∣∣ < ε

n · 2n+1
.

Now, let
En = {x ∈ [a, b] : n− 1 ≤ |f(x)| < n}, n ∈ N,

and define δ : [a, b] → (0,∞) by

δ(x) = δn(x) whenever x ∈ En.

If (ξi, [αi−1, αi])
m
i=1 is a δ-fine partition of [a, b], then for each n ∈ N, the Saks-Henstock lemma (see [20,

Corollary 6.5.2]) implies

∑
i:ξi∈En

∣∣∣∣∣
∫ αi

αi−1

g dh− g(ξi)(h(αi)− h(αi−1))

∣∣∣∣∣ ≤ ε

n · 2n
.

Therefore, ∣∣∣∣∣
m∑
i=1

f(ξi)(w(αi)− w(αi−1))−
m∑
i=1

f(ξi)g(ξi)(h(αi)− h(αi−1))

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

f(ξi)

(∫ αi

αi−1

g dh− g(ξi)(h(αi)− h(αi−1))

)∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

n=1

∑
i:ξi∈En

f(ξi)

(∫ αi

αi−1

g dh− g(ξi)(h(αi)− h(αi−1))

)∣∣∣∣∣∣
≤

∞∑
n=1

n
∑

i:ξi∈En

∣∣∣∣∣
∫ αi

αi−1

g dh− g(ξi)(h(αi)− h(αi−1))

∣∣∣∣∣ ≤
∞∑

n=1

ε

2n
= ε,

and the proof is complete.

Finally, we need the definition and basic properties of the generalized exponential function. If
P : [a, b] → R is a regulated function (i.e., it has one-sided limits at each point), we denote ∆+P (t) =
P (t+)−P (t), ∆−P (t) = P (t)−P (t−), and ∆P (t) = P (t+)−P (t−) for all t ∈ [a, b], with the convention
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that P (a−) = P (a) and P (b+) = P (b). Recall that if P : [a, b] → R has bounded variation and satisfies
1 + ∆+P (t) ̸= 0 for all t ∈ [a, t0) and 1−∆−P (t) ̸= 0 for all t ∈ (t0, b], then the linear integral equation

x(t) = 1 +

∫ t

t0

x(s) dP (s), t ∈ [a, b], (2.1)

has a unique solution, which is known as the generalized exponential function, and is denoted by t 7→
edP (t, t0). It has the following basic properties (see [19] and [20, Section 8.5]):

� The function t 7→ edP (t, t0) is regulated on [a, b] and satisfies

edP (t+, t0) = (1 + ∆+P (t)) edP (t, t0), t ∈ [a, b), (2.2)

edP (t−, t0) = (1−∆−P (t)) edP (t, t0), t ∈ (a, b]. (2.3)

� edP (t, s) edP (s, r) = edP (t, r) for every t, s, r ∈ [a, b].

� edP (t, s) = edP (s, t)
−1 for every t, s ∈ [a, b].

� We have the explicit formula

edP (t, t0) =



1, t = t0,

eP (t−)−P (t0+)

e
∑

s∈(t0,t) ∆P (s)

∏
s∈[t0,t)

(1 + ∆+P (s))∏
s∈(t0,t]

(1−∆−P (s))
, t > t0,

e
∑

s∈(t,t0) ∆P (s)

eP (t0−)−P (t+)

∏
s∈(t,t0]

(1−∆−P (s))∏
s∈[t,t0)

(1 + ∆+P (s))
, t < t0.

(2.4)

� If 1 + ∆+P (t) > 0 for all t ∈ [a, b) and 1−∆−P (t) > 0 for all t ∈ (a, b], then edP (t, t0) > 0 for all
t ∈ [a, b].

3 A general form of Gronwall inequality

We now present our main result, a general version of the Gronwall inequality with Stieltjes integrals. The
proof is inspired by the proof of [14, Proposition 4.3], which is based on Stieltjes derivatives.

Theorem 3.1. Let P : [t0, t0 + T ] → R be a nondecreasing function such that 1 − ∆−P (s) > 0 for all

s ∈ (t0, t0 + T ]. If K : [t0, t0 + T ] → [0,∞) is such that
∫ t0+T

t0
K(s) dP (s) exists and u : [t0, t0 + T ] → R

satisfies

u(t) ≤ K(t) +

∫ t

t0

u(s) dP (s), t ∈ [t0, t0 + T ], (3.1)

then

u(t) ≤ K(t) +

∫ t

t0

K(s)edP (t, s)

(1 + ∆+P (s))(1−∆−P (s))
dP (s), t ∈ [t0, t0 + T ], (3.2)

with the convention that ∆−P (t0) = 0 and ∆+P (s) = 0 if s = t. Moreover, if equality holds in (3.1),
then it also holds in (3.2).

In addition, if K is bounded on [t0, t] ⊂ [t0, t0 + T ], then

u(t) ≤

(
sup

ξ∈[t0,t]

K(ξ)

)
edP (t, t0). (3.3)
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Proof. Let U : [t0, t0 + T ] → R be given by

U(t) =

∫ t

t0

u(s) dP (s), t ∈ [t0, t0 + T ].

The assumptions on P imply that edP (s, t0) > 0, edP (s+, t0) > 0 and edP (s−, t0) > 0 for all s ∈ [t0, t0+T ].
Using Theorem 2.1 with f(t) = U(t) and g(t) = edP (t, t0) and then Theorem 2.2 together with (2.1),
(2.2), (2.3), we obtain

U(t)

edP (t, t0)
=

∫ t

t0

dU(s)

edP (s+, t0)
−
∫ t

t0

U(s−)

edP (s−, t0)edP (s+, t0)
d(edP (s, t0))

=

∫ t

t0

u(s) dP (s)

(1 + ∆+P (s))edP (s, t0)
−
∫ t

t0

U(s−) dP (s)

(1−∆−P (s))(1 + ∆+P (s))edP (s, t0)

for all t ∈ [t0, t0 + T ], with the convention that U(t0−) = U(t0), ∆
−P (t0) = 0 and ∆+P (s) = 0 if s = t.

