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1 Introduction

The concept of product integration goes back to V. Volterra (see e.g. [21, 17]), who studied linear systems

of differential equations of the form

W ′(t) = A(t)W (t), t ∈ [a, b],

W (a) = I,
(1.1)

where I is the identity matrix, A : [a, b] → Rn×n is a given continuous function and W : [a, b] → Rn×n

is the unknown function. To find the solution (whose existence and uniqueness is easy to prove), Volterra

considered products of the form

(I +A(ξm)(tm − tm−1))(I +A(ξm−1)(tm−1 − tm−2)) · · · (I +A(ξ1)(t1 − t0)), (1.2)

where a = t0 < t1 < . . . < tm = b and ξi ∈ [ti−1, ti], i ∈ {1, . . . ,m}, is a tagged partition of [a, b]. As the

lengths of the subintervals [ti−1, ti] approach zero, the value of the product (1.2) tends to a matrix which

is called the product integral of A over [a, b]; let us denote it by
∏b
a(I + A(t) dt). Now, if we consider the

indefinite product integral W (t) =
∏t
a(I +A(s) ds), it can be shown that W is the solution of (1.1).

Volterra observed that this procedure still works if A is no longer continuous but merely Riemann integrable;

in this case, the indefinite product integral satisfies

W (t) = I +

∫ t

a

A(s)W (s) ds, t ∈ [a, b],

where the integral on the right-hand side is the Riemann integral. Consequently, we have W ′(t) = A(t)W (t)

almost everywhere in [a, b]. Later, the concept of product integral was extended to Lebesgue integrable

functions A (see [13, 2, 17]). On the other hand, P. R. Masani realized that the definition of the product
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integral makes sense if A takes values in an arbitrary unital Banach algebra (see [12, 17]). For example, if

X is a Banach space and A has values in the Banach algebra L(X) of all bounded linear operators on X,

then the product integral of A provides the unique solution of the operator equation (1.1).

It is well known that the Henstock-Kurzweil integral (also known as the gauge integral) generalizes the

integrals of Riemann, Lebesgue, and Newton (see e.g. [6]). Hence, it seems natural to replace the original

Riemann-type definition of product integral by a gauge-type definition; this idea was pursued by J. Jarńık,

J. Kurzweil [11] and Š. Schwabik [14], who also introduced the related concept of McShane product in-

tegral [15]. These authors developed a complete theory of Kurzweil and McShane product integrals for

matrix-valued functions, but also realized that the proofs of their main results are not applicable in infinite

dimension.

The aim of this paper is to provide a satisfactory theory of Kurzweil and McShane product integration

in infinite-dimensional Banach algebras. We show that in infinite dimension, the two product integrals

cannot be expected to have exactly the same properties as in finite dimension; for example, the indefinite

product integrals need not be differentiable almost everywhere. On the other hand, we introduce the con-

cepts of strong Kurzweil and McShane product integrals, whose properties are completely analogous to the

finite-dimensional product integrals. In infinite dimension, the class of strongly Kurzweil/McShane product

integrable functions is a proper subset of the class of Kurzweil/McShane product integrable functions, but

is still wide enough for practical purposes. For example, a function with countably many discontinuities is

strongly Kurzweil product integrable if and only if it is Kurzweil product integrable.

The paper is organized as follows. Section 2 summarizes some preliminaries, namely the definitions of the

Kurzweil and McShane integrals and their strong counterparts, and the properties of the exponential and

logarithm functions in Banach algebras. In Section 3, we recall the definitions of the Kurzweil and McShane

product integrals, introduce their strong versions, and develop some of their basic properties. Section 4 is

devoted to the properties of the indefinite strong product integrals, which are then used to show that strong

McShane product integrability coincides with Bochner integrability. In Section 5, we develop necessary and

sufficient conditions for product integrability of functions with countably many discontinuities. The final

Section 6 contains a list of some open problems.

