
De Bruijn’s Short Route
to Rényi’s Parking Constant

Antonı́n Slavı́k

Abstract. Rényi’s parking constant describes the mean density of randomly parked cars in
a long street. We present a short elementary derivation of the exact formula for Rényi’s con-
stant, which is inspired by de Bruijn’s research in number theory and differential equations.

1. INTRODUCTION. A classical parking problem due to Alfréd Rényi [17] asks
for the expected number of unit-length cars that can be parked randomly in a street
of length x. More precisely, suppose the street corresponds to the interval [0, x]
with x > 1. The first car parks randomly with its left end uniformly distributed over
[0, x− 1]. The second car behaves in the same way, but leaves the street if its preferred
position overlaps with the position of the first car. The parking process continues as
long as the probability that an additional car is able to park is nonzero (see the com-
puter animation in [23]). The goal is to calculate m(x), the expected number of cars
that will be able to park.

Rényi himself was not really interested in car parking. The English title of his 1958
paper is On a one-dimensional problem concerning random space filling, and his park-
ing problem represents a one-dimensional version of the sequential random packing
problem. The latter is important in statistical physics and chemistry, and asks for the
mean packing density of randomly placed unit spheres. Since the three-dimensional
problem is quite difficult, Rényi considered the one-dimensional version as a starting
point for further investigations. A wealth of information on the history of sequential
packing problems and their applications in various branches of science is available
in [7] and [20].

But let us return to car parking. We imagine the cars to be one-dimensional closed
unit intervals, and they are allowed to touch themselves at their endpoints. Alterna-
tively, one could work with disjoint open unit intervals, and this setting leads to the
same value of m(x).

To derive an equation for m(x+ 1), suppose that the first car has parked with its
left endpoint at t ∈ [0, x]. Then the remaining empty spaces on both sides have lengths
t and x− t, respectively. The expected numbers of cars that are able to park there are
m(t) and m(x− t), and taking the average over all possible values of t, we obtain

m(x+ 1) =
1

x

∫ x

0

(1 +m(t) +m(x− t)) dt

= 1 +
1

x

∫ x

0

m(t) dt+
1

x

∫ x

0

m(x− t) dt.

Here we assume that m(x) = 0 for all x ∈ [0, 1). Some care is needed when defining
m(1). It is natural to let m(1) = 1, but then the formula 1 +m(t) +m(x− t) over-
counts the number of cars if t = 1 or t = x− 1, because the probability that another
car parks exactly in the interval [0, 1] or [x, x+ 1] is zero. However, the integral equa-
tion is in fact correct, because the value of m(1) has no influence on the values of the
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Figure 1. The functions x 7→ m(x) and x 7→ m(x)
x

.

integrals. Further simplification leads to

m(x+ 1) = 1 +
2

x

∫ x

0

m(t) dt, x ≥ 1. (1)

Note that m(x) = 1 for all x ∈ [1, 2], and we can use the previous formula to calculate

m(x) =
3x− 5

x− 1
, x ∈ [2, 3].

In a similar way, we get

m(x) =
7x− 4 log(x− 2)− 17

x− 1
, x ∈ [3, 4].

This can be no longer integrated in terms of elementary functions, so we resort to
numerical calculation. It is best to multiply (1) by x and differentiate to get

x ·m′(x+ 1) +m(x+ 1) = 1 + 2m(x), x ≥ 1 (2)

(the derivative has to be understood as one-sided for x = 1). This delay differential
equation is easy to solve numerically, for example in Wolfram Mathematica; see the
left part of Figure 1.

It is obvious that m is nondecreasing, and m(x) ≤ x for all x ≥ 1, since the
number of cars never exceeds the length of the interval. On the other hand, we have
m(x) ≥ x

2
for all x ≥ 1. For x ∈ [1, 3], this follows from the previous explicit for-

mulas. And if the inequality holds for a certain x, then it also holds for x+ 2. Indeed,
suppose the first car has already parked, and the remaining empty spaces on both sides
have total length x+ 1. If one of them has length less than or equal to 1, we discard
it. What remains is either one or two intervals of length greater than one, whose total
length is at least x. By the induction hypothesis, the total expected number of cars that
can park there is at least x

2
, which shows that m(x+ 2) ≥ x

2
+ 1.