Since U(s−) = U(s)− u(s)∆−P (s) (see [20, Corollary 6.5.5]), we deduce

U(t)

edP (t, t0)
=

∫ t

t0

u(s) dP (s)

(1 + ∆+P (s))edP (s, t0)
+

∫ t

t0

(−U(s) + u(s)∆−P (s)) dP (s)

(1−∆−P (s))(1 + ∆+P (s))edP (s, t0)

=

∫ t

t0

1

(1 + ∆+P (s))edP (s, t0)

(
u(s) +

−U(s) + u(s)∆−P (s)

1−∆−P (s)

)
dP (s)

=

∫ t

t0

u(s)− U(s)

(1 + ∆+P (s))(1−∆−P (s))edP (s, t0)
dP (s).

Now, since (3.1) holds and 1−∆−P (s) > 0 for all s ∈ (t0, t0 + T ], we obtain the estimate

U(t)

edP (t, t0)
≤
∫ t

t0

K(s)

(1 + ∆+P (s))(1−∆−P (s))edP (s, t0)
dP (s), t ∈ [t0, t0 + T ]. (3.4)

Note that the integral on the right-hand side exists: Indeed, the Kurzweil-Stieltjes integral
∫ t

t0
K(s) dP (s)

exists by assumption. Since K is nonnegative, the corresponding Lebesgue-Stieltjes integral exists as well
(see [20, Theorem 6.12.7]) and is finite. Consider the function

φ(s) =
1

(1 + ∆+P (s))(1−∆−P (s))edP (s, t0)
.

We have limξ→s ∆
+P (ξ) = 0 for each s ∈ [t0, t0 + T ), and limξ→s ∆

−P (ξ) = 0 for each s ∈ (t0, t0 + T ]
(see [20, Corollary 4.1.7]). Therefore,

lim
ξ→s+

edP (ξ, t0)(1 + ∆+P (ξ))(1−∆−P (ξ)) = edP (s+, t0) ̸= 0,

lim
ξ→s−

edP (ξ, t0)(1 + ∆+P (ξ))(1−∆−P (ξ)) = edP (s−, t0) ̸= 0.

It follows that φ is regulated, and therefore Borel measurable and bounded. Hence, the Lebesgue-
Stieltjes integral of K · φ with respect to P exists and is finite, and therefore the Kurzweil-Stieltjes
integral

∫ t

t0
K(s)φ(s) dP (s) exists (see [20, Theorem 6.12.3]).

Multiplying inequality (3.4) by edP (t, t0) and noting that edP (t, t0)/edP (s, t0) = edP (t, s), (3.1) yields

u(t) ≤ K(t) + U(t) ≤ K(t) +

∫ t

t0

edP (t, s)K(s)

(1 + ∆+P (s))(1−∆−P (s))
dP (s), t ∈ [t0, t0 + T ].

Hence, inequality (3.2) holds. An inspection of the proof reveals that if equality holds in (3.1), then it
holds in (3.4) as well, and consequently also in (3.2).
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If we in addition assume that K is bounded on [t0, t] ⊂ [t0, t0 + T ], then

u(t) ≤

(
sup

ξ∈[t0,t]

K(ξ)

)(
1 +

∫ t

t0

edP (t, s)

(1 + ∆+P (s))(1−∆−P (s))
dP (s)

)
.

To finish the proof, it suffices to show that the last term equals edP (t, t0). To see this, we use Theorem 2.1
with f(t) = 1 and g(t) = edP (t, t0) to get

1

edP (t, t0)
− 1

edP (t0, t0)
= −

∫ t

t0

1

edP (s−, t0)edP (s+, t0)
d(edP (s, t0))

= −
∫ t

t0

dP (s)

(1 + ∆+P (s))(1−∆−P (s))edP (s, t0)
, t ∈ [t0, t0 + T ],

where the last equality follows from the formulas (2.1), (2.2), (2.3) and Theorem 2.2. Multiplying by
edP (t, t0) and recalling that edP (t, t0)/edP (s, t0) = edP (t, s), we get

1− edP (t, t0) = −
∫ t

t0

edP (t, s) dP (s)

(1 + ∆+P (s))(1−∆−P (s))
,

and the proof is complete.

Remark 3.2. Instead of assuming that the function K is nonnegative and
∫ t0+T

t0
K(s) dP (s) exists, it is

possible to assume that K is Borel measurable and
∫ t0+T

t0
|K(s)|dP (s) exists. This guarantees that the

Lebesgue-Stieltjes integral of K with respect to P exists and is finite, and the rest of the proof remains
unchanged.

Let us compare our Theorem 3.1 with similar results available in the literature:

� [23, Corollary 1.43] has stronger assumptions than our result. It assumes that K is a constant
and P is left-continuous, and claims that u(t) ≤ KeP (t)−P (t0); this follows from our estimate
(3.3) and the fact that if P is left-continuous and such that 1 + ∆+P (t) > 0 for t ≥ t0, then
edP (t, t0) ≤ eP (t)−P (t0) for all t ≥ t0 (see [20, Corollary 8.5.5]). The last inequality is sharp if P is
not right-continuous (cf. the explicit formula (2.4)), and therefore our estimate is better.

� The same remarks apply to [20, Theorem 7.5.3]. Our Theorem 3.1 is not only stronger, but the
proof is simpler than in [20].