A detailed account of the history of product integration theory can be found in [17]. For applications of

product integrals to differential equations in the real and complex domain, probability theory, dynamic

equations on time scales, etc., see [2, 4, 17, 18].

2 Preliminaries

Let us recall some definitions of integrability for vector-valued functions.

A tagged partition of an interval [a, b] is a collection of point-interval pairs D = (ξi, [ti−1, ti])
m
i=1, where

a = t0 < t1 < · · · < tm = b and ξi ∈ [ti−1, ti] for every i ∈ {1, . . . ,m}. We refer to t0, . . . , tm as the division

points of D, while ξ1, . . . , ξm are the tags of D. If we relax the assumption ξi ∈ [ti−1, ti] and replace it by

ξi ∈ [a, b], then the collection D is called a free tagged partition.

Given a function δ : [a, b]→ R+ (called a gauge on [a, b]), a free tagged partition is called δ-fine if

[ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)), i ∈ {1, . . . ,m}.

Let X be a Banach space. A function f : [a, b]→ X is called Henstock-Kurzweil integrable if there is a vector
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Sf ∈ X with the following property: To each ε > 0, there is a gauge δ : [a, b]→ R+ such that∥∥∥∥∥
m∑
i=1

f(ξi)(ti − ti−1)− Sf

∥∥∥∥∥ < ε (2.1)

for every δ-fine tagged partition of [a, b]. In this case, Sf is called the Henstock-Kurzweil integral of f over

[a, b], and is denoted by
∫ b
a
f(t) dt.

If (2.1) holds for all δ-fine free tagged partitions of [a, b], then f is called McShane integrable over [a, b]. The

McShane integral Sf will again be denoted by
∫ b
a
f(t) dt.

The definition of Riemann integrability is obtained from the definition of Henstock-Kurzweil integrability if

the gauge δ is assumed to be constant on [a, b]. In this case, the integral
∫ b
a
f(t) dt is called the Riemann (or

Graves) integral.

A function f : [a, b]→ X is called strongly Henstock-Kurzweil integrable if there is a function F : [a, b]→ X

with the following property: To each ε > 0, there is a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖f(ξi)(ti − ti−1)− (F (ti)− F (ti−1))‖ < ε (2.2)

for every δ-fine tagged partition of [a, b]. In this case, we define the strong Henstock-Kurzweil integral of

f over [a, b] as
∫ b
a
f(t) dt = F (b) − F (a). This integral is also known as the Henstock-Lebesgue integral or

variational Henstock integral.

If (2.2) holds for all δ-fine free tagged partitions of [a, b], then f is called strongly McShane integrable over

[a, b]. The strong McShane integral is again defined as
∫ b
a
f(t) dt = F (b)− F (a). Some authors refer to this

integral as the variational McShane integral.

For the basic properties of these integrals, see [16]. We also need the concept of Bochner integrability (see

e.g. [16, Chapter 1]), in particular the following facts:

• A strongly measurable function f : [a, b] → X is Bochner integrable if and only if the function ‖f‖ is

Lebesgue integrable.

• A function f : [a, b] → X is Bochner integrable if and only if there exists an absolutely continuous

function F : [a, b] → X such that F ′ = f almost everywhere in [a, b]; in that case, we have
∫ b
a
f =

F (b)− F (a) (see [9, Theorem 1.4.6]).

• A function f : [a, b]→ X is strongly McShane integrable if and only if it is Bochner integrable; in this

case, the values of the integrals coincide (see e.g. [1, 3]).

Note that in infinite-dimensional spaces, Riemann integrability does not necessarily imply Bochner integra-

bility (see Example 4.4).

In the rest of the paper, we assume that X is a complete normed algebra with a unit element I whose norm

is 1, i.e., it is a unital Banach algebra.

We occasionally use the following identity, which can be found in [15, Lemma 11].

