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Abstract. We describe a new approach for calculating the winning probabilities in the game of
Pass the Buck on arbitrary graphs. It is based on the Markov chain tree theorem, and reduces
the problem to counting arborescences in directed graphs. We investigate the game on several
classes of graphs, provide short derivations of existing results, and obtain several new ones.

1. INTRODUCTION. The game called Pass the Buck is played on an arbitrary
graph, whose vertices represent players. There is a designated first player, who is
holding a prize referred to as ‘the buck’. In each round of the game, one of the follow-
ing events is chosen uniformly at random: Either the player holding the buck retains
the prize and becomes the winner of the game, or passes the buck to one of their neigh-
bors. Hence, if the current player has k neighbors, there are k + 1 possible moves,
each of which takes place with probability 1

k+1
. Although this does not sound like the

most enjoyable game in the world, it leads to beautiful mathematics.
The problem of calculating the winning probabilities of all players for various

classes of graphs was investigated in several papers. Bruce Torrence and Robert Tor-
rence have analyzed the game on path graphs, and expressed the winning probabilities
in terms of the Fibonacci and Lucas numbers [8]. An alternative method involving
a chip-firing process called the “stochastic abacus” was developed by B. Torrence,
who considered a much larger class of graphs [9]. Kenneth Levasseur’s analysis of
the game on complete trees [6] and rooted trees [7] is also based on the use of the
stochastic abacus.

In the present paper, we propose a new way of calculating the winning probabil-
ities. The idea is to view the game as a Markov chain, and calculate the absorbing
probabilities using the Markov chain tree theorem, which reduces the task to counting
arborescences (directed analogues of spanning trees) in a directed graph.

Our exposition is self-contained. We do not assume an a priori knowledge of the
Markov chain tree theorem, and explain all necessary details in Sections 2 and 3. In
Section 4, we calculate the numbers of arborescences of certain graphs that will be
needed later. The remaining sections, which form the core of the paper, demonstrate
our approach to Pass the Buck by calculating the winning probabilities for several
classes of graphs. For path graphs (Section 5), we extend the results available in the
literature by calculating the winning probabilities for all players (not just those at the
endpoints). The results for cycle graphs (Section 6) are known, but we present a unified
approach where there is no need to distinguish whether the number of players is even or
odd. The results for complete graphs (Section 7) and complete k-ary trees (Section 9)
are also known, but our derivations are new and short. The solutions for complete
bipartite graphs (Section 8) and connected cycles (Section 10) are new. For spoke
graphs (Section 11), we extend the solution which was previously known only if the
starting player is located in the central vertex. Finally, we point out that similar ideas
can be used to deal with windmill and Dutch windmill graphs (Section 12).

2. PASS THE BUCK AS A MARKOV CHAIN. The game of Pass the Buck involv-
ing n players is played on a connected undirected graph with vertex set {1, . . . , n}. It
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is equivalent to a Markov chain represented by a directed graph, which is obtained as
follows: Each undirected edge i ↔ j in the original undirected graph is replaced by
a pair of directed edges i→ j and j → i. Moreover, for each vertex i ∈ {1, . . . , n} in
the original graph, we create a new vertex Si, add a directed edge i→ Si, and a loop
Si → Si. Figure 1 illustrates this construction for a path graph.

Each vertex i ∈ {1, . . . , n} corresponds to the situation when the game is in
progress, and player i holds the buck. The victory of a player i corresponds to the
move from i to Si. Vertices S1, . . . , Sn represent absorbing states of the Markov
chain, since it is impossible to leave Si. The transition from Si to Si occurs with
probability 1. On the other hand, vertices i ∈ {1, . . . , n} represent transient states,
and all their neighbors can be reached with the same probability.

The winning probability for player i equals the probability that the Markov chain
will reach the absorbing state Si, and our goal is to calculate these probabilities.
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Figure 1. A graph for Pass the Buck (left), and the corresponding Markov chain represented by a weighted
directed graph (right).

3. THE MARKOV CHAIN TREE THEOREM. The standard way of calculating
the absorbing probabilities in a Markov chain is based on the concept of a fundamen-
tal matrix (see [2, Chapter 3]). Consider the matrices Q = (qij)i,j and R = (rij)i,j ,
where qij is the transition probability from a transient state i to a transient state j,
while rij is the transition probability from a transient state i to an absorbing state j.
The fundamental matrix is N = (I −Q)−1, and the sum of the values in its i-th row
is the expected number of steps before absorption, provided that it started in state i.
Finally, the elements bij of the matrixB = NR give the probabilities that the Markov
chain will end in the absorbing state j, assuming that we started from the transient
state i. For the Markov chain depicted in the right part of Figure 1, we get

Q =

0 1
2

0
1
3

0 1
3

0 1
2

0

 , R =

 1
2

0 0

0 1
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0

0 0 1
2

 , B =

 5
8
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2
8
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8
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8
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8

 . (1)

The same results can be obtained using a tool called the probabilistic or stochastic
abacus. The idea is to run a certain chip-firing process on the vertices of the directed
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graph from Figure 1, and count the number of chips accumulated in the absorbing
vertices as soon as the process terminates. This approach to calculating the winning
probabilities for Pass the Buck on various graphs was employed in the papers [6, 8, 9].

But there is another completely different way of calculating the absorbing probabil-
ities, which is based on counting certain arborescences in the graph representing the
Markov chain. The result is known as the Markov chain tree theorem, and its general
version makes it possible to calculate the long-run average probabilities that the chain
will be in state j, provided that it started from state i. In our case, the long-run proba-
bilities for transient states are zero, and the long-run probabilities for absorbing states
are exactly the absorbing probabilities we want to calculate.

