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Abstract. We revisit the well-known problem of determining the dimen-
sion in which a unit ball has maximal volume. We consider balls with
respect to the p-norm with arbitrary radius. Given a fixed p, we find all
radii for which the volume is maximized in dimension n. Conversely, for
a fixed radius, we find all values of p for which the volume is maximal
in dimension n.
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1. Introduction

It is well known that the volume of the n-dimensional unit ball is maximal in
dimension five, where it begins to decrease, and tends to zero as n→∞; see
e.g. [6]. But there is nothing special about dimension five: For each n ∈ N,
there exists an r > 0 such that volume of the Euclidean ball of radius r is
maximized in dimension n.

We do not restrict ourselves to Euclidean balls, but consider the p-balls

Bp(r) = {x ∈ Rn : |x1|p + · · ·+ |xn|p ≤ rp},
where p is a positive parameter. If p ≥ 1, then Bp(r) is the ball of radius r

with respect to the p-norm ‖x‖p = (|x1|p + · · · + |xn|p)1/p. Although ‖ · ‖p
is no longer a norm for p ∈ (0, 1), the definition of Bp(r) still makes sense,
and this family of generalized balls includes some interesting objects such
as the region bounded by an astroid or its higher-dimensional counterparts,
corresponding to p = 2/3.

The volume of the n-dimensional p-ball of radius r is given by the for-
mula

V n
p (r) = (2r)n

Γ(1 + 1/p)n

Γ(1 + n/p)
, (1.1)
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Figure 1. Volumes of n-dimensional unit p-balls for p = 4
5

(left), p = 1 (center), and p = 3
2 (right)

which goes back to Dirichlet and Liouville, see [1, Section 1.8]. Some easily
accessible derivations may be found also in [3], [5], [7].

For a given n ∈ N, our goal is to find all pairs (p, r) for which the p-ball
of radius r has maximal volume in dimension n. We will present three results
related to this problem. Theorem 1 may be known to experts on special
functions, but we provide an elementary proof for completeness. Theorems 2
and 3 seem to be new, despite a fairly large amount of literature devoted to
volumes of n-dimensional balls and their qualitative as well as quantitative
properties; see e.g. [2], [4] and the references therein.

The only nontrivial property of the gamma function that is needed in the

present paper is the following: If ψ(x) = Γ′(x)
Γ(x) = d

dx log Γ(x) is the logarithmic

derivative of the gamma function, then ψ′(x) > 0 for all x ∈ (0,∞); see [1,
Theorem 1.2.5]. In particular, Γ is strictly logarithmically convex on (0,∞).

2. Main results

Choosing a p ∈ (0,∞) and plotting the sequence {V n
p (1)}∞n=1, we obtain

pictures such as those in Figure 1. As in the case p = 2, the volumes seem
to reach a maximum in a certain dimension (possibly n = 1), and then begin
decreasing to zero. Let us show that this is indeed true, for arbitrary r > 0
and p > 0.

Theorem 1. For each r > 0 and p > 0, the following statements hold:

1. limn→∞ V n
p (r) = 0.

2. The sequence
{
V n+1
p (r)/V n

p (r)
}∞
n=1

is decreasing.
3. There exists a unique m ∈ N such that

V 1
p (r) < V 2

p (r) < · · · < V m
p (r), (2.1)

V m
p (r) ≥ V m+1

p (r) > V m+2
p (r) > · · · . (2.2)
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Proof. If 2rΓ(1 + 1/p) ≥ 1, we have the estimate

V n
p (r) = (2r)n

Γ(1 + 1/p)n

Γ(1 + n/p)
≤ ((2rΓ(1 + 1/p))p)n/p

Γ(1 + bn/pc)
≤ Cbn/pc+1

bn/pc!
=
Ck+1

k!
,

where C = (2rΓ(1 + 1/p))p, k = bn/pc. Since limk→∞ Ck+1/k! = 0, we get
limn→∞ V n

p (r) = 0. The same conclusion obviously holds if 2rΓ(1+1/p) < 1.