Lemma 2.1. For every n ∈ N and all x1, . . . , xn, y1, . . . , yn ∈ X, we have

xn · · ·x1 − yn · · · y1 =

n∑
j=1

xn · · ·xj+1(xj − yj)yj−1 · · · y1. (2.3)
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Recall that in a unital Banach algebra X, we may introduce the exponential and logarithm function as

follows:

expx =

∞∑
n=0

xn

n!
= I + x+

x2

2!
+ · · ·+ xn

n!
+ · · · , x ∈ X,

log x =

∞∑
n=1

(−1)n−1
(x− I)n

n
, ‖x− I‖ < 1.

These functions have similar properties as in the familiar case when X = Rn×n, in particular:

1. The exponential and logarithm are continuous functions.

2. For every x ∈ X, expx is an invertible element and its inverse is exp(−x).

3. If x, y ∈ X are such that xy = yx, then exp(x+ y) = expx exp y and log xy = log x+ log y if all three

logarithms are defined.

4. exp(log x) = x if ‖x− I‖ < 1, and log(expx) = x if ‖x‖ < log 2.

5. We have the estimates

‖ expx‖ ≤ exp ‖x‖, (2.4)

‖ expx− exp y‖ ≤ ‖x− y‖ exp(max(‖x‖, ‖y‖)), (2.5)

‖ log x− log y‖ ≤ ‖x− y‖
1−max(‖x− I‖, ‖y − I‖)

. (2.6)

The first one follows immediately from the definition of the exponential function, and the second one can be

found in [15, Lemma 13]. Let us prove the third one; according to (2.3), we have

‖(x− I)n − (y − I)n‖ =

∥∥∥∥∥
n∑
k=1

(x− I)n−k(x− y)(y − I)k−1

∥∥∥∥∥
≤ ‖x− y‖

n∑
k=1

‖x− I‖n−k‖y − I‖k−1 ≤ ‖x− y‖ · n ·max(‖x− I‖, ‖y − I‖)n−1,

and therefore

‖ log x− log y‖ =

∥∥∥∥∥
∞∑
n=1

(−1)n−1
(x− I)n − (y − I)n

n

∥∥∥∥∥ ≤
∞∑
n=1

‖(x− I)n − (y − I)n‖
n

≤ ‖x− y‖
∞∑
n=1

max(‖x− I‖, ‖y − I‖)n−1 =
‖x− y‖

1−max(‖x− I‖, ‖y − I‖)
.

3 Product integrals and their strong versions

We start with the definitions of the Riemann, McShane and Kurzweil product integrals
b∏
a

(I +A(t) dt).

Let us make the following agreement: If m ∈ N and x1, . . . , xm ∈ X, then the symbol
∏1
i=m xi stands for

the product xmxm−1 · · ·x1.
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Definition 3.1. A function A : [a, b]→ X is called Kurzweil product integrable, if there exists an invertible

element PA ∈ X with the following property: For each ε > 0, there exists a gauge δ : [a, b]→ R+ such that∥∥∥∥∥
1∏

i=m

(I +A(ξi)(ti − ti−1))− PA

∥∥∥∥∥ < ε (3.1)

for all δ-fine tagged partitions of [a, b]. In this case, PA is called the Kurzweil product integral of A and will

be denoted by
∏b
a(I +A(t) dt). This integral is also known under the name Perron product integral.

If (3.1) holds for all δ-fine free tagged partitions of [a, b], then A is called McShane product integrable over

[a, b]. The McShane product integral PA will again be denoted by
∏b
a(I +A(t) dt).

The definition of Riemann product integrability is obtained from the definition of Kurzweil product integra-

bility if the gauge δ is assumed to be constant on [a, b]. In this case, the integral
∏b
a(I + A(t) dt) is called

the Riemann product integral.

Remark 3.2. Let us mention two basic properties which are common to all three types of product integrals:

• If
∏b
a(I +A(t) dt) exists, and if c ∈ (a, b), then

∏c
a(I +A(t) dt) and

∏b
c(I +A(t) dt) exist as well, and

b∏
a

(I +A(t) dt) =

b∏
c

(I +A(t) dt)

c∏
a

(I +A(t) dt).