We will describe only a special case of the Markov chain tree theorem that is di-
rectly applicable to Pass the Buck; it follows from a more general statement that is
available in [1, 4, 5]. Suppose that we have a finite Markov chain represented by a
weighted directed graph G = (V,E). Its transient states are 1, . . . , n, and absorbing
states are S1, . . . , Sn, where each state Si can be reached only from i. If necessary, we
allow multiple edges between pairs of vertices, but we assume that all edges leaving an
arbitrary vertex have the same weight (i.e., transition probability). Hence, the weight
of all edges leaving a vertex v ∈ V is the reciprocal of the outdegree of v (and there is
no need to specify these weights whenever we draw the corresponding graph).

A collection of edges A ⊂ E will be called an arborescence if it contains no cy-
cles, and each vertex from {1, . . . , n} has a unique outgoing edge contained in A.
Denote by A(G) the set of all arborescences in G, and by Aij(G) the set of all ar-
borescences in G containing a directed path from i to S whose last edge is j → S.
By the Markov chain tree theorem, if A(G) ̸= ∅, then the probability of reaching an
absorbing state Sj , provided that we started in a transient state i, is

pij =
|Aij(G)|
|A(G)| . (2)

This is the crucial formula for the rest of the paper.
Let us make two simple but useful observations. When counting arborescences,

we can omit all loops, since they can never appear in an arborescence. Also, we can
contract the vertices S1, . . . , Sn into a single vertex S as in Figure 2. This has no
effect on the total number of arborescences, and instead of calculating the number
of all arborescences containing a directed path from i to Sj (which necessarily pass
through j), we calculate the number of all arborescences containing a directed path
from i to S via the edge j → S.

1

2

3

S

Figure 2. The graph obtained from the right part of Figure 1 by removing loops and contracting the absorbing
states into a single vertex S.

To provide an illustration, let us calculate the winning probabilities in Pass the Buck
for the graph from the left part of Figure 1 by counting arborescences of the graph in
Figure 2. The latter graph has exactly 8 arborescences; they are shown in Figure 3. The
winning probabilities depend on the starting player:
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• Player 1 starts. There are 5 arborescences containing the edge 1 → S, 2 arbores-
cences containing a path from 1 to S via 2 → S, and 1 arborescence containing
a path from 1 to S via 3 → S. According to (2), the winning probabilities for the
three players are 5/8, 2/8, and 1/8.

• Player 2 starts. There are 2 arborescences containing a path from 2 to S via 1 → S,
4 arborescences containing the edge 2 → S, and 2 arborescences containing a path
from 2 to S via 3 → S. The winning probabilities are 2/8, 4/8, and 2/8.

• Player 3 starts. There is 1 arborescence containing a path from 3 to S via 1 → S,
2 arborescences containing a path from 3 to S via 2 → S, and 5 arborescences
containing the edge 3 → S. The winning probabilities are 1/8, 2/8, and 5/8.

The three triples of numbers correspond to the rows of the matrixB obtained in (1).
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Figure 3. All arborescences of the graph from Figure 2.

The following remarks are intended primarily for readers who are already familiar
with the Markov chain tree theorem, or those who are planning to read its proof in
[1, 4, 5]:
• The standard formulation of the Markov chain tree theorem involves weights of

arborescences. The weight of an arborescence is defined as the product of weights
of all edges in A, and the original Markov chain tree theorem says that

pij =
∥Aij(G)∥
∥A(G)∥ ,

where ∥A(G)∥ denotes the sum of weights of all arborescences in A(G), and
∥Aij(G)∥ is the sum of weights of all arborescences in Aij(G). However, since
we assume that all edges leaving an arbitrary vertex have the same weight, and
since each arborescence contains exactly one outgoing edge for each transient ver-
tex, it is clear that all arborescences have the same weight. Thus, we can forget
about edge weights as well as arborescence weights, and simply count the numbers
of arborescences as in (2).

• In [1, 4, 5], the definition of an arborescence is formulated in a slightly different
way. An arborescence is an edge set of maximum possible cardinality in which
there is at most one edge leaving every vertex, and there are no cycles. However, it
is clear that maximum cardinality is achieved when all non-absorbing vertices have
exactly one outgoing edge, while absorbing vertices have none.
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For directed graphs having only one vertex S with no outgoing edges except
loops, there is yet another characterization of arborescences: From each vertex v
different from S, there is a unique directed path from v to S.

4. COUNTING ARBORESCENCES. We now collect some auxiliary results on the
numbers of arborescences for certain simple graphs. In later sections, we will utilize
these results while solving Pass the Buck on more complicated graphs.

First, we take arbitrary a, b ∈ N and calculate the number of arborescences for a
graph denoted by Pn,a,b, which has vertices 1, . . . , n and S, and its edges are as fol-
lows: For each i ∈ {1, . . . , n}, there is an edge i→ S. For each i ∈ {1, . . . , n− 1},
there are a edges i → i + 1. Finally, for each i ∈ {2, . . . , n}, there are b edges
i → i − 1; see Figure 4. Note that the graph from Figure 2 is a special case of this
construction with n = 3 and a = b = 1.

1 2 . . . n−1 n

S

a

b

a

b

a

b

a

b

Figure 4. The graph Pn,a,b (edge labels correspond to their multiplicities).

The next lemma provides a recurrence relation for the number of arborescences of
Pn,a,b.

Lemma 1. Let τ(Pn,a,b) be the number of arborescences of the graph Pn,a,b. Then

τ(Pn,a,b) = (a+ b+ 1)τ(Pn−1,a,b)− abτ(Pn−2,a,b), n ≥ 3, (3)

with τ(P1,a,b) = 1 and τ(P2,a,b) = a+ b+ 1.

Proof. The cases n = 1 and n = 2 are straightforward, and we focus on n ≥ 3. De-
note by σ(Pn,a,b) the number of arborescences of the graph Pn,a,b containing the edge
n→ S and one of the a edges n− 1 → n. Then we have

τ(Pn,a,b) = bτ(Pn−1,a,b) + τ(Pn−1,a,b) + σ(Pn,a,b). (4)

Indeed, the first term on the right-hand side counts arborescences containing one of the
b edges n → n− 1 (therefore, the edge n → S is missing), the second term counts
arborescences containing the edge n→ S and no edge n− 1 → n, and by definition,
the final term counts arborescences containing the edge n→ S and one of the a edges
n− 1 → n.