� [11, Theorem 22.3] has stronger assumptions on K and P than our Theorem 3.1: It assumes
that K is a constant and P is nondecreasing with 1 − ∆−P (t) > 0 for t ∈ (t0, t0 + T ], and
1−∆+P (t) > 0 for t ∈ [t0, t0 +T ); these assumptions are given on p. 145 of [11]. The conclusion is
that u(t) ≤ KedP (t, t0) for t ∈ [t0, t0+T ]; note that [11] does not use the notation edP , but instead
refers to the solution of Eq. (2.1).

� [14, Proposition 4.3] is formulated in the context of Stieltjes derivatives, and therefore assumes
that P is left-continuous. Since the Kurzweil-Stieltjes integral of a nonnegative function with
respect to a left-continuous nondecreasing function over [a, b] coincides with the Lebesgue-Stieltjes
integral over [a, b), the first part of [14, Proposition 4.3] can be obtained as a consequence of our
Theorem 3.1. However, to get an analogue of our inequality (3.3), [14, Proposition 4.3] assumes
that t 7→ K(t)(1+∆+P (t)) is nondecreasing, which is too restrictive (for example, if K is constant,
then P needs to be continuous). In Section 5, we will show that this condition can be avoided even
when proving the result by means of Stieltjes derivatives.
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� Section 2 of [5] contains a Gronwall-type result that is similar to ours, but assumes that K is
a constant function and u has bounded variation. The assumptions on P are the same as in our
Theorem 3.1. However, the author says that the proof is tedious, and is based on the approximation
of P by functions with finitely many discontinuities. He omits the proof, and only later gives a
proof for the case when u and P are right-continuous.

� [10, Lemma 7.11] is a special case of our Theorem 3.1 where K is constant, P is right-continuous
and such that 1

2 −∆−P (s) ≥ 0 for all s ∈ (t0, t0 + T ].

� There is a time scale version of the Gronwall inequality in [3, Theorem 6.4]: If T ⊂ R is a time scale,

and u, K, L are rd-continuous functions with L ≥ 0, then u(t) ≤ K(t) +
∫ t

t0
L(s)u(s)∆s implies

u(t) ≤ K(t) +

∫ t

t0

eL(t, σ(s))K(s)L(s)∆s, (3.5)

where σ is the forward jump operator given by σ(t) = inf{s ∈ T : s > t} and eL is the time scale
exponential function. This result can be also derived from our Theorem 3.1 and Remark 3.2 by
taking into account the relation between ∆-integrals and Kurzweil-Stieltjes integrals, see e.g. [20,

Section 8.6]. In particular, we let g(t) = inf{s ∈ T : s ≥ t} and P (t) =
∫ t

t0
L(s) dg(s). Then g and

P are left-continuous, and the integral in (3.2) becomes∫ t

t0

K(s)edP (t, s)

(1 + ∆+P (s))(1−∆−P (s))
dP (s) =

∫ t

t0

K(s)

(1 + ∆+P (s))edP (s, t)
dP (s)

=

∫ t

t0

K(s)L(s)

edP (s+, t)
dg(s) =

∫ t

t0

K(s)L(s)eL(t, σ(s))∆s,

which coincides with the integral on the right-hand side of (3.5).

In a similar way, one can deal with ∇-integrals: Suppose that u(t) ≤ K(t)+
∫ t

t0
L(s)u(s)∇s. Recall

that ∇-integrals are special cases of Kurzweil-Stieltjes integrals with respect to the nondecreasing
right-continuous function h(t) = sup{s ∈ T : s ≤ t}. Letting P (t) =

∫ t

t0
L(s) dh(s) and using (3.2),

we get

u(t) ≤ K(t) +

∫ t

t0

K(s)edP (t, s)

(1 + ∆+P (s))(1−∆−P (s))
dP (s) = K(t) +

∫ t

t0

K(s)

(1−∆−P (s))edP (s, t)
dP (s)

= K(t) +

∫ t

t0

K(s)L(s)

edP (s−, t)
dh(s) = K(t) +

∫ t

t0

K(s)L(s)êL(t, ρ(s))∇s,

where ρ is the backward jump operator given by ρ(t) = sup{s ∈ T : s < t}, and êL is the nabla
exponential function. As far as we are aware, this nabla version of Gronwall’s inequality is not
available in the literature.

We finalize this section with a result similar to Theorem 3.1, but the integrals on the right-hand sides
of the inequalities will now be functions of their lower limits instead of upper limits. Although it would

be possible to adapt the proof of Theorem 3.1 by considering the function U(t) =
∫ t0+T

t
u(s) dP (s),

t ∈ [t0, t0 + T ], we prefer to give a different proof and deduce the result from Theorem 3.1 by a “time-
reversal” argument, which is inspired by the proof of [23, Corollary 1.42].

Theorem 3.3. Let P : [t0, t0 + T ] → R be a nondecreasing function such that 1 − ∆+P (s) > 0 for all

s ∈ [t0, t0 + T ). If K : [t0, t0 + T ] → [0,∞) is such that
∫ t0+T

t0
K(s) dP (s) exists and u : [t0, t0 + T ] → R

satisfies

u(t) ≤ K(t) +

∫ t0+T

t

u(s) dP (s), t ∈ [t0, t0 + T ], (3.6)
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then

u(t) ≤ K(t) +

∫ t0+T

t

K(s)ed(−P )(t, s)

(1−∆+P (s))(1 + ∆−P (s))
dP (s), t ∈ [t0, t0 + T ], (3.7)

with the convention that ∆+P (t0+T ) = 0 and ∆−P (s) = 0 if s = t. Moreover, if equality holds in (3.6),
then it also holds in (3.7).