Conversely, if the product integrals on the right-hand side exist for a certain c ∈ (a, b), then the product

integral on the left-hand side exists as well and the equality holds.

• If
∏b
a(I + A(t) dt) exists, then the functions t 7→

∏t
a(I + A(s) ds) and t 7→

∏b
t(I + A(s) ds) are

continuous on [a, b].

More information on Riemann product integrals, including the proofs of the two properties from Remark 3.2,

can be found in [12, 17]. Kurzweil product integrals were introduced in [11], where they were called “Perron

product integrals” and denoted by (PP)
∫ b
a

(I+A(t) dt); additional results can be found in [14, 20]. McShane

product integrals were introduced in [15], where they were referred to as “Bochner product integrals”; further

results were obtained in [20]. In these sources, the Kurzweil and McShane product integrals are studied in

the special cases X = Rn×n or X = L(Y ), where Y is a Banach space; however, the proofs of the two

properties from Remark 3.2 remain valid in all unital Banach algebras.

Remark 3.3. Next, we summarize some more specific properties of the Riemann, McShane and Kurzweil

product integrals:

• Riemann or McShane product integrability implies Kurzweil product integrability; this follows imme-

diately from the definitions.

• A function is Riemann product integrable if and only if it is Riemann integrable; see [12, Section 5] or

[17, Section 5.5].

• In Definition 3.1, we were assuming that PA is an invertible element of X. For the Riemann product

integral, it turns out that this assumption is not necessary, i.e., if the products in (3.1) have a limit

PA, then it is always invertible; see [12, Theorem 14.1] or [17, Theorem 5.4.6]. On the other hand, this

is no longer true for Kurzweil or McShane product integrals (cf. [20, Example 9]).
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• For the Kurzweil product integral, we have the following Hake-type theorem: Assume that
∏t
a(I +

A(s) ds) exists for all t ∈ [a, b). If limt→b−
∏t
a(I+A(s) ds) exists and is invertible, then

∏b
a(I+A(s) ds)

exists as well and is equal to the limit. See [14, Theorem 1.13] (the proof still works in unital Banach

algebras).

In [11, Theorem 2.4], J. Jarńık and J. Kurzweil pointed out that in the finite-dimensional case X = Rn×n,

the indefinite Kurzweil product integral W (t) =
∏t
a(I +A(s) ds) has the following property:

For every ε > 0, there is a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖I +A(ξi)(ti − ti−1)−W (ti)W (ti−1)−1‖ < ε

for every δ-fine tagged partition of [a, b].

This property plays a key role in their proof that W ′(t) = A(t)W (t) almost everywhere in [a, b]. However, the

original proof of the above-mentioned property is no longer applicable in infinite dimension; it depends on [11,

Lemma 2.2], which holds if and only if the dimension is finite (see [19]). Moreover, one can easily construct

examples of functions whose indefinite Kurzweil product integral is not differentiable almost everywhere; see

Example 4.4.

A similar situation is known from the Henstock-Kurzweil integration theory; in infinite dimension, the

indefinite Henstock-Kurzweil integral need not be differentiable almost everywhere, but one can overcome

this problem by working with the strong Henstock-Kurzweil integral instead (see e.g. [16]). These facts

provide a motivation for introducing the strong Kurzweil and McShane product integrals as follows.

Definition 3.4. A function A : [a, b]→ X is called strongly Kurzweil product integrable if there is a function

W : [a, b]→ X such that W (t)−1 exists for all t ∈ [a, b], both W and W−1 are bounded, and for every ε > 0,

there is a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖I +A(ξi)(ti − ti−1)−W (ti)W (ti−1)−1‖ < ε (3.2)

for every δ-fine tagged partition of [a, b]. In this case, we define the strong Kurzweil product integral as∏b
a(I +A(t) dt) = W (b)W (a)−1.