In fact, it is more interesting to look at the values of m(x)

x
, which correspond to

the expected density of cars; see the right part of Figure 1. This function has a global
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minimum at x = 2, followed by a local maximum at x = 1
3

(√
10 + 5

)
≈ 2.72076

and a local minimum at x ≈ 3.14577 (both local extrema are shown as dots). Then
it begins to approach a certain limiting value C, which is known as Rényi’s parking
constant. Rényi discovered the exact formula

C =

∫ ∞

0

exp

(
−2

∫ u

0

1− e−t

t
dt

)
du, (3)

while the numerical value is approximately C ≈ 0.7475979 (see [21]). Thus, for long
streets, we expect that randomly parked cars will occupy approximately 75% of the
space.

Various authors have devised numerical methods leading to more or less precise
estimates of C (see [14] and the references therein). With modern computers and soft-
ware such as Wolfram Mathematica, it is straightforward to calculate C to a large
number of decimal places directly from (3). But Rényi’s parking problem and its mod-
ifications, including discrete versions, still remain popular, see e.g., [4, 5, 8, 19] and
the references therein. Rényi’s constant also appears in Finch’s delightful survey of
mathematical constants [7, Section 5.3]. Interestingly, the two-dimensional packing
problem, which asks for the mean density of randomly placed unit squares in an x× y
rectangle, remains unsolved. The exact value of the limiting density when x, y → ∞
is unknown, and only numerical results are available. These results indicate that the
Palásti conjecture, which predicts the limiting density to be C2, is probably false.

Rényi’s derivation of (3), which is reproduced in [20], is not completely elementary.
Its first step is to apply the Laplace transform, which converts the delay differential
equation (2) to an ordinary differential equation. This equation is solved by the varia-
tion of parameters, and the calculation is finished by the use of a Tauberian theorem,
which provides a link between the asymptotic behavior of x 7→

∫ x

0
m at infinity, and

the behavior of the Laplace transform of m at 0. Different derivations of (3) were pro-
posed in [10, 13], but none of them seems to be completely transparent and accessible
to a wide readership. An elementary approach is available in [22], but it provides only
approximate lower and upper bounds for C.

Our goal is to present an alternative and elementary derivation of (3), which is
inspired by the work of Nicolaas Govert de Bruijn, in particular his paper [2] devoted
to the Buchstab function. In Section 2, we present a short and self-contained proof
of (3). In Section 3, we compare the proof with de Bruijn’s analysis of the Buchstab
function, and provide some additional insight and comments. Section 4 contains some
further historical remarks.

2. AN ELEMENTARY DERIVATION OF RÉNYI’S CONSTANT. The substitu-
tion n(x) = m(x) + 1 converts (2) into the homogeneous equation

x · n′(x+ 1) + n(x+ 1) = 2n(x), x ≥ 1,

which can be further rewritten as

[x · n(x+ 1)]′ = 2n(x), x ≥ 1,

or equivalently

[(x− 1)n(x)]′ = 2n(x− 1), x ≥ 2. (4)
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The initial condition is now n(x) = m(x) + 1 = 2 for all x ∈ [1, 2]. Recall that our
goal is to calculate limx→∞

m(x)

x
, but since m and n differ only by a constant, it

suffices to evaluate limx→∞
n(x)

x
. We will achieve this goal in three steps:

1. Observe that solutions of the differential equation (4), which contains a delayed
argument, are closely related to solutions of another differential equation with
an advanced argument.

2. Find a suitable solution of the latter equation and investigate its asymptotic be-
havior.

3. Combine the previous steps and analyze the asymptotic behavior of x 7→ n(x)

x
.

The relation between differential equations with delayed and advanced arguments
is a general phenomenon that will be discussed in Section 3. But, for the purpose of
calculating Rényi’s constant, it suffices to prove the following simple result.