Using formula (1.1), it is easy to check that
{
V n+1
p (r)/V n

p (r)
}∞
n=1

is
decreasing if and only if

Γ

(
1 +

n+ 1

p

)
/Γ

(
1 +

n

p

)
> Γ

(
1 +

n

p

)
/Γ

(
1 +

n− 1

p

)
for each n ∈ N, n ≥ 2. Equivalently (taking logarithms of both sides and
rearranging the terms), we need

log Γ

(
1 +

n+ 1

p

)
+ log Γ

(
1 +

n− 1

p

)
> 2 log Γ

(
1 +

n

p

)
.

The last inequality follows immediately from the strict logarithmic convexity
of the gamma function.

To get the inequalities (2.1) and (2.2), choose m to be the smallest inte-
ger such that V m+1

p (r)/V m
p (r) ≤ 1. Such an integer has to exist, for otherwise

{V n
p (r)}∞n=1 would be increasing, which contradicts the first statement. �

The second part of Theorem 1 says that {V n
p (r)}∞n=1 is strictly loga-

rithmically concave, while (2.1) and (2.2) say that the sequence is unimodal;
the fact that every logarithmically concave sequence with positive terms is
necessarily unimodal (except when it is nondecreasing) is well known.

For our purposes, it is important to know that all inequalities in (2.1)
and all inequalities except the first one in (2.2) are strict. If p > 0 and
r > 0 are fixed, we can calculate the terms of {V n

p (r)}∞n=1 until we find an

integer m such that V m
p (r) ≥ V m+1

p (r). Then we know that the p-ball of
radius r has maximal volume in dimension m, and also in dimension m+ 1 if
V m
p (r) = V m+1

p (r). This procedure was used to produce the plot in Figure 2,
which corresponds to r = 1 and shows the dimension in which V n

p (1) attains
its maximum, depending on the choice of p > 0.

In general, we have the following result.

Theorem 2. If r ≤ 1
2 , then the volume of Bp(r) is maximal in dimension 1

for each p > 0. Otherwise, if r > 1
2 , there exists an unbounded increasing

sequence of positive numbers {pn(r)}∞n=1 with the following properties:

• If p ∈ (0, p1(r)), then the volume of Bp(r) is maximal in dimension 1.
• If p = pn(r) for some n ∈ N, then the volume of Bp(r) is maximal in
dimensions n and n+ 1.
• If p ∈ (pn−1(r), pn(r)) for some n ∈ N, n ≥ 2, then the volume of Bp(r)
is maximal in dimension n.
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Figure 2. For each p > 0, the plot shows the dimension n
in which the unit p-ball has maximal volume. Vertical lines
correspond to those values of p for which the volume is max-
imized in two adjacent dimensions.

For each n ∈ N, pn(r) is the unique p > 0 satisfying

Γ
(

1 + n+1
p

)
2rΓ

(
1 + n

p

)
Γ
(

1 + 1
p

) = 1. (2.3)

Moreover, pn(r) is decreasing with respect to r.

Proof. According to the formula (1.1), we have

V n
p (r)

V n+1
p (r)

=
Γ
(

1 + n+1
p

)
2rΓ

(
1 + n

p

)
Γ
(

1 + 1
p

) = hn(1/p, r), (2.4)

where hn : [0,∞)× (0,∞)→ R is given by

hn(q, r) =
Γ (1 + (n+ 1)q)

2rΓ (1 + nq) Γ(1 + q)
.

The logarithmic derivative of hn with respect to q is

∂

∂q
log hn(q, r)

=
∂

∂q
(log Γ (1 + (n+ 1)q)− log(2r)− log Γ (1 + nq)− log Γ(1 + q))

= (n+ 1)ψ(1 + (n+ 1)q)− nψ(1 + nq)− ψ(1 + q)

= n (ψ(1 + (n+ 1)q)− ψ(1 + nq)) + ψ(1 + (n+ 1)q)− ψ(1 + q) > 0,
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where the last inequality holds because ψ is increasing. Since ∂
∂q log hn =

∂hn

∂q /hn and hn > 0, it follows that ∂hn

∂q (q, r) > 0 for all q > 0 and r > 0,

which in turn implies that hn is increasing in q.
It is clear that hn(0, r) = 1

2r ; let us show that limq→∞ hn(q, r) =∞. It
suffices to consider the limit only with respect to positive integers q (because
of the monotonicity of q 7→ hn(q, r)). In this case we have

hn(q, r) =
1

2r

((n+ 1)q)!