In addition, if K is bounded on [t, t0 + T ] ⊂ [t0, t0 + T ], then

u(t) ≤

(
sup

ξ∈[t,t0+T ]

K(ξ)

)
ed(−P )(t, t0 + T ). (3.8)

Proof. Let P̃ : [−t0 − T,−t0] → R be given by

P̃ (σ) = −P (−σ), σ ∈ [−t0 − T,−t0].

This function is nondecreasing, and we have the identities

P̃ (σ+) = −P (−σ−), σ ∈ [−t0 − T,−t0), (3.9)

P̃ (σ−) = −P (−σ+), σ ∈ (−t0 − T,−t0]. (3.10)

Consequently,

∆+P̃ (σ) = ∆−P (−σ), σ ∈ [−t0 − T,−t0), (3.11)

∆−P̃ (σ) = ∆+P (−σ), σ ∈ (−t0 − T,−t0], (3.12)

1−∆−P̃ (σ) = 1−∆+P (−σ) > 0, σ ∈ (−t0 − T,−t0]. (3.13)

Using the change of variables theorem
∫ ϕ(d)

ϕ(c)
f(s) dg(s) =

∫ d

c
f(ϕ(t)) dg(ϕ(t)) (see [20, Theorem 6.6.5 and

Exercise 6.6.6]) with ϕ(x) = −x, we find that for every t ∈ [t0, t0+T ], the integral on the right-hand side
of (3.6) equals∫ t0+T

t

u(s) dP (s) =

∫ −t0−T

−t

u(−s) dP (−s) = −
∫ −t

−t0−T

u(−s) dP (−s) =
∫ −t

−t0−T

u(−s) dP̃ (s). (3.14)

Therefore, the inequality (3.6) can be rewritten as

u(t) ≤ K(t) +

∫ −t

−t0−T

u(−s) dP̃ (s), t ∈ [t0, t0 + T ],

i.e.,

ũ(t) ≤ K̃(t) +

∫ t

−t0−T

ũ(s) dP̃ (s), t ∈ [−t0 − T,−t0], (3.15)

where ũ(σ) = u(−σ) and K̃(σ) = K(−σ) for all σ ∈ [−t0 − T,−t0]. Hence, the functions ũ, K̃,

P̃ : [−t0 − T,−t0] → R satisfy the assumptions of Theorem 3.1, and we obtain

ũ(t) ≤ K̃(t) +

∫ t

−t0−T

K̃(s)edP̃ (t, s)

(1 + ∆+P̃ (s))(1−∆−P̃ (s))
dP̃ (s), t ∈ [−t0 − T,−t0],

i.e.,

u(t) ≤ K(t) +

∫ −t

−t0−T

K(−s)edP̃ (−t, s)
(1 + ∆+P̃ (s))(1−∆−P̃ (s))

dP̃ (s), t ∈ [t0, t0 + T ], (3.16)

8



with the convention that ∆−P̃ (−t0−T ) = 0 and ∆+P̃ (s) = 0 if s = t. To proceed, we need to show that

edP̃ (−t, s) = ed(−P )(t,−s), for all t ∈ [t0, t0 + T ], s ∈ [−t0 − T,−t0], s < −t.

This assertion can be obtained by using the explicit formula (2.4), along with Eq. (3.9)–(3.12). Indeed,
given t ∈ [t0, t0 + T ], s ∈ [−t0 − T,−t0] such that s < −t, we have

edP̃ (−t, s) =
eP̃ (−t−)−P̃ (s+)

e
∑

σ∈(s,−t) ∆P̃ (σ)
·

∏
σ∈[s,−t)

(1 + ∆+P̃ (σ))

∏
σ∈(s,−t]

(1−∆−P̃ (σ))

=
eP (−s−)−P (t+)

e
∑

σ∈(s,−t) ∆P (−σ)
·

∏
σ∈[s,−t)

(1 + ∆−P (−σ))

∏
σ∈(s,−t]

(1−∆+P (−σ))

=
e
∑

σ∈(s,−t) ∆(−P )(−σ)

e(−P )(−s−)−(−P )(t+)
·

∏
σ∈[s,−t)

(1−∆−(−P )(−σ))

∏
σ∈(s,−t]

(1 + ∆+(−P )(−σ))

=
e
∑

σ∈(t,−s) ∆(−P )(σ)

e(−P )(−s−)−(−P )(t+)
·

∏
σ∈(t,−s]

(1−∆−(−P )(σ))

∏
σ∈[t,−s)

(1 + ∆+(−P )(σ))
= ed(−P )(t,−s).

Applying the previous identity, the relations (3.11) and (3.12), and the previously mentioned change of
variables theorem with ϕ(x) = −x, we deduce that the integral on the right-hand side of (3.16) equals∫ −t

−t0−T

K(−s)edP̃ (−t, s)
(1 + ∆+P̃ (s))(1−∆−P̃ (s))

dP̃ (s) = −
∫ −t

−t0−T

K(−s)edP̃ (−t, s)
(1 + ∆−P (−s))(1−∆+P (−s))

dP (−s)

=

∫ −t0−T

−t

K(−s)ed(−P )(t,−s)
(1 + ∆−P (−s))(1−∆+P (−s))

dP (−s) =
∫ t0+T

t

K(s)ed(−P )(t, s)

(1 + ∆−P (s))(1−∆+P (s))
dP (s),

with the convention that ∆+P (t0 + T ) = 0 and ∆−P (s) = 0 if s = t.
Therefore, from (3.16) we conclude that the relation (3.7) holds.