Also, we have the second recurrence relation

σ(Pn,a,b) = aτ(Pn−2,a,b) + aσ(Pn−1,a,b). (5)

In both cases, the factor a on the right-hand side corresponds to the choice of one of
the a edges n − 1 → n required by the definition of σ(Pn,a,b). The first summand
counts arborescences that do not contain an edge n − 2 → n − 1, while the second
summand counts arborescences containing one of the edges n− 2 → n− 1.
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From (4), we obtain

σ(Pn,a,b) = τ(Pn,a,b)− (b+ 1)τ(Pn−1,a,b).

Using this relation to replace both occurrences of σ in (5), we get

τ(Pn,a,b)− (b+ 1)τ(Pn−1,a,b) = aτ(Pn−2,a,b)

+ a(τ(Pn−1,a,b)− (b+ 1)τ(Pn−2,a,b)),

and simplification leads to the desired recurrence (3).

Remark 2. An inspection of the previous proof shows that if we create a new graph,
say Hn,a,b, by doubling the edge 1 → S in Pn,a,b, then the number of arborescences
of Hn,a,b still satisfies the same recurrence relation

τ(Hn,a,b) = (a+ b+ 1)τ(Hn−1,a,b)− abτ(Hn−2,a,b), n ≥ 3,

but the initial values are now τ(H1,a,b) = 2 and τ(P2,a,b) = a+ 2b+ 2.

The next corollary shows that if a = b = 1, the arborescences of Pn,a,b are counted
by the Fibonacci numbers. Throughout this paper, we deal with the Fibonacci sequence
whose initial terms are F0 = 0, F1 = 1.

Corollary 3. The number of arborescences in Pn,1,1 is F2n, and the number of ar-
borescences in Pn,1,1 containing the edge 1 → S is F2n−1.

Proof. By Lemma 1, we have

τ(Pn,1,1) = 3τ(Pn−1,1,1)− τ(Pn−2,1,1), n ≥ 3, τ(P1,1,1) = 1, τ(P2,1,1) = 3.

The even-indexed Fibonacci numbers F2n satisfy the same relations.1 Therefore,
τ(Pn,1,1) = F2n.

The number of arborescences that contain 1 → S equals F2n minus the number of
arborescences that do not contain 1 → S. Arborescences of the latter type necessar-
ily contain 1 → 2, and the remaining edges form an arborescence of a graph that is
isomorphic to Pn−1,1,1; their number is F2n−2. Hence, the result is F2n − F2n−2 =
F2n−1.

In what follows, we calculate the number of arborescences for an additional two
classes of graphs: Tn, which is obtained from Pn,1,1 by doubling the edge 1 → S,
and Dn, which is obtained from Pn,1,1 by doubling the edges 1 → S and n→ S (see
Figure 5).

1 2 . . . n−1 n

S

1 2 . . . n−1 n

S

Figure 5. The graphs Tn (left) and Dn (right).

1See https://oeis.org/A001906.
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Lemma 4. For each n ∈ N, the number of arborescences of Tn is F2n+1, and the
number of arborescences of Dn is F2n+2.

Proof. We begin with Tn. By Corollary 3, there are 2F2n−1 arborescences containing
one of the edges 1 → S, and F2n−2 arborescences that do not contain an edge 1 → S
(i.e., containing the edge 1 → 2). The total number is

2F2n−1 + F2n−2 = F2n−1 + F2n = F2n+1.

Let us proceed to Dn. The number of arborescences that contain no edge 1 → S,
and therefore contain the edge 1 → 2, is F2n−1, because the remaining edges form an
arborescence of a graph that is isomorphic to Tn−1.

Suppose for a moment that we remove one of the edges 1 → S. The num-
ber of arborescences of the new graph that contain the remaining edge 1 → S is
F2n+1 − F2n−1 (i.e., the total number of arborescences of a graph isomorphic to Tn,
minus the number of arborescences that do not contain 1 → S and contain 1 → 2).
This simplifies to F2n. Multiplying this number by 2, we get the number of arbores-
cences of Dn containing one of the two edges 1 → S.

Hence, the total number of arborescences of Dn is F2n−1 + 2F2n = F2n+1 +
F2n = F2n+2.

An alternative method of proving the first part of Lemma 4 is to use Remark 2, which
provides a recurrence relation for the number of arborescences of Tn = Hn,1,1.

5. PATH GRAPHS. We are finally ready to calculate the winning probabilities in
Pass the Buck on various graphs. We begin with the path graph Pn with vertices num-
bered consecutively by 1, . . . , n, and calculate the probability that player j wins, pro-
vided that player i starts. Without loss of generality, we restrict ourselves to the case
j ≥ i (otherwise, one can simply reverse the labelling of the vertices). Our result gen-
eralizes [9, Theorem 1], which deals with the case when the first (or last) player starts.

Theorem 5. Consider Pass the Buck on the graph Pn. If player i ∈ {1, . . . , n} starts,
the probability that player j ∈ {i, . . . , n} wins is

pij =
F2i−1F2n−2j+1

F2n

.

Proof. We apply the Markov chain tree theorem, and calculate the winning proba-
bilities by counting arborescences in the graph obtained from Pn by replacing all
undirected edges by pairs of directed edges, and joining each vertex 1, . . . , n to the
absorbing vertex S. This is exactly the graph Pn,1,1 introduced in Section 4. From
Corollary 3, we know that it has F2n arborescences.