If (3.2) holds for all δ-fine free tagged partitions of [a, b], then A is called strongly McShane product integrable

over [a, b]. The strong McShane product integral is again defined as
∏b
a(I +A(t) dt) = W (b)W (a)−1.

As we will see later in the paper, the properties of strong product integrals are quite similar to the properties

of finite-dimensional product integrals.

Note that if A is strongly product integrable, then the function W from Definition 3.4 is not unique (any

function obtained from W by multiplying it from the right by an arbitrary invertible element of X has the

same properties as W ). However, the next theorem shows that strong product integrability implies ordinary

product integrability, and if W is an arbitrary function satisfying the conditions from Definition 3.4, then

W (b)W (a)−1 is the ordinary product integral of A; this justifies the correctness of Definition 3.4, and also

explains why we use the same symbol for product integrals and strong product integrals. (On the other

hand, product integrability does not necessarily imply strong product integrability; see Example 4.4.) The

proof is inspired by the proof of [11, Theorem 2.7].

Theorem 3.5. If A : [a, b]→ X is strongly Kurzweil/McShane product integrable, it is also Kurzweil/McShane

product integrable and the values of the integrals coincide.
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Proof. Let us prove the statement concerning Kurzweil product integrals; the proof of the McShane counter-

part is a straightforward modification. Consider the function W from Definition 3.4. There exists a constant

M > 0 such that ‖W (t)‖ ≤ M and ‖W (t)−1‖ ≤ M for all t ∈ [a, b]. Take an arbitrary ε ∈ (0, 1
M2 ). There

exists a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖I +A(ξi)(ti − ti−1)−W (ti)W (ti−1)−1‖ < ε

for every δ-fine tagged partition of [a, b]. Consequently,

m∑
i=1

‖W (ti)
−1(I +A(ξi)(ti − ti−1))W (ti−1)− I‖ < M2ε < 1.

Now, we need the following estimate from [11, Lemma 2.1]: If y1, . . . , ym ∈ X are such that
∑m
i=1 ‖yi‖ ≤ 1,

then ∥∥∥∥∥(I + ym) · · · (I + y1)− I −
m∑
i=1

yi

∥∥∥∥∥ ≤
(

m∑
i=1

‖yi‖

)2

.

By letting yi = W (ti)
−1(I +A(ξi)(ti − ti−1))W (ti−1)− I, i ∈ {1, . . . ,m}, we get∥∥∥∥∥W (tm)−1

(
1∏

i=m

(I +A(ξi)(ti − ti−1))

)
W (t0)− I

∥∥∥∥∥ =

∥∥∥∥∥
1∏

i=m

W (ti)
−1(I +A(ξi)(ti − ti−1))W (ti−1)− I

∥∥∥∥∥
= ‖(I + ym) · · · (I + y1)− I‖ ≤

m∑
i=1

‖yi‖+

(
m∑
i=1

‖yi‖

)2

< M2ε+M4ε2.

It follows that∥∥∥∥∥
1∏

i=m

(I +A(ξi)(ti − ti−1))−W (b)W (a)−1

∥∥∥∥∥ =

∥∥∥∥∥
1∏

i=m

(I +A(ξi)(ti − ti−1))−W (tm)W (t0)−1

∥∥∥∥∥ < M4ε+M6ε2

for every δ-fine tagged partition of [a, b], which proves that the Kurzweil product integral exists and equals

W (b)W (a)−1.

Remark 3.6. The strong Kurzweil and McShane product integrals have the following properties:

• If the strong integral
∏b
a(I +A(t) dt) exists, and if c ∈ (a, b), then the strong integrals

∏c
a(I +A(t) dt)

and
∏b
c(I +A(t) dt) exist as well, and

b∏
a

(I +A(t) dt) =

b∏
c

(I +A(t) dt)

c∏
a

(I +A(t) dt). (3.3)

Indeed, strong product integrability on subintervals is a direct consequence of Definition 3.4, while the

relation (3.3) follows from Theorem 3.5 and Remark 3.2.