If K is bounded from above on [t, t0 + T ] ⊂ [t0, t0 + T ], then K̃ is bounded by the same constant on
[−t0 − T, t]. Therefore, by the inequality (3.15) and Theorem 3.1, we have

ũ(t) ≤

(
sup

ξ∈[−t0−T,t]

K̃(ξ)

)
edP̃ (t,−t0 − T ), t ∈ [−t0 − T,−t0],

i.e.,

u(t) ≤

(
sup

ξ∈[t,t0+T ]

K(ξ)

)
ed(−P )(t, t0 + T ), t ∈ [t0, t0 + T ].

Remark 3.4. Suppose that the assumptions of Theorem 3.3 hold and, moreover, K is constant and P
is right-continuous. Then, combining (3.8) and (2.4), we obtain the estimate

u(t) ≤ Ked(−P )(t, t0 + T ) = K
e
∑

s∈(t,t0+T ) ∆
−(−P )(s)

e(−P )(t0+T−)−(−P )(t)

∏
s∈(t,t0+T ]

(1−∆−(−P )(s))
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= KeP (t0+T )−P (t)

∏
s∈(t,t0+T ]

(1 + ∆−P (s))

e
∑

s∈(t,t0+T ] ∆
−P (s)

≤ KeP (t0+T )−P (t),

where the last inequality holds because (1 + ∆−P (s))/e∆
−P (s) ≤ 1 for each s. This result agrees with

[20, Exercise 7.5.4] and [23, Corollary 1.44], which are special cases of our Theorem 3.3.

4 Uniqueness results

A classical application of Gronwall-type inequalities is in proving uniqueness of solutions to various types
of equations. Having the general Gronwall inequality presented in Theorem 3.1, we can study uniqueness
of solutions for the measure differential equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) dg(s), t ∈ [t0, t0 + T ], (4.1)

where f : [t0, t0+T ]×Rn → Rn, and g : [t0, t0+T ] → R has bounded variation. The integral on the right-
hand side is considered in the sense of Kurzweil-Stieltjes. Clearly, if x : [t0, t0 + T ] → Rn is a solution of
(4.1), then it is regulated on [t0, t0+T ]. In the next result, we present sufficient conditions for uniqueness
of solutions to (4.1). We use the symbol vardcg to denote the variation of g over an interval [c, d].

Theorem 4.1. Consider functions f : [t0, t0+T ]×Rn → Rn and g : [t0, t0+T ] → R, where g has bounded
variation. Suppose there exists a function L : [t0, t0 + T ] → [0,∞) such that 1− L(s)|∆−g(s)| > 0 for all
s ∈ (t0, t0 + T ], and∥∥∥∥∥

∫ d

c

[f(s, x(s))− f(s, y(s))] dg(s)

∥∥∥∥∥ ≤
∫ d

c

L(s)∥x(s)− y(s)∥d(varst0g) (4.2)

for all [c, d] ⊆ [t0, t0 + T ] and all regulated functions x, y : [t0, t0 + T ] → Rn. Then Eq. (4.1) has at most
one solution on [t0, t0 + T ].

Proof. Assume that x, y : [t0, t0 + T ] → Rn are solutions of Eq. (4.1), and let u(t) = ∥x(t)− y(t)∥ for all
t ∈ [t0, t0 + T ]. Applying (4.2), we obtain the estimate

u(t) ≤
∫ t

t0

L(s)u(s) d(varst0g) =

∫ t

t0

u(s) dP (s), t ∈ [t0, t0 + T ],

where P (s) =
∫ s

t0
L(ξ) d(varξt0g) for all s ∈ [t0, t0+T ]. Note that P is a nondecreasing function which sat-

isfies 1−∆−P (s) > 0 for all s ∈ (t0, t0+T ]. Indeed, since ∆
−(varst0g) = |∆−g(s)| (see [20, Lemma 2.3.3]),

we have

1−∆−P (s) = 1− L(s)∆−(varst0g) = 1− L(s)|∆−g(s)| > 0, s ∈ (t0, t0 + T ].

Therefore, we can apply the Gronwall lemma (Theorem 3.1) with K = 0, and conclude that u = 0 on
[t0, t0 + T ], which in turn implies that x = y on [t0, t0 + T ].

A similar result was presented in [5, Section 3], where the author assumed the Lipschitz condition

∥f(s, x)− f(s, y)∥ ≤ L∥x− y∥,

with L > 0 such that 1 − L|∆−g(s)| is bounded away from zero for s ∈ [t0, t0 + T ]. These hypotheses
clearly imply that (4.2) hold. However, the integral version of the Lipschitz condition in (4.2) is more
general: L need not be a constant, and (4.2) imposes no condition on f on intervals where g is constant.
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An interesting corollary of Theorem 4.1 is a uniqueness theorem for nabla dynamic equations on time
scales. Recall that a time scale T is a closed nonempty subset of R. We are interested in nabla dynamic
equations of the form

x∇(t) = f(t, x(t)), t ∈ [t0, t0 + T ]T, (4.3)

where f : [t0, t0 + T ]T × Rn → Rn is a given function, and we use the notation [a, b]T = [a, b] ∩ T.
If ν is the so-called backward graininess given by ν(t) = t − ρ(t), where ρ(t) = sup{s ∈ T : s < t} is

the usual backward jump operator, then the nabla derivative x∇(t) is

x∇(t) =

{
x(t)−x(ρ(t))

ν(t) if ν(t) > 0,

x′(t) if ν(t) = 0.

Nabla dynamic equations are implicit in the sense that if ν(t) > 0 and if we know the value x(ρ(t)), then
finding the value x(t) requires solving the equation

x(t) = x(ρ(t)) + f(t, x(t))ν(t).