It remains to count arborescences containing the path from i to S via the edge
j → S. Suppose first that i ≥ 2 and j ≤ n− 1. We claim that the required number is
the same as the number of arborescences of the graph obtained from Pn,1,1 by deleting
the vertices i, . . . , j, joining i − 1 to S by an additional edge e, and joining j + 1
to S by an additional edge f . Indeed, each arborescence of the new graph is easily
transformed to an arborescence of the old graph. We add the path i→ · · · → j → S;
moreover, the edge e in the new graph corresponds to the edge i− 1 → i in the old
graph, and f in the new graph corresponds to j + 1 → j in the old graph. This process
can be always reversed, i.e., we have a bijection between the arborescences of the two
graphs.
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Now, each arborescence of the new graph is obtained by taking an arbores-
cence of the subgraph on vertices 1, . . . , i − 1, S, and an arborescence of the sub-
graph on the vertices j + 1, . . . , n, S. These two subgraphs are isomorphic to Ti−1

and Tn−j , respectively. Thus, by Lemma 4, the total number of arborescences is
F2(i−1)+1F2(n−j)+1.

It is not difficult to check that the formula F2(i−1)+1F2(n−j)+1 is correct even if
i = 1 or j = n, respectively. If i = 1, the first subgraph is empty, and F2(i−1)+1 = 1.
If j = n, then the second subgraph is empty, and F2(n−j)+1 = 1.

The technique employed in the proof will be used repeatedly throughout this paper.
In short, the number of arborescences containing a certain path P can be obtained by
redirecting all edges leading to the vertices of P into S, deleting P , and counting the
arborescences of the new graph.

6. CYCLE GRAPHS. We now calculate the winning probabilities for Pass the Buck
on the cycle graph Cn. We can assume that the vertices are numbered consecutively
by 1, . . . , n, and player 1 starts.

Theorem 6. Consider Pass the Buck on the graphCn. If player 1 starts, the probability
that player j ∈ {1, . . . , n} wins is

p1j =
F2(n−j+1) + F2(j−1)

F2n+1 + F2n−1 − 2
. (6)

Proof. By the Markov chain tree theorem, the calculation can be reduced to counting
arborescences in the graphG obtained fromCn by replacing undirected edges by pairs
of directed ones, and joining each vertex to the absorbing state S. Recalling that

p1j =
|A1j(G)|
|A(G)| ,

we need to calculate |A1j(G)|, i.e., the number of arborescences containing a path
from 1 to S via the edge j → S. If j = 1, we are interested in arborescences contain-
ing the edge 1 → S. We will use the method described in Section 5: By deleting the
vertex 1 and adding edges from 2 and n to S, we obtain a graph isomorphic to Dn−1,
which has exactly F2n arborescences.

If j ≥ 2, the arborescences containing a path from 1 to S via the edge j → S can
be divided into two types: either they contain the path 1 → 2 → 3 → · · · → j → S,
or the path 1 → n→ n− 1 → · · · → j → S.

The number of arborescences of the first type is the same as the total number of
arborescences of the graph obtained from G by deleting the vertices 1, 2, 3 . . . , j, and
joining j + 1 and n to S by additional edges. The new graph has n− j vertices and
is isomorphic to Dn−j . By Corollary 4, the number of its arborescences is F2(n−j+1).
The previous argument does not work if j = n or j = n− 1, but one can easily check
that the result remains correct even in these cases.

The number of arborescences of the second type is the same as the total number of
arborescences of the graph obtained fromG by deleting the vertices j, j + 1, . . . , n, 1,
and joining 2 and j − 1 to S by additional edges. This graph has j − 2 vertices, is
isomorphic to Dj−2, and has F2(j−1) arborescences. The argument does not work if
j = 2, but the result remains correct.

In total, we have |A1j(G)| = F2(n−j+1) + F2(j−1) for all j ∈ {1, . . . , n}. To de-
termine |A(G)|, we observe that pi1 + · · ·+ pin = 1 (the probability that the game
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will never end is zero). Therefore,

|A(G)| =
n∑

j=1

|A1j(G)| =
n∑

j=1

F2(n−j+1) +
n∑

j=1

F2(j−1) =
n∑

i=1

F2i +
n∑

j=1

F2(j−1)

=
n∑

i=1

(F2i+1 − F2i−1) +
n∑

j=1

(F2j−1 − F2j−3) = F2n+1 + F2n−1 − 2,

which completes the proof.2

Pass the Buck on cycles was already analyzed in the paper [8], whose authors arrived
at the following results:

p1j =

{
Fn−2j+2

Ln
for n odd,

Ln−2j+2

5Fn
for n even,

(7)

whereLn are the Lucas numbers. (Actually, the results in [8, Theorem 2] have a shifted
index j, since the players there are labelled by the numbers 0, . . . , n− 1.) The advan-
tage of our formula (6) is that there is no need to distinguish between even and odd
values of n. To verify that (6) and (7) coincide, one can use standard Lucas number
identities to rewrite the denominator in (6) as follows:

F2n+1 + F2n−1 − 2 = L2n − 2 =

{
L2

n for n odd,
5F 2

n for n even.

To conclude that (6) and (7) are equivalent, it remains to check that

F2(n−j+1) + F2(j−1) =

{
LnFn−2j+2 for n odd,
FnLn−2j+2 for n even.

One way to accomplish this is to use the explicit formulas Fn = (φn − ψn)/
√
5 and

Ln = φn + ψn, where φ = 1+
√
5

2
and ψ = −1/φ are the roots of x2 − x− 1.

7. COMPLETE GRAPHS. What are the winning probabilites in Pass the Buck on
the complete graph Kn? These can be calculated fairly easily by elementary consid-
erations as in [9, p. 389]. However, we will use this opportunity to demonstrate a
technique known in Markov chain theory as “lumping”.

Without loss of generality, assume that the starting player has label 1, and the re-
maining players are 2, . . . , n. As before, denote by p1j the probability that player
j ∈ {1, . . . , n} wins.