(nq)!q!

=
1

2r

nq + q

q
· nq + q − 1

q − 1
· nq + q − 2

q − 2
· · · nq + 1

1
≥ (n+ 1)q

2r
,

which goes to infinity as n→∞. Consequently, for each r > 0, the function
hn(·, r) maps [0,∞) to [ 1

2r ,∞).

If r ≤ 1
2 , then V n

p (r)/V n+1
p (r) = hn(1/p, r) > hn(0, r) = 1/2r ≥ 1. It

follows that the sequence {V n
p (r)}∞n=1 is decreasing, and therefore the p-ball

or radius r has maximum volume in dimension 1.
If r > 1

2 , there exists a unique pn(r) > 0 such that hn(1/pn(r), r) = 1,

i.e., V n
pn(r)(r) = V n+1

pn(r)(r). Hence, for p = pn(r), the volume of Bp(r) is maxi-

mal in dimensions n and n+1. If p > pn(r), then hn(1/pn(r), r) < 1 and there-
fore V n

p (r) < V n+1
p (r). Similarly, if 0 < p < pn(r), then V n

p (r) > V n+1
p (r).

For each q > 0 and r > 0, the sequence {hn(q, r)}∞n=1 is increasing, since
{Γ (1 + (n+ 1)q) /Γ (1 + nq)}∞n=1 is increasing (cf. the proof of Theorem 1,
where we choose p = 1/q). We claim that {pn(r)}∞n=1 is increasing; indeed,
the possibility pn+1(r) ≤ pn(r) for some n ∈ N leads to a contradiction:

1 = hn(1/pn(r), r) ≤ hn(1/pn+1(r), r) < hn+1(1/pn+1(r), r) = 1.

If p ∈ (0, p1(r)), then V 1
p (r) > V 2

p (r), and therefore the volume of Bp(r)
is maximal in dimension 1. If p ∈ (pn−1(r), pn(r)) for some n ∈ N, n ≥ 2,
then V n−1

p (r) < V n
p (r) and V n

p (r) > V n+1
p (r). Hence, the volume of Bp(r) is

maximal in dimension n.
The sequence {pn(r)}∞n=1 is unbounded from above: Choose an arbi-

trary p > 0. Then the volume of Bp(r) attains its maximum in a certain
dimension n. We necessarily have pn(r) ≥ p, for otherwise V n

p (r) < V n+1
p (r),

which contradicts the assumption that V n
p (r) is maximal. Thus, we see that

for each p > 0, there exists an n ∈ N such that pn(r) ≥ p.
Finally, we note that hn is obviously decreasing in the second variable r.

Since pn(r) satisfies hn(1/pn(r), r) = 1, we see that 1/pn(r) has to increase
if r increases, i.e., pn(r) has to decrease. �

Returning to Figure 2, Theorem 2 says that the jumps (marked by
vertical lines) correspond to the terms of the sequence {pn(1)}∞n=1, i.e., to
solutions of equation (2.3) with r = 1. For n = 1, we get the solution p =
p1(1) = 1, i.e., the unit p-ball has maximal volume in dimension 1 if and only
if p ∈ (0, 1] (if p = 1, then the maximum is also attained in dimension 2).
The remaining values {pn(1)}∞n=2 can be obtained by numerically solving
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equation (2.3). For example, the volume of the unit ball is maximized in
dimension 5 for all values of p between p4(1)

.
= 1.86656 and p5(1)

.
= 2.03793.