Numerical analysts are well aware that implicit difference equations are uniquely solvable if f is a “well-
behaved” function and the step size ν(t) is sufficiently small.

A basic reference for nabla dynamic equations on general time scales is [1]. However, we were unable
to find a source dealing with uniqueness of solutions for nabla dynamic equations. A result of this type
can be easily derived from Theorem 4.1. For this purpose, we switch from Eq. (4.3) to the integral
equation

x(t) = x0 +

∫ t

t0

f(s, x(s))∇s, t ∈ [t0, t0 + T ]T, (4.4)

where the integral on the right-hand side is the nabla integral. For our purposes, it is convenient to
interpret it as a Henstock-Kurzweil nabla integral (cf. [20, Section 8.6]).

Theorem 4.2. Consider a function f : [t0, t0 + T ]T × Rn → Rn. Suppose there exists a function
L : [t0, t0 + T ]T → [0,∞) such that 1− L(s)ν(s) > 0 for all s ∈ (t0, t0 + T ]T, and∥∥∥∥∫ d

c

[f(s, x(s))− f(s, y(s))]∇s

∥∥∥∥ ≤
∫ d

c

L(s)∥x(s)− y(s)∥∇s

for all [c, d] ⊆ [t0, t0 + T ]T and all regulated functions x, y : [t0, t0 + T ]T → Rn. Then Eq. (4.4) has at
most one solution on [t0, t0 + T ]T.

Proof. It suffices to recall that nabla integrals are special cases of Kurzweil-Stieltjes integrals with respect
to the function g(t) = sup{s ∈ [t0, t0 + T ]T : s ≤ t}, which is nondecreasing and right-continuous with
∆−g(s) = ν(s) if s ∈ T, and ∆−g(s) = 0 otherwise. The rest follows from Theorem 4.1.

5 Gronwall inequalities via Stieltjes derivatives

In what follows, we consider g : R → R to be a nondecreasing and left-continuous function. The aim
of this section is to prove Theorems 3.1 and 3.3, as well as their differential counterpart, by means of
Stieltjes derivatives.

All integrals in the present section will be understood as Lebesgue-Stieltjes integrals. In particular,
we denote by µg the Lebesgue-Stieltjes measure on R corresponding to g, and by L1

µg
(I) the class of all

µg-measurable functions f : I → R such that
∫
I
|f |dµg is finite.

By f ′g(t) we denote the Stieltjes derivative of a function f with respect to g at a point t. The definition
of this derivative along with its properties can be found in [4, 13, 14, 15], and we do not repeat it here.
We also need the concept of g-absolutely continuous functions, which generalizes the classical notion of
absolute continuity. In fact, it suffices to keep in mind the following two results:
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� Given f ∈ L1
µg
([t0, t0 + T )), the map F (t) =

∫
[t0,t)

f(s)dµg(s), t ∈ [t0, t0 + T ], is g-absolutely

continuous (we write F ∈ ACg([t0, t0 + T ])) and, moreover, F ′
g(t) = f(t) for µg-a.a. t ∈ [t0, t0 + T )

(see [13, Theorem 2.4 and Proposition 5.2]).

� If F : [t0, t0 + T ] → R is g-absolutely continuous, then F ′
g(t) exists for µg-a.a. t ∈ [t0, t0 + T ),

F ′
g ∈ L1

µg
([t0, t0 + T )), and

F (t) = F (t0) +

∫
[t0,t)

F ′
g(s) dµg(s), t ∈ [t0, t0 + T ] (5.1)

(see [13, Theorem 5.4]).

Given a function p ∈ L1
µg
([t0, t0 + T )), there exists a unique function x ∈ ACg([t0, t0 + T ]) satisfying

x′g(t) = p(t)x(t) for µg-a.a. t ∈ [t0, t0 + T ), x(t0) = 1.

It is called the g-exponential function and denoted by expg(p, ·). An explicit formula can be found
in [4, 14]. In particular, if 1 + p(t)∆+g(t) > 0, t ∈ [t0, t0 + T ), then expg(p, t) > 0 for all t ∈ [t0, t0 + T ].
The g-exponential function is a special case of the generalized exponential function discussed in Section 2:
We have expg(p, t) = edP (t, t0), where P (s) =

∫ s

t0
p dg.

Finally, if F ∈ ACg([t0, t0+T ]) and p ∈ L1
µg
([t0, t0+T )) is such that 1+p(t)∆+g(t) > 0, t ∈ [t0, t0+T ),

then the map Q(t) = F (t)/ expg(p, t), t ∈ [t0, t0 + T ], is g-absolutely continuous (this can be deduced
from [14, Proposition 4.1] and [4, Proposition 5.4]). Furthermore, the quotient rule [14, Proposition 5.2],
ensures that for µg-a.a. t ∈ [t0, t0 + T ), we have

Q′
g(t) =

F ′
g(t) expg(p, t)− F (t)p(t) expg(p, t)

expg(p, t)(expg(p, t) + p(t) expg(p, t)∆
+g(t))

=
F ′
g(t)− p(t)F (t)

expg(p, t)(1 + p(t)∆+g(t))
. (5.2)

We are now able to prove the following result, which is an improvement of [14, Proposition 4.3].
It is a version of Theorem 3.1 where g is left-continuous, Kurzweil-Stieltjes integrals are replaced by
Lebesgue-Stieltjes integrals with respect to µg, and the generalized exponential function is replaced by
the g-exponential function. Moreover, the proof is based on Stieltjes derivatives. We hope this setting
will be more useful to researchers dealing with Stieltjes differential equations.