Proposition 1. If n : [1,∞) → R is a solution of (4) and h : [1,∞) → R is a solu-
tion of the equation

1

2
(x− 1)h′(x− 1) + h(x) = 0, x ≥ 2, (5)

then the function ⟨n, h⟩ : [1,∞) → R given by

⟨n, h⟩(x) = 2

∫ x

x−1

n(t)h(t) dt+ (x− 1)n(x)h(x− 1) (6)

is constant on [2,∞).

Proof. Differentiation yields

⟨n, h⟩′(x) = 2n(x)h(x)− 2n(x− 1)h(x− 1) + n(x)h(x− 1)

+(x− 1)n′(x)h(x− 1) + (x− 1)n(x)h′(x− 1).

Replacing n(x− 1) by 1
2
[(x− 1)n(x)]′ = 1

2
n(x) + 1

2
(x− 1)n′(x), we get

⟨n, h⟩′(x) = 2n(x)h(x) + (x− 1)n(x)h′(x− 1),

which is zero because of (5).

In the next proposition, we find a solution of equation (5) with the help of the
function

Einu =

∫ u

0

1− e−t

t
dt, u ∈ [0,∞). (7)

Having in mind the formula (3) that we want to prove, the appearance of the previous
integral in our calculations should come as no surprise, because our ultimate goal is to
show that limx→∞

n(x)

x
=
∫∞
0

e−2Einu du.
The integral in (7) exists and is finite, since the integrand has limit 1 for t → 0+.

Note that Ein is a nonnegative function and limu→∞ Einu = ∞, because the inte-
grand is greater than 1

2t
for all sufficiently large t.
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Proposition 2. The function

h(x) =

∫ ∞

0

u · e−u·x−2Einu du, x ∈ [1,∞), (8)

is a solution of equation (5). Moreover, it satisfies h(x) ∼ 1
x2

for x → ∞.

Proof. The integral in the definition of h exists and is finite, because the integrand is
less than or equal to u · e−u. Differentiation under the integral sign gives

h′(x) = −
∫ ∞

0

u2 · e−u·x−2Einu du, x ≥ 1

(this differentiation is justified, since 0 ≤ u2 · e−u·x−2Einu ≤ u2 · e−u). Therefore,
for x ≥ 2,

1

2
(x− 1)h′(x− 1) + h(x) =

1

2
(1− x)

∫ ∞

0

u2 · e−u·(x−1)−2Einu du

+

∫ ∞

0

u · e−u·x−2Einu du =
1

2

∫ ∞

0

e−u·(x−1)−2Einu
(
(1− x)u2 + 2u · e−u

)
du

=
1

2

[
u2 · e−u·(x−1)−2Einu

]∞
u=0

= 0.

To prove the second statement, we calculate (performing the change of variables t =
x · u)

lim
x→∞

(
x2 · h(x)

)
= lim

x→∞

∫ ∞

0

x2 · u · e−u·x−2Einu du

= lim
x→∞

∫ ∞

0

t · e−t · e−2Ein(t/x) dt

=

∫ ∞

0

lim
x→∞

(
t · e−t · e−2Ein(t/x)

)
dt =

∫ ∞

0

t · e−t dt = 1.

The interchange of the order of the limit and the integral can be justified using the
dominated convergence theorem (note that 0 ≤ t · e−t · e−2Ein(t/x) ≤ t · e−t).

We are now ready for the calculation of Rényi’s constant.

Theorem 3. If n : [1,∞) → R is the solution of (4) satisfying n(x) = 2 for all
x ∈ [1, 2], then

lim
x→∞

n(x)

x
=

∫ ∞

0

e−2Einu du =

∫ ∞

0

exp

(
−2

∫ u

0

1− e−t

t
dt

)
du.