Another question we can ask is the following: If we fix p > 0 and n ∈ N,
which radii r > 0 have the property that Bp(r) has maximal volume in
dimension n? Once we have Theorem 2, the answer is simple.

Theorem 3. For each p > 0, let {rn(p)}∞n=1 be given by

rn(p) =
Γ
(

1 + n+1
p

)
2Γ

(
1 + n

p

)
Γ
(

1 + 1
p

) , n ∈ N. (2.5)

Then {rn(p)}∞n=1 is increasing, unbounded, and the following statements hold:

• If r ∈ (0, r1(p)), then the volume of Bp(r) is maximal in dimension 1.
• If r = rn(p) for some n ∈ N, then the volume of Bp(r) is maximal in
dimensions n and n+ 1.
• If r ∈ (rn−1(p), rn(p)) for some n ∈ N, n ≥ 2, then the volume of Bp(r)
is maximal in dimension n.

Moreover, rn(p) is decreasing with respect to p.

Proof. {rn(p)}∞n=1 is an increasing sequence, since {Γ(1+ n+1
p )/Γ(1+ n

p )}∞n=1

is increasing (see the proof of Theorem 1).
If n ≥ 2, Theorem 2 says that Bp(r) has maximal volume in dimension n

if and only if p ∈ [pn−1(r), pn(r)]. To find the value of r > 0 for which
p = pn−1(r), we solve equation (2.3) with n replaced by n − 1, and get
r = rn−1(p). To find the value of r > 0 for which p = pn(r), we solve equation
(2.3) and find r = rn(p). Thus, Bp(r) has maximal volume in dimension n > 1
if and only if r ∈ [rn−1(p), rn(p)].

Similarly, according to Theorem 2, Bp(r) has maximum volume in di-
mension 1 for all r > 0 such that either r ∈ (0, 1

2 ], or r > 1
2 and p ∈ (0, p1(r)],

i.e., if and only if r ∈ (0, r1(p)].
To see that {rn(p)}∞n=1 is unbounded, take an arbitrary r > 0. Let Bp(r)

have maximal volume in a certain dimension n ∈ N. Then it follows from the
previous part of proof that we necessarily have rn(p) ≥ r.

Finally, rn(p) is decreasing with respect to p, since the function q 7→
Γ (1 + (n+ 1)q)/(Γ (1 + nq) Γ(1 + q)) is increasing, as demonstrated in the
proof of Theorem 2. �

An illustration is provided in Figure 3, where we have chosen p = 2;
the horizontal lines correspond to the terms of the sequence {rn(2)}∞n=1. For
example, a Euclidean ball has maximal volume in dimension 5 for all radii r
between 0.9375 and 1.01859.

The results obtained so far can be visualized in yet another way: Figure 4
shows the graphs of the functions p 7→ rn(p), p ∈ (0,∞). The region between
the axes and r1 corresponds to pairs (p, r) for which Bp(r) has maximal
volume in dimension 1. Similarly, each region between two adjacent functions
rn−1 and rn consists of all pairs (p, r) for which Bp(r) has maximal volume in
dimension n. Each vertical line corresponding to a fixed p > 0 intersects the
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Figure 3. For each n ∈ N, the plot shows all values of r for
which the Euclidean ball (p = 2) of radius r has maximal
volume in dimension n. Horizontal lines correspond to radii
for which the volume is maximized in two adjacent dimen-
sions.
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Figure 4. Each region represents the pairs (p, r) for which
Bp(r) has maximal volume in the same dimension n; darker
colors correspond to larger values of n. The curves are graphs
of the increasing sequence of functions rn given by formula
(2.5). The least of these functions, r1, has asymptotes r = 0.5
and p = 0.
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graphs at the points (p, rn(p)), n ∈ N (cf. Theorem 2), and each horizontal line
corresponding to a fixed r > 1

2 intersects the graphs at the points (pn(r), r),
n ∈ N (cf. Theorem 3).
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Antońın Slav́ık
Charles University
Faculty of Mathematics and Physics
Sokolovská 83
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