Theorem 5.1. Let L : [t0, t0 + T ] → [0,∞) be such that L ∈ L1
µg
([t0, t0 + T )). If u,K : [t0, t0 + T ] → R

are such that L · u, L ·K ∈ L1
µg
([t0, t0 + T )) and

u(t) ≤ K(t) +

∫
[t0,t)

L(s)u(s) dµg(s), t ∈ [t0, t0 + T ], (5.3)

then

u(t) ≤ K(t) +

∫
[t0,t)

K(s)L(s)

1 + L(s)∆+g(s)

expg(L, t)

expg(L, s)
dµg(s), t ∈ [t0, t0 + T ]. (5.4)

Moreover, if equality holds in (5.3), then it also holds in (5.4).
In addition, if K is bounded on some [t0, t] ⊂ [t0, t0 + T ], then

u(t) ≤

(
sup

ξ∈[t0,t]

K(ξ)

)
expg(L, t). (5.5)

Proof. Following the proof of [14, Proposition 4.3], define U(t) =
∫
[t0,t)

L(s)u(s) dµg(s) and v(t) =

U(t)/ expg(L, t), t ∈ [t0, t0 + T ]. Then U, v ∈ ACg([t0, t0 + T ]) and by (5.2), we know that for µg-a.a.
t ∈ [t0, t0 + T ),

v′g(t) =
U ′
g(t)− U(t)L(t)

expg(L, t)(1 + L(t)∆+g(t))
=

(u(t)− U(t))L(t)

expg(L, t)(1 + L(t)∆+g(t))
≤ K(t)L(t)

expg(L, t)(1 + L(t)∆+g(t))
, (5.6)
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where the inequality follows from (5.3). The last function in (5.6) belongs to L1
µg
([t0, t0 + T )) by a

reasoning similar to the one used for the function in (3.4). Hence, since v(t0) = 0, (5.1) ensures that for
any t ∈ [t0, t0 + T ],

U(t) = expg(L, t)v(t) = expg(L, t)

∫
[t0,t)

v′g(s) dµg(s) ≤ expg(L, t)

∫
[t0,t)

K(s)L(s) dµg(s)

expg(L, s)(1 + L(s)∆+g(s))
,

so (5.4) now follows from (5.3). Observe that it is clear from (5.6) that if equality holds in (5.3), then it
also holds in (5.4).

To prove (5.5), assumeK is bounded on [t0, t] ⊂ [t0, t0+T ]. The function ψt(s) = expg(L, t)/ expg(L, s),
s ∈ [t0, t], belongs to ACg([t0, t]), satisfies ψt(t0) = expg(L, t), and

(ψt)
′
g(s) = − L(s)ψt(s)

1 + L(s)∆+g(s)
for µg-a.a. s ∈ [t0, t)

(this can be deduced from (5.2) since the Stieltjes derivative of a constant function is equal to zero).
Hence, it follows from (5.4) that

u(t) ≤ K(t) +

∫
[t0,t)

K(s)L(s)ψt(s)

1 + L(s)∆+g(s)
dµg(s) ≤

(
sup

ξ∈[t0,t]

K(ξ)

)(
1 +

∫
[t0,t)

L(s)ψt(s)

1 + L(s)∆+g(s)
dµg(s)

)

=

(
sup

ξ∈[t0,t]

K(ξ)

)(
1−

∫
[t0,t)

(ψt)
′
g(s) dµg(s)

)
=

(
sup

ξ∈[t0,t]

K(ξ)

)
(1− (ψt(t)− ψt(t0)))

=

(
sup

ξ∈[t0,t]

K(ξ)

)
ψt(t0) =

(
sup

ξ∈[t0,t]

K(ξ)

)
expg(L, t),

which proves (5.5).

Remark 5.2. The contents and proofs of Theorem 5.1 and [14, Proposition 4.3] are very similar. The
fundamental difference between the two results, beyond the fact that Theorem 5.1 does not impose
nonnegativity on the functions u and K, comes from (5.6): In [14, Proposition 4.3], the author makes
use of the fact that 1 + L(s)∆+g(s) ≥ 1, s ∈ [t0, t0 + T ), to get rid of that term in the denominator.
This, however, leads to less accurate upper bounds since (5.4) is a sharp upper bound, as shown in
Theorem 5.1. In addition, the second part of Theorem 5.1 is more general than the corresponding
counterpart of [14, Proposition 4.3] as we simply ask K to be bounded on an interval instead of assuming
that t 7→ K(t)(1 + L(t)∆+g(t)) is nondecreasing on that interval.

We now present the corresponding adaptation of Theorem 3.3, which we prove in a similar manner
to Theorem 5.1.

Theorem 5.3. Let L : [t0, t0 + T ] → [0,∞) be such that L ∈ L1
µg
([t0, t0 + T )) and 1− L(t)∆+g(t) > 0,

t ∈ [t0, t0 + T ). If u,K : [t0, t0 + T ] → R are such that L · u, L ·K ∈ L1
µg
([t0, t0 + T )) and

u(t) ≤ K(t) +

∫
[t,t0+T )

L(s)u(s) dµg(s), t ∈ [t0, t0 + T ], (5.7)

then

u(t) ≤ K(t) +

∫
[t,t0+T )

K(s)L(s)

1− L(s)∆+g(s)

expg(−L, t)
expg(−L, s)

dµg(s), t ∈ [t0, t0 + T ]. (5.8)

Moreover, if equality holds in (5.7), then it also holds in (5.8).
In addition, if K is bounded on some [t, t0 + T ] ⊂ [t0, t0 + T ], then

u(t) ≤

(
sup

ξ∈[t,t0+T ]

K(ξ)

)
expg(−L, t)

expg(−L, t0 + T )
. (5.9)
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Proof. Define

U(t) =

∫
[t,t0+T )