Proof. Let h be given by (8). Since ⟨n, h⟩ introduced in (6) is a constant function, we
have

⟨n, h⟩(2) = lim
x→∞

⟨n, h⟩(x).
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Using the definition of ⟨n, h⟩ and the fact that n(x) = 2 for all x ∈ [1, 2], we get

4

∫ 2

1

h(t) dt+ 2h(1) = lim
x→∞

(
2

∫ x

x−1

n(t)h(t) dt+ (x− 1)n(x)h(x− 1)

)
.

Since h(t) ∼ 1
t2

for t → ∞, there exists a t0 ≥ 1 such that 0 ≤ h(t) ≤ 2
t2

for all
t ≥ t0. Recall also that n(t) = m(t) + 1 ≤ t + 1 ≤ 2t for all t ≥ 1. Therefore, if
x ≥ t0 + 1 ≥ 2, we have

0 ≤
∫ x

x−1

n(t)h(t) dt ≤
∫ x

x−1

4

t
dt = 4 log

x

x− 1
,

which shows that limx→∞
∫ x

x−1
n(t)h(t) dt = 0. Consequently,

4

∫ 2

1

h(t) dt+ 2h(1) = lim
x→∞

(x− 1)n(x)h(x− 1)

= lim
x→∞

n(x)

x
· x · (x− 1) · h(x− 1) = lim

x→∞

n(x)

x
,

since h(x− 1) ∼ 1
(x−1)2

for x → ∞. Using the definition of h and interchanging the
order of integration, we get

lim
x→∞

n(x)

x
= 4

∫ 2

1

(∫ ∞

0

u · e−u·t−2Einu du

)
dt+ 2h(1)

= 4

∫ ∞

0

u · e−2Einu ·
(∫ 2

1

e−u·t dt

)
du+ 2h(1)

= 4

∫ ∞

0

e−2Einu · (e−u − e−2u) du+ 2

∫ ∞

0

u · e−u · e−2Einu du

=

∫ ∞

0

e−2Einu ·
(
4e−u − 4e−2u + 2u · e−u − 1

)
du+

∫ ∞

0

e−2Einu du.

To conclude the proof, it suffices to show that the first integral on the right-hand side
vanishes. Indeed, the integrand has a primitive function

F (u) = e−2Einu · (−2u · e−u + u)

(the reader is invited to check this by differentiation, using the fact that (Einu)′ =
1−e−u

u
). Obviously, F (0) = 0. Moreover,

Einu =

∫ 1

0

1− e−t

t
dt+

∫ u

1

1

t
dt−

∫ u

1

e−t

t
dt

= α+ log u−
∫ u

1

e−t

t
dt, (9)

where α =
∫ 1

0
1−e−t

t
dt, and therefore

lim
u→∞

F (u) = e−2α lim
u→∞

(
1

u2
· exp

(
2

∫ u

1

e−t

t
dt

)
· (−2u · e−u + u)

)
= 0.
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The last equality follows from the fact that the term with the integral is bounded:

0 ≤
∫ u

1

e−t

t
dt ≤

∫ u

1

e−t dt = e−1 − e−u ≤ e−1.

Remark 4. The function Ein introduced in (7) is known as the complementary or
modified exponential integral. It can be also expressed as the power series

Einu =
∞∑
k=1

(−1)k+1uk

k · k!

(which is easily obtained from (7) using the Taylor series for e−t and term-by-term
integration), or in the form

Einu = Γ(0, u) + γ + log u (10)

(see [15, Section 6.2]), where Γ(0, u) =
∫∞
u

e−t

t
is a special case of the incomplete

gamma function, and γ ≈ 0.577216 is Euler’s constant. Thus, Rényi’s constant is
often expressed in the form

C = e−2γ

∫ ∞

0

e−2Γ(0,u)

u2
du.

Formula (10) could have been used in the final part of our derivation in place of (9),
but we have intentionally avoided (10) to keep the proof self-contained.

3. THE BUCHSTAB FUNCTION AND ADJOINT EQUATIONS. The proof pre-
sented in Section 2 is elementary, but the reader might feel that Propositions 1 and 2,
came out of blue sky. Our next goal is to shed a bit more light on the whole calculation,
convince the reader that it is not a mere collection of ad-hoc tricks, and provide some
historical background.