Theorem 7. Consider Pass the Buck on the graph Kn. If player 1 starts, the proba-
bility p1j that player j ∈ {1, . . . , n} wins is

p11 =
2

n+ 1
, p12 = p13 = · · · = p1n =

1

n+ 1
. (8)

2Alternatively, the relation |A(G)| =
∑n

j=1 |A1j(G)| follows from the fact that each arborescence con-
tains a unique path from 1 to S.
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Proof. Because of symmetry, it is clear that the chances of players 2, . . . , n are iden-
tical, i.e., p12 = p13 = · · · = p1n. This suggests that we could merge these players
into a single group B. Thus, instead of considering the original Markov chain, we will
deal with a lumped chain having transient states 1, B, and absorbing states S1, SB .
Being in state B (or SB) in the lumped chain corresponds to being in one of the states
2, . . . , n (or S2, . . . , Sn) in the original chain.

The matrices of transition probabilities in the lumped chain are

Q =

(
π11 π1B

πB1 πBB

)
=

(
0 n−1

n
1
n

n−2
n

)
, R =

(
π1S1

π1SB

πBS1
πBSB

)
=

(
1
n

0
0 1

n

)
.

We could now calculate the absorbing probabilities by looking at the first row of the
matrix (I −Q)−1R, but let us stick with the Markov chain tree theorem, and count
arborescences in the graph shown in Figure 6.

1 B

S

n− 1

n− 2

Figure 6. Lumped graph corresponding to Pass the Buck on Kn.

This graph has n + 1 arborescences; two of them contain the path 1 → S, and
n − 1 of them contain the path 1 → B → S. Hence, the probability of absorption
from state 1 is 2

n+1
, while the probability of absorption from state B is n−1

n+1
. We now

recall that B was obtained by lumping n − 1 states, and therefore divide the latter
probability by n− 1. This gives the probabilities in (8).

The mean duration of the game can be calculated from the fundamental matrix

N = (I −Q)−1 =

(
2n
n+1

(n−1)n

n+1
n

n+1
n2

n+1

)
by adding the values in the first row; it turns out that the mean duration is precisely n.

Here is a different proof of Theorem 7, which avoids the lumping technique: Start-
ing with Kn, replace all undirected edges by pairs of directed ones, and join the ver-
tices 1, . . . , n to an absorbing vertex S = n + 1. In this way, we obtain a directed
graph G, which has the same number of arborescences as the number of undirected
spanning trees ofKn+1; by Cayley’s formula, this number is (n+ 1)n−1. Indeed, there
is a bijection between undirected spanning trees ofKn+1 and arborescences ofG with
root n+ 1, where each undirected edge is oriented along the unique path towards the
root.

This time, it will be more convenient to denote the starting player by n. To calculate
the winning probability of this player, we need the number of arborescences containing
the edge n→ n+ 1. However, it is easier to count arborescences that do not contain
this edge; this is simply the number of undirected spanning trees of Kn+1 minus one
edge, which is known to be (n − 1)(n + 1)n−2; see the next paragraph. Hence, the
winning probability of the starting player is

(n+ 1)n−1 − (n− 1)(n+ 1)n−2

(n+ 1)n−1
=

2

n+ 1
.
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Because of symmetry, all remaining players have winning probabilities 1
n+1

.
One way3 to prove the formula (n − 1)(n + 1)n−2 is to use [3, Lemma 1]—a

corollary of the matrix tree theorem, which implies that the number of spanning trees
of an undirected graph with n+ 1 vertices and Laplacian matrix L is

1

(n+ 1)2
det(L+ J),

where J is a square matrix of order n+ 1 whose entries are all equal to one. ForKn+1

minus the edge n→ n+ 1, we get the matrix

L+ J =


n −1 · · · −1 −1
−1 n · · · −1 −1

...
...

. . . −1 −1
−1 −1 · · · n− 1 0
−1 −1 · · · 0 n− 1

+

1 · · · 1
...

. . .
...

1 · · · 1



=


n+ 1 0 · · · 0 0
0 n+ 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · n 1
0 0 · · · 1 n

 ,

whose determinant is (n+ 1)n(n− 1).

8. COMPLETE BIPARTITE GRAPHS. We now consider Pass the Buck on the
complete bipartite graph Ka,b with part A having a vertices, and part B having b ver-
tices. The results in the present section are new.

Without loss of generality, suppose that the starting player in Pass the Buck has
label 1 and is located in partA; denote his/her winning probability by p11. By symme-
try, the winning probabilities of all remaining players in part A are equal to a certain
number p1A, and the winning probabilities of all players from part B are all equal
to p1B .

Theorem 8. Consider Pass the Buck on the graphKa,b. If player 1 starts, the winning
probabilities are

p11 =
a+ 2b+ 1

(a+ b+ 1)(b+ 1)
, p1A =

b

(a+ b+ 1)(b+ 1)
, p1B =

1

a+ b+ 1
.

Proof. We consider a lumped Markov chain with three transient states corresponding
to three groups of players: 1, A = A \ {1}, and B. It is not difficult to write down the
transition probabilities for the lumped chain:

Q =

π11 π1A π1B

πA1 πAA πAB

πB1 πBA πBB

 =

 0 0 b
b+1

0 0 b
b+1

1
a+1

a−1
a+1

0

 ,

3For a combinatorial proof, see e.g., https://math.stackexchange.com/questions/575163/

spanning-trees-of-the-complete-graph-minus-an-edge.
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R =

π1S1
π1S

A
π1SB

πAS1
πAS

A
πASB

πBS1
πBS

A
πBSB

 =

 1
b+1

0 0
0 1

b+1
0

0 0 1
a+1

 .

Hence, we need to count arborescences in the graph shown in Figure 7.

1 ĀB

S

b

b

a− 1

Figure 7. Lumped graph corresponding to Pass the Buck on Ka,b.

The number of arborescences containing the path 1 → S is

(a+ 1)(b+ 1)− (a− 1)b = a+ 2b+ 1

(multiply the outdegrees of B and A, and subtract the number of cycles created in this
way). Moreover, there are b(b+ 1) arborescences containing the path 1 → B → S,
and b(a − 1) arborescences containing the path 1 → B → A → S. The sum of all
these numbers (which coincides with the total number of arborescences) is

(a+ 1)(b+ 1)− (a− 1)b+ b(b+ 1) + b(a− 1) = (a+ b+ 1)(b+ 1).