L(s)u(s) dµg(s) =

∫
[t0,t0+T )

L(s)u(s) dµg(s)−
∫
[t0,t)

L(s)u(s) dµg(s), t ∈ [t0, t0 + T ],

and v(t) = U(t)/ expg(−L, t), t ∈ [t0, t0 + T ]. Then U ∈ ACg([t0, t0 + T ]) with U ′
g(t) = −L(t)u(t) for

µg-a.a. t ∈ [t0, t0 + T ) and, as a consequence, v ∈ ACg([t0, t0 + T ]). By (5.2),

v′g(t) =
U ′
g(t)− (−L(t))U(t)

expg(−L, t)(1 + (−L(t))∆+g(t))
=

−L(t)(u(t)− U(t))

expg(−L, t)(1− L(t)∆+g(t))
for µg-a.a. t ∈ [t0, t0 + T ).

Thus, since v ∈ ACg([t0, t0 + T ]), we have that for any t ∈ [t0, t0 + T ],

v(t) = −(v(t0 + T )− v(t)) = −
∫
[t,t0+T )

v′g(s) dµg(s) =

∫
[t,t0+T )

L(s)(u(s)− U(s)) dµg(s)

expg(−L, s)(1− L(s)∆+g(s))

≤
∫
[t,t0+T )

L(s)K(s)

expg(−L, s)(1− L(s)∆+g(s))
dµg(s), (5.10)

where the inequality is a consequence of (5.7); the integrability of the function on the right-hand side of
(5.10) can be proven similarly as the integrability of the function in (5.6). Therefore,

U(t) = expg(−L, t)v(t) ≤ expg(−L, t)
∫
[t,t0+T )

L(s)K(s)

expg(−L, s)(1− L(s)∆+g(s))
dµg(s), t ∈ [t0, t0 + T ],

and (5.8) follows from (5.7). Furthermore, if equality holds in (5.7), we also obtain an equality in (5.10)
which, in turn, leads to an equality in (5.8).

Finally, in order to prove (5.9) it is enough to consider the map ψt(s) = expg(−L, t)/ expg(−L, s),
s ∈ [t, t0 + T ], which belongs to ACg([t, t0 + T ]) and satisfies

ψt(t0 + T ) =
expg(−L, t)

expg(−L, t0 + T )
, (ψt)

′
g(s) =

L(s)ψt(s)

1− L(s)∆+g(s)
for g-a.a. s ∈ [t, t0 + T ).

The rest of the proof is analogous to the proof of (5.5) and we omit it.

Finally, we provide a differential version of Theorem 5.1. Observe that, in this case, the map L is no
longer assumed to be nonnegative.

Theorem 5.4. Let u ∈ ACg([t0, t0 + T ]) be such that

u′g(t) ≤ K(t) + L(t)u(t) for g-a.a. t ∈ [t0, t0 + T ), (5.11)

where K,L ∈ L1
µg
([t0, t0 + T )) and 1 + L(t)∆+g(t) > 0 for all t ∈ [t0, t0 + T ). Then

u(t) ≤ u(t0) expg(L, t) +

∫
[t0,t)

K(s)

1 + L(s)∆+g(s)

expg(L, t)

expg(L, s)
dµg(s), t ∈ [t0, t0 + T ]. (5.12)

Moreover, if equality holds in (5.11), then it also holds in (5.12).

Proof. First, note that the hypotheses ensure that v(t) = expg(L, t) > 0, t ∈ [t0, t0 + T ]. Furthermore,
we have u/v ∈ ACg([t0, t0 + T ]) and, by (5.2),(u
v

)′
g
(t) =

u′g(t)− L(t)u(t)

expg(L, t)(1 + L(t)∆+g(t))
≤ K(t)

expg(L, t)(1 + L(t)∆+g(t))
for µg-a.a. t ∈ [t0, t0+T ), (5.13)

where the inequality is a consequence of (5.11). The map on the right-hand side of (5.13) is µg-integrable
on [t0, t0+T ) by a reasoning analogous to the one used for the function in (3.4). Hence, for t ∈ [t0, t0+T ],

u(t)

v(t)
=
u(t0)

v(t0)
+

∫
[t0,t)

(u
v

)′
g
(s) dµg(s) ≤ u(t0) +

∫
[t0,t)

K(s)

expg(L, s)(1 + L(s)∆+g(s))
dµg(s),

which implies (5.12). If equality holds in (5.11), then it holds in (5.13) and (5.12) as well.
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6 Conclusion

In the present paper, we have established general versions of the Gronwall inequality for Stieltjes integrals,
which improve numerous earlier results available in the literature. As an application, we have derived
new uniqueness results for measure differential equations and nabla dynamic equations on time scales.

The topic of Stieltjes integral inequalities is far from being exhausted, and we present two ideas for
future research:

� Prove a sufficiently general Bihari-type inequality for Stieltjes integrals. In this case, the assumption

u(t) ≤ K(t) +

∫ t

t0

u(s) dP (s) (6.1)

will be replaced by the nonlinear inequality

u(t) ≤ K(t) +

∫ t

t0

ω(u(s)) dP (s), (6.2)

and the goal is to find an a priori estimate for u. A result of this type is available in [23, Theo-
rem 1.40], where it is assumed that P is left-continuous, and K is a constant function. Relaxing or
weakening these assumptions would lead to improved well-posedness results for abstract generalized
differential equations and measure functional differential equations, see e.g. [24].

� Besides the Gronwall and Bihari inequalities, there is a wealth of additional useful integral inequal-
ities, see e.g. the monograph [21]. A possible project is to investigate which of these inequalities
admit generalizations involving Stieltjes integrals.
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