• If A is strongly product integrable, then (3.2) holds with W (t) =
∏t
a(I +A(s) ds), i.e., it reduces to

m∑
i=1

∥∥∥∥∥∥I +A(ξi)(ti − ti−1)−
ti∏
ti−1

(I +A(s) ds)

∥∥∥∥∥∥ < ε.

The reason is that for every i ∈ {1, . . . ,m}, A is strongly product integrable on [ti−1, ti], and it follows

from Theorem 3.5 that
∏ti
ti−1

(I +A(s) ds) = W (ti)W (ti−1)−1.
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• If the strong integral
∏b
a(I +A(t) dt) exists, then the functions t 7→

∏t
a(I +A(s) ds) and t 7→

∏b
t(I +

A(s) ds) are continuous on [a, b]. This is a direct consequence of Theorem 3.5 and Remark 3.2.

According to the previous two facts, the function W from Definition 3.4 is necessarily continuous.

• IfX = Rn×n and A is Kurzweil/McShane product integrable, then it is also strongly Kurzweil/McShane

product integrable (see [20, Theorem 14]).

Next, we recall the definitions of the exponential product integrals and introduce their strong counterparts.

The following two definitions are motivated by the fact that

exp(A(ξi)(ti − ti−1)) = I +A(ξi)(ti − ti−1) +O(‖A(ξi)‖2(ti − ti−1)2),

and it seems plausible that the higher-order terms do not contribute to the value of the product integral.

Definition 3.7. A function A : [a, b] → X is called Kurzweil exponentially product integrable, if there

exists an invertible element PA ∈ X with the following property: For each ε > 0, there exists a gauge

δ : [a, b]→ R+ such that ∥∥∥∥∥
1∏

i=m

exp(A(ξi)(ti − ti−1))− PA

∥∥∥∥∥ < ε (3.4)

for all δ-fine tagged partitions of [a, b]. In this case, PA is called the Kurzweil exponential product integral

of A and will be denoted by
∏b
a exp(A(t) dt).

If (3.4) holds for all δ-fine free tagged partitions of [a, b], then A is called McShane exponentially product in-

tegrable over [a, b]. The McShane exponential product integral PA will again be denoted by
∏b
a exp(A(t) dt).

The definition of Riemann product integrability is obtained from the definition of Kurzweil exponential prod-

uct integrability if the gauge δ is assumed to be constant on [a, b]. In this case, the integral
∏b
a exp(A(t) dt)

is called the Riemann exponential product integral.

Definition 3.8. A function A : [a, b] → X is called strongly Kurzweil exponentially product integrable if

there is a function W : [a, b]→ X such that W (t)−1 exists for all t ∈ [a, b], both W and W−1 are bounded,

and for every ε > 0, there is a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖ exp(A(ξi)(ti − ti−1))−W (ti)W (ti−1)−1‖ < ε (3.5)

for every δ-fine tagged partition of [a, b]. In this case, we define the strong Kurzweil exponential product

integral as
∏b
a exp(A(t) dt) = W (b)W (a)−1.

If (3.5) holds for all δ-fine free tagged partitions of [a, b], then A is called strongly McShane exponen-

tially product integrable over [a, b]. The strong McShane exponential product integral is again defined as∏b
a exp(A(t) dt) = W (b)W (a)−1.

Remark 3.9. It is not our intention to develop a systematic theory of exponential product integrals; let us

collect only some basic facts that will be needed later.

• If A is Riemann integrable, then the Riemann product integral
∏b
a exp(A(t) dt) exists and equals∏b

a(I +A(t) dt); see [12, Lemma 24.1] or [17, Theorem 3.2.2].
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• If A is Bochner integrable, then the McShane product integrals
∏b
a exp(A(t) dt) and

∏b
a(I + A(t) dt)

exist and are equal to each other; see [15, Theorems 14 and 16]. Moreover, the corresponding indefinite

product integral W (t) =
∏t
a(I +A(s) ds) =

∏t
a exp(A(s) ds) satisfies

W (t) = I +

∫ t

a

A(s)W (s) ds, t ∈ [a, b],

where the integral on the right-hand side is the Bochner integral; for a proof of this fact, see [2, Theorem

1.2 and Section 1.8] (the original proof for X = Rn×n remains valid in unital Banach algebras).