Thus, the absorbing probabilities for states 1, A, and B are

p1 =
a+ 2b+ 1

(a+ b+ 1)(b+ 1)
, pA =

b(a− 1)

(a+ b+ 1)(b+ 1)
, pB =

b

a+ b+ 1
.

Dividing these values by the sizes of the groups, we obtain the winning probabilities
for individual players: p11 = p1, p1A = pA/(a− 1), p1B = pB/b.

To calculate the mean duration of the game, we write down the fundamental matrix

N = (I −Q)−1 =


1+a+2b
1+a+b

(−1+a)b

1+a+b

(1+a)b

1+a+b
b

1+a+b
1+a+ab
1+a+b

(1+a)b

1+a+b
1+b

1+a+b

(−1+a)(1+b)

1+a+b

(1+a)(1+b)

1+a+b


and add the values in its first row, which yields (1 + a)(1 + 2b)/(a+ b+ 1).

Note that the previous results apply to star graphs, which are special cases of complete
bipartite graphs with a = 1.
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Figure 8. The graph T2,3, i.e., a binary tree with three layers.

9. COMPLETE k-ARY TREES. Using the lumping technique, we can solve Pass
the Buck on complete k-ary trees, provided that the starting player is in the root; this
case was analyzed in [6], and we present a short alternative solution based on counting
arborescences.

Denote by Tk,n the complete k-ary tree of depth n− 1. The i-th layer of the tree
(when counted from the top) contains ki−1 vertices; an example is shown in Figure 8.

Since the starting player corresponds to the root, it is clear that all players in the
same layer have the same winning probability; denote it by p1i.

Theorem 9. Consider Pass the Buck on the graph Tk,n. If the player corresponding to
the root starts, the winning probability for all players in layer j ∈ {1, . . . , n} is

p1j =
an−j

bn
, (9)

where the sequences (an)∞n=1 and (bn)
∞
n=1 are given by

an = (k + 2)an−1 − kan−2, n ≥ 2, a0 = 1, a1 = 2, (10)

bn = (k + 2)bn−1 − kbn−2, n ≥ 3, b1 = 1, b2 = k + 2. (11)

Proof. Lumping all players in the same layer together, we see that our problem reduces
to counting arborescences in the graph Pn,k,1 introduced in Section 4. By Lemma 1,
the arborescences of this graph are counted by the sequence (bn)∞n=1 described in (11).

To calculate the winning probability of player j, we need the number of arbores-
cences containing a path 1 → 2 → · · · → j → S. There are kj−1 such paths.

Suppose first that j < n. When choosing the remaining edges of the arborescence,
we can remove the vertices 1, . . . , j, and join j + 1 by an additional edge to S (this
edge will correspond to the edge j + 1 → j in the old graph). This results in a graph
that is isomorphic to the graph Hn−j,k,1, where Hn,a,b was introduced in Remark 2.
According to that remark, the number of arborescences ofHn−j,k,1 is an−j , where the
numbers an satisfy an = (k + 2)an−1 − kan−2 for n ≥ 3, and a1 = 2, a2 = k + 4.
If we let a0 = 1, the recurrence holds for all n ≥ 2.

To sum up, if j < n, we have shown that the number of arborescences containing a
path 1 → 2 → · · · → j → S is kj−1an−j . However, since a0 = 1, this result is also
correct for j = n.

These considerations show that the absorption probability for the group of vertices
in layer j is kj−1an−j/bn. Dividing by the number of vertices in layer j, we see that
the winning probability for each player in layer j is indeed given by (9).

The recurrence relation (10) is the same as in [6, p. 353]; in that paper, bn is instead
calculated using the formula bn =

∑n
i=1 k

i−1an−i (which holds because the sum of
all probabilities must be 1). Note that one can solve the recurrences (10) and (11) to
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obtain explicit formulas for an and bn, but the results are not too enlightening:

bn =
(k + 2 + s)

n − (k + 2− s)
n

2ns
,

an =
(k − 2 + s) (k + 2− s)

n − (k − 2− s) (k + 2 + s)
n

2n+1s
,

where s =
√
k2 + 4.

The previous examples (complete graphs, complete bipartite graphs, and complete
k-ary trees) demonstrate the usefulness of the lumping technique. A word of caution:
Given a general Markov chain with states 1, . . . , n, the process of lumping the states
into groupsA1, . . . , Ar yields a Markov chain if and only if the following lumpability
condition holds. For all i, j and s ∈ Ai, the probability of transition from s to Aj ,
i.e., πs,Aj

=
∑

t∈Aj
πst, depends only on i and j, and not on the particular choice

of s ∈ Ai. If this is the case, we denote this value by πAi,Aj
; repeating this process

for all i, j, we obtain the transition probabilities for the lumped Markov chain (see [2,
Section 6.3]). In the three examples we have presented, we believe it is intuitively clear
that the lumpability condition is satisfied, but it is not difficult to check it explicitly.

10. CONNECTED CYCLES. The next example is Pass the Buck on the graphCm,n

formed by joining two cycles, Cm and Cn, at a single vertex. Denote the vertices of
Cm by a1, a2, . . . , am, and the vertices of Cn by b1, b2, . . . , bn, with the common
vertex being a1 = b1 = 1. An example is provided in Figure 9.

b1 = a1

a2
a3

a4

a5
a6b2

b5

b4

b3

Figure 9. The graph Cm,n with cycles of lengths m = 6 and n = 5.

The lumping technique is not appropriate here, but we can proceed as before: Re-
place all undirected edges by pairs of directed edges, and connect all vertices to the
absorbing state S, obtaining a graph G. No matter which player starts, we need the
total number of arborescences of G.