De Bruijn’s paper [2], which served as an inspiration for Section 2, deals with the
Buchstab function ω : [1,∞) → R, which is well known in number theory. It satisfies

[x · ω(x)]′ = ω(x− 1), x ≥ 2, (11)

and ω(x) = 1
x

for x ∈ [1, 2]; see Figure 2. The final part of [2] contains a novel short
proof of the identity limx→∞ ω(x) = e−γ . It is based on the fact that if h is an arbitrary
solution of the differential equation

x · h′(x− 1) + h(x) = 0, (12)

then the expression ∫ x

x−1

ω(t)h(t) dt+ x · ω(x)h(x− 1) (13)

does not depend on x; this is de Bruijn’s version of our Proposition 1. He referred
to (12) as the adjoint equation to (11), and said that (13) represents an “invariant inner
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Figure 2. The Buchstab function ω.

product” of solutions to the two equations. Next, he stated (without using the notation
Ein and without any further explanation) that

h(x) =

∫ ∞

0

e−u·(x+1)−Einu du

is a solution of the adjoint equation (12), which satisfies h(x) ∼ 1
x

for x → ∞;
this was our inspiration for Proposition 2. Finally, he evaluated the inner prod-
uct (13) for x = 2 and x → ∞, integrated by parts, and obtained the desired identity
limx→∞ ω(x) = e−γ .

De Bruijn was aware that his method is useful not only for the investigation of the
Buchstab function, but also for similar problems. In the end of his 1950 paper [2], he
revealed that the method originated in his unpublished studies of the equation F ′(x) =
eαx+βF (x− 1). These appeared in the 1953 paper [3], where he considered a more
general linear “differential-difference” operator Λ of the form

Λf(x) = w(x)f ′(x) + p(x)f(x)− q(x)f(x− 1). (14)

He introduced the adjoint operator Λ∗ by

Λ∗g(x) = −[w(x)g(x)]′ + p(x)g(x)− q(x+ 1)g(x+ 1), (15)

as well as the inner product of f and g given by∫ x

x−1

q(t+ 1)f(t)g(t+ 1) dt+ w(x)f(x)g(x). (16)

It is a simple exercise to check that (16) does not depend on x whenever f , g are
solutions of the differential equations Λf = 0 and Λ∗g = 0, respectively.

At first glance, it seems that (16) is not completely consistent with (6) and (13),
where both functions in the integrand are evaluated at the same point t. However, this
is just a matter of notation. Indeed, the Buchstab differential equation (11) corresponds
to

0 = Λω(x) = x · ω′(x) + ω(x)− ω(x− 1),

8



and comparison with (14) shows thatw(x) = x, p(x) = 1, q(x) = 1. Then, according
to (15) and (16), the adjoint differential equation is

0 = Λ∗g(x) = −[x · g(x)]′ + g(x)− g(x+ 1) = −x · g′(x)− g(x+ 1),

while the inner product of ω and g is∫ x

x−1

ω(t)g(t+ 1) dt+ x · ω(x)g(x).

These results coincide with (12) and (13) if we denote h(x) = g(x+ 1).
Similarly, the Rényi differential equation (4) corresponds to

0 = Λn(x) = (x− 1)n′(x) + n(x)− 2n(x− 1),

i.e., we have w(x) = x− 1, p(x) = 1, q(x) = 2. The adjoint differential equation is

0 = Λ∗g(x) = −[(x− 1)g(x)]′ + g(x)− 2g(x+ 1)

= −(x− 1)g′(x)− 2g(x+ 1), (17)

while the inner product of n and g is∫ x

x−1

2n(t)g(t+ 1) dt+ (x− 1)n(x)g(x). (18)