• If A is strongly Kurzweil/McShane exponentially product integrable, then it is also Kurzweil/McShane

exponentially product integrable and the values of the integrals coincide. The proof is the same

as the proof of Theorem 3.5; it is enough to replace all terms of the form I + A(ξi)(ti − ti−1) by

exp(A(ξi)(ti − ti−1)).

• If X = Rn×n and A is Kurzweil/McShane exponentially product integrable, then it is also strongly

Kurzweil/McShane exponentially product integrable (see [20, Theorem 14]).

Lemma 3.10. For every function A : [a, b]→ X and every ε > 0, there is a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖I +A(ξi)(ti − ti−1)− exp(A(ξi)(ti − ti−1))‖ < ε

for every δ-fine free tagged partition of [a, b].

Proof. Take a gauge δ : [a, b]→ R+ such that

‖A(ξ)‖δ(ξ) < 1

2
, ‖A(ξ)‖2δ(ξ) < ε

2(b− a)e

for all ξ ∈ [a, b]. Then, for every δ-fine free tagged partition of [a, b], we get

‖I +A(ξi)(ti − ti−1)− exp(A(ξi)(ti − ti−1))‖ ≤ ‖A(ξi)‖2(ti − ti−1)2 exp(‖A(ξi)‖(ti − ti−1))

≤ 2δ(ξi)‖A(ξi)‖2(ti − ti−1) exp(2δ(ξi)‖A(ξi)‖) <
ε(ti − ti−1)

b− a
,

and consequently

m∑
i=1

‖I +A(ξi)(ti − ti−1)− exp(A(ξi)(ti − ti−1))‖ <
m∑
i=1

ε(ti − ti−1)

b− a
= ε.

Corollary 3.11. A function A : [a, b] → X is strongly Kurzweil/McShane product integrable if and only

if A is strongly Kurzweil/McShane exponentially product integrable. In this case, the values of the product

integral and exponential product integral coincide.

In general, product integrals are much harder to calculate than ordinary integrals. However, if the values of

A : [a, b]→ X commute with each other, it turns out that

b∏
a

(I +A(t) dt) = exp

(∫ b

a

A(t) dt

)
whenever at least one of the integrals exists. For Riemann-type integrals, this theorem was proved by Masani;

see [12, Theorem 24.3] or [17, Theorem 5.5.11]. The corresponding statement for Kurzweil-type integrals

and X = Rn× can be found in [11, Theorem 3.7]. Here we focus on strong Kurzweil and McShane product

integrals.
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Theorem 3.12. Consider a function A : [a, b]→ X such that

A(t1)A(t2) = A(t2)A(t1) for all t1, t2 ∈ [a, b]. (3.6)

If A is strongly Henstock-Kurzweil/McShane integrable, then it is strongly Kurzweil/McShane product inte-

grable. In this case, we have
b∏
a

(I +A(t) dt) = exp

(∫ b

a

A(t) dt

)
.

Proof. We prove the statement concerning the Kurzweil integrals; the McShane version can be obtained in an

analogous way. Clearly, it is enough to prove that A is strongly Kurzweil exponentially product integrable.

Let W (t) = exp
(∫ t

a
A(s) ds

)
, t ∈ [a, b]. If [x, y] ⊂ [a, b], then

W (y)W (x)−1 = exp

(∫ y

a

A(s) ds

)
exp

(∫ x

a

A(s) ds

)−1
= exp

(∫ y

a

A(s) ds

)
exp

(
−
∫ x

a

A(s) ds

)

= exp

(∫ y

a

A(s) ds−
∫ x

a

A(s) ds

)
= exp

(∫ y

x

A(s) ds

)
,

because assumption (3.6) implies that
∫ y
a
A(s) ds and

∫ x
a
A(s) ds commute. (Think of the integrals as limits

of integral sums, which obviously commute.) Let M = supt∈[a,b]

∥∥∥∫ ta A(s) ds
∥∥∥. Then we have ‖

∫ y
x
A(s) ds‖ =

‖
∫ y
a
A(s) ds−

∫ x
a
A(s) ds‖ ≤ 2M whenever [x, y] ⊂ [a, b].