One way to create an arborescence ofG is to begin with an arborescence of the sub-
graph consisting of Cn and S, which can be chosen in F2n+1 + F2n−1 − 2 ways (see
Section 6). Then it remains to choose outgoing edges for the vertices a2, . . . , am. Re-
placing a2 → a1 by a second edge a2 → S, and am → a1 by a second edge am → S,
we see that the task is equivalent to choosing an arborescence of a graph isomorphic
to Dm−1, which can be done in F2m ways (see Lemma 4). In this way, we have con-
structed all arborescences of G where 1 is linked to b2, bn, or S; their number is
(F2n+1 + F2n−1 − 2)F2m.

Symmetrically, beginning with an arborescence of the subgraph consisting of Cm

and S and then choosing outgoing edges for the vertices b2, . . . , bn, we construct all
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arborescences of G where 1 is linked to a2, am, or S; their number is (F2m+1 +
F2m−1 − 2)F2n.

At this moment, we have counted twice all arborescences containing the edge
1 → S. How many such arborescences are there? Given an arborescence containing
1 → S, we can transform all edges leading to 1 into edges leading to S. This creates
arborescences of two graphs that are isomorphic to Dm−1 and Dn−1, respectively.
Since the process is reversible, we see that there are F2mF2n arborescences of G
containing the edge 1 → S.

Consequently, the total number of arborescences of G is

(F2n+1 + F2n−1 − 2)F2m + (F2m+1 + F2m−1 − 2)F2n − F2mF2n

= F2n+1F2m + F2nF2m−1 + F2nF2m+1 + F2n−1F2m − 2F2m − 2F2n − F2mF2n

= 2F2m+2n − 2F2m − 2F2n − F2mF2n,

where the second equality follows from the identity Fi+j+1 = Fi+1Fj+1 + FiFj .

Theorem 10. Consider Pass the Buck on the graph Cm,n. If player 1 starts, the win-
ning probability for player ai, where i ∈ {1, . . . ,m}, is

p1,ai =
(F2(m−i)+2 + F2(i−1))F2n

2F2m+2n − 2F2m − 2F2n − F2mF2n

. (12)

Proof. It suffices to calculate the number of arborescences containing the path from
1 to S via the edge ai → S. Suppose first that i ≥ 2. Vertex ai can be reached in
two different ways: via the path a1 → a2 → · · · → ai, or via the path a1 → am →
am−1 → · · · → ai.

The number of arborescences containing a1 → a2 → · · · → ai can be obtained
similarly as in the proof of Theorem 6: We can redirect the edges ai+1 → ai,
am → a1, b2 → a1, and bn → a1 into the absorbing vertex S, and delete the ver-
tices a1, . . . , ai. This operation preserves the number of arborescences, and splits the
graph into two parts, which are isomorphic to Dn−1 and Dm−i, respectively. Hence,
by Lemma 4, the number of arborescences is F2nF2m−2i+2 (this number is correct
even for i = m, when there is no edge ai+1 → ai). Similarly, calculation of arbores-
cences containing the path a1 → am → am−1 → · · · → ai leads to a pair of graphs
that are isomorphic to Dn−1 and Di−2, respectively; there are F2nF2i−2 of them.

Consequently, the winning probability for player ai with i ̸= 1 is given by (12).
The calculation for i = 1 has already been performed at the beginning of this section,
where we investigated the number of arborescences containing the edge 1 → S.

Let us consider a scenario involving a different starting player.

Theorem 11. Consider Pass the Buck on the graph Cm,n. If player ai with i ̸= 1
starts, the winning probability for player bj with j ̸= 1 is

pai,bj=
F2(m−i)+2(F2(n−j)+2+F2(j−2)+2)+F2(i−2)+2(F2(n−j)+2+F2(j−2)+2)

2F2m+2n−2F2m−2F2n−F2mF2n

. (13)

Proof. We need to consider four different paths from ai to bj listed below. Each of
them is handled as in the proof of Theorem 10, i.e., by removing the path and counting
arborescences in a pair of graphs isomorphic to Dk for appropriate values of k:

• ai → ai−1 → · · · → a1 = b1 → b2 → · · · → bj , leads to Dm−i and Dn−j .
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• ai → ai−1 → · · · → a1 = b1 → bn → bn−1 → · · · → bj , leads to Dm−i and
Dj−2.

• ai → ai+1 → · · · → an → a1 = b1 → b2 → · · · → bj , leads to Di−2 and Dn−j .
• ai → ai+1 → · · · → an → a1 = b1 → bn → bn−1 → · · · → bj , leads to Di−2

and Dj−2.

By Lemma 4, the winning probability for player bj is given by (13).

The final unsolved case involves two players in a single cycle; we leave it as an
exercise.

11. SPOKE GRAPHS. The spoke graph Sm,n consists of m paths (referred to as
the spokes) of length n, which start at a common vertex. We will denote this common
vertex by 1, and the remaining vertices along each spoke will be numbered by con-
secutive integers as in Figure 10. (An alert reader might be worried about using the
same labels for different vertices. This will greatly simplify the notation, and if nec-
essary, we can always distinguish between such vertices by labelling the spokes.) The
fact that all spokes have the same length is not crucial; we focus on this case only for
the purpose of clarity and simplicity, but similar methods work for spokes of unequal
lengths (although the resulting formulas become messy, cf., the end of this section).

1

2

3

2

3

2

3
2

3

2 3

Figure 10. The spoke graph Sm,n with m = 5 spokes of length n = 3.

Pass the Buck on Sm,n was already analyzed in the paper [9] (where it is referred
to as the star graph), but only in the case when player 1 starts. We will provide a
short alternative derivation of the same result, and then investigate the case of different
starting players.

Theorem 12. Consider Pass the Buck on the graph Sm,n. If player 1 starts, the win-
ning probability for each player having number j ∈ {1, . . . ,m} is

p1j =
F2(n−j)+1

mF2n − (m− 1)F2n−1

. (14)

Proof. Consider the graph G obtained from Sm,n by introducing directed edges and
adding an absorbing vertex S. We choose one of the vertices with label j, and calculate
the number of arborescences containing the path from 1 to S via the edge j → S.