These results coincide with (5) and (6) if we denote h(x) = g(x+ 1).
There exist other number-theoretic papers dealing with the Buchstab function,

differential-difference equations, and their adjoints. A remarkably clear exposition
can be found in [12]. The authors consider delay differential equations of the form

x ·G′(x) = −a ·G(x)− b ·G(x− 1), (19)

where a, b ∈ R. The corresponding adjoint equation is then defined as

(x · g(x))′ = a · g(x) + b · g(x+ 1), (20)

and the authors mention that it always has a solution satisfying g(x) ∼ xa+b−1 for
x → ∞. If a+ b < 1, the solution is given by the formula

g(x) =
1

Γ(1− a− b)

∫ ∞

0

e−x·u+b·Einu

ua+b
du. (21)

Proofs of these statements are available in [11]. Our Proposition 2 is a special case
of these results: Starting with the Rényi differential equation (4) and letting G(x) =
n(x+ 1), we obtain (19) with a = 1 and b = −2. The adjoint equation (20) is then
just a shifted version of (5), and the solution (21) matches (8).

The above-mentioned number-theoretic papers do not seem to be well known
among experts in differential equations. However, there are two nice papers [9]
and [16] published in the last decade, which focus primarily on differential equa-
tions themselves, and use the concept of adjoint equations to study the asymptotic
behavior of the general delay differential equation x′(t) = p(t)x(t− r).

DE BRUIJN’S ROUTE TO PARKING CONSTANT 9



4. CONCLUSION. Was de Bruijn aware of the connection between his methods
and the parking problem? Rényi’s paper [17] appeared only in 1958, five years af-
ter de Bruijn’s paper [3]. It was written in Hungarian and followed by Russian and
English summaries. An English translation [18] was published in the fourth volume of
Selected Translations in Mathematical Statistics and Probability in 1963. De Bruijn
lived a long life until 2012, but as far as we know, the parking problem is never men-
tioned in his publications. Still, there is convincing evidence that he was familiar with
the problem. Besides calculating the value of C, Rényi obtained the asymptotic esti-
mate

m(x) = C · (x+ 1)− 1 +O(x−n), (22)

which holds for all n ≥ 1. He also remarked [17, p. 127]: “N. G. de Bruijn pointed out
that using his method the estimation of the remainder term can be made still sharper.”

But this is not the end of the story. One of de Bruijn’s Ph.D. students at the Technical
University Eindhoven was J. J. A. Beenakker, whose 1966 doctoral thesis [1] contains a
comprehensive study of the delay differential equation α · x · f ′(x) + f(x− 1) = 0,
including an asymptotic analysis of its solutions. The thesis was motivated by prob-
lems in analytic number theory, but the last four-page chapter is devoted to Rényi’s
parking problem! Beenakker knew Rényi’s asymptotic estimate (22), as well as the
improved estimate

m(x) = C · (x+ 1)− 1 +O

((
2e

x

)x−3/2
)

due to A. Dvoretzky and H. Robbins [6]. Using the methods developed earlier in his
thesis, Beenakker obtained the finer estimate

m(x) = C · (x+ 1)− 1 +O

((
2e

x · log x

)x)
.

The full details are rather involved, but it is clear that his calculation is also based
on the adjoint equation (17), as well as on the inner product (18). Beenakker’s thesis
remained his only mathematical publication, and his work is now nearly forgotten. In
fact, we discovered the thesis only when the present article was almost finished.

In view of these facts, we think it is fully justified to refer to the proof given in
Section 2 as to “de Bruijn’s route to Rényi’s parking constant.” We believe it is simpler
than Rényi’s original approach, and moreover provides a nice illustration of the duality
between differential equations with delayed and advanced arguments.

REFERENCES

1. Beenakker JJA. The differential-difference equation αxf ′(x) + f(x− 1) = 0 [dissertation]. Eindhoven:
Technische Hogeschool Eindhoven; 1966.

2. de Bruijn NG. On the number of uncancelled elements in the sieve of Eratosthenes. Nederl Akad Weten-
sch Proc. 1950; 53: 803–812.

3. de Bruijn NG. The difference-differential equation F ′(x) = eαx+βF (x − 1). Nederl Akad Wetensch
Proc Ser A. 1953; 56: 449–458, 459–464.
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