Suppose first that j = 1. Given an arborescence containing 1 → S, we can redirect
all edges leading to 1 into S. This creates arborescences of m graphs isomorphic to
Tn−1, and the process is reversible. Hence, the number of arborescences containing
1 → S is Fm

2n−1.
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Suppose next that j > 1, and that the selected vertex j lies on spoke k. Given an
arborescence containing the path 1 → · · · → j → S, we can redirect all edges leading
to 1, as well as edge j + 1 → j on spoke k, into the absorbing vertex S. This process is
reversible, and gives rise to m− 1 arborescences of graphs isomorphic to Tn−1, plus
an arborescence of a graph isomorphic to Tn−j . The total number of possibilities is
Fm−1

2n−1F2(n−j)+1; this result is correct even if j = n, when there is no edge j + 1 → j.
The total number of arborescences ofG is obtained by summing the previous results

(note that the cases j > 1 have to be counted m times). We get

m
n∑

j=2

Fm−1
2n−1F2(n−j)+1 + Fm

2n−1 = m
n∑

j=1

Fm−1
2n−1F2(n−j)+1 − (m− 1)Fm

2n−1

= Fm−1
2n−1

(
m

n∑
j=1

F2(n−j)+1 − (m− 1)F2n−1

)
= Fm−1

2n−1 (mF2n − (m− 1)F2n−1) .

The proof is now finished by applying the Markov chain tree theorem.

The previous result is in agreement with [9, Theorem 2] (the vertex numbers are
reversed there). Next, we examine the case when we start and end on different spokes.

Theorem 13. Consider Pass the Buck on the graph Sm,n. If player i > 1 starts, the
winning probability of player j > 1 on a different spoke is

pij =
F2(n−i)+1F2(n−j)+1

F2n−1(mF2n − (m− 1)F2n−1)
. (15)

Proof. We consider the same graph G as in the proof of Theorem 12, where we found
that the number of its arborescences is Fm−1

2n−1 (mF2n − (m− 1)F2n−1).
It remains to calculate the number of arborescences containing the path from i to S

via the edge j → S. There is a unique path from i to j, and we need to count ar-
borescences containing this path. We delete the path, and redirect edges leading to its
endpoints to S.

The spokes containing neither i nor j will lose only the central vertex, and will
become isomorphic to Tn−1. The two spokes containing i or j will be transformed
into graphs isomorphic to Tn−i and Tn−j , respectively. Hence, the number of arbores-
cences containing the path from i to j is Fm−2

2n−1F2(n−i)+1F2(n−j)+1. Dividing this by
the total number of arborescences yields (15).

Note that if we formally substitute i = 1 into (15), the formula reduces to (14), i.e.,
the formula (15) actually holds even if i = 1.

What happens if the starting player i and the player j, whose winning probability
is to be calculated, are located on the same spoke? This case is more complicated,
because after removing the path from i to j, we get a graph having only two compo-
nents. The rest of the spoke where i and j are located is again isomorphic to a graph Tk

for a suitable k, but the second component is isomorphic to a graph obtained from G
by shortening one spoke, whose terminal vertex has a double edge to S. Hence, we
need to solve the following auxiliary problem: Find the number of arborescences of
the graph Gl obtained from G by shortening one spoke to length l, whose terminal
vertex has a double edge to S.

To create an arborescence ofGl, we can begin with an arborescence of the subgraph
containing S and one of them− 1 long spokes, which is isomorphic to Pn,1,1. Choos-
ing outgoing edges in the rest of the graph is then equivalent to finding arborescences
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of m − 2 graphs isomorphic to Tn−1, and one graph isomorphic to Dl−1. Alterna-
tively, we can begin with the subgraph containing S and the short spoke, which is
isomorphic to Tl. Choosing outgoing edges in the rest of the graph is then equivalent
to finding arborescences of m− 1 graphs isomorphic to Tn−1.

The process we have described creates all arborescences of Gl (the step in which a
particular arborescence was created depends on the edge leaving the vertex 1). How-
ever, all arborescences containing 1 → S were counted m times, so we need to sub-
tract their numberm− 1 times. Finding such arborescences is equivalent to finding ar-
borescences of m− 1 graphs isomorphic to Tn−1, and one graph isomorphic to Dl−1.

Using the formulas for arborescences of Pn,1,1, Tn and Dn, we conclude that the
total number of arborescences of Gl is

(m− 1)F2nF
m−2
2n−1F2l + F2l+1F

m−1
2n−1 − (m− 1)Fm−1

2n−1F2l.

With this result, it is not difficult to solve Pass the Buck on Sm,n in the case when
players i and j are on the same spoke; details are left to the reader.

C C

Figure 11. Windmill graph Wd4,3 and Dutch windmill graph Dw4,3.

12. FINAL REMARKS. The methods discussed in earlier sections make it possible
to solve Pass the Buck on a wide range of graphs. They are particularly suitable for
graphs which, after the removal of a path, decompose into components for which it is
possible to count their arborescences. For example, the reader might enjoy investigat-
ing the following two classes of graphs illustrated in Figure 11:

• The windmill graph Wdk,n consists of n copies of the complete graph Kk sharing
a common vertex C. Using the lumping technique, the reader will have no trouble
analyzing the case when playerC starts. Here is a hint for a different starting vertex
(because of symmetry, it does not matter which one). Consider a lumped Markov
chain obtained by dividing the vertices into four classes: the starting vertex 1, the
central vertex C, the set B of all vertices different from 1 contained in the same
copy of Kk as 1, and the set D of all other vertices.

• The Dutch windmill graph Dwm,n is formed by joining n copies of the cycle
graphCm. The case n = 2 corresponds to the connected cycles graphCm,m, which
was solved in Section 10. The general case with arbitrary n can be solved in a sim-
ilar manner. In fact, one can be even more general and consider n connected cycles
of unequal lengths.
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