Take an arbitrary ε > 0. There exists a gauge δ : [a, b]→ R+ such that

m∑
i=1

∥∥∥∥∥A(ξi)(ti − ti−1)−
∫ ti

ti−1

A(s) ds

∥∥∥∥∥ < ε

for every δ-fine tagged partition of [a, b]. Without loss of generality, we can assume the gauge is chosen so

that 2‖A(ξ)‖δ(ξ) ≤ 1 for all ξ ∈ [a, b].

Using the estimate (2.5), we get

m∑
i=1

∥∥exp(A(ξi)(ti − ti−1))−W (ti)W (ti−1)−1
∥∥ =

m∑
i=1

∥∥∥∥∥exp(A(ξi)(ti − ti−1))− exp

(∫ ti

ti−1

A(s) ds

)∥∥∥∥∥
≤

m∑
i=1

∥∥∥∥∥A(ξi)(ti − ti−1)−
∫ ti

ti−1

A(s) ds

∥∥∥∥∥ exp

(
max

(
‖A(ξi)‖(ti − ti−1),

∥∥∥∥∥
∫ ti

ti−1

A(s) ds

∥∥∥∥∥
))

≤
m∑
i=1

∥∥∥∥∥A(ξi)(ti − ti−1)−
∫ ti

ti−1

A(s) ds

∥∥∥∥∥ exp (max (1, 2M)) < exp (max (1, 2M)) ε

for every δ-fine tagged partition of [a, b]. This proves that A is strongly Kurzweil product integrable and∏b
a exp(A(t) dt) = W (b)W (a)−1 = exp

(∫ b
a
A(t) dt

)
.

Theorem 3.13. Consider a function A : [a, b]→ X such that (3.6) holds. If A is strongly Kurzweil/McShane

product integrable, then it is strongly Kurzweil-Henstock/McShane integrable. In this case, we have

b∏
a

(I +A(t) dt) = exp

(∫ b

a

A(t) dt

)
.
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Proof. We prove the statement concerning the Kurzweil integrals; the McShane counterpart can be obtained

in an analogous way. We use the fact that strong product integrability implies strong exponential prod-

uct integrability. Let W (t) =
∏t
a exp(A(s) ds), t ∈ [a, b]. Denote M = supt∈[a,b] ‖W (t)−1‖. Since W is

(uniformly) continuous, there exists a ∆ > 0 such that [x, y] ⊂ [a, b] and ‖x− y‖ < ∆ implies

‖W (x)−W (y)‖ < 1

2M
.

Without loss of generality, we can assume that b − a < ∆ (otherwise, we can split [a, b] into subintervals

whose length is smaller than ∆). Now, if [x, y] ⊂ [a, b], we have∥∥∥∥∥
y∏
x

exp(A(s) ds)− I

∥∥∥∥∥ = ‖W (y)W (x)−1 − I‖ ≤ ‖W (y)−W (x)‖ · ‖W (y)−1‖ < 1

2
,

∥∥∥∥∥∥
(

y∏
x

exp(A(s) ds)

)−1
− I

∥∥∥∥∥∥ = ‖W (x)W (y)−1 − I‖ ≤ ‖W (x)−W (y)‖ · ‖W (y)−1‖ < 1

2
.

Let F (t) = log
(∏t

a exp(A(s) ds)
)

. If [x, y] ⊂ [a, b], then

F (y)− F (x) = log

(
y∏
a

exp(A(s) ds)

)
− log

(
x∏
a

exp(A(s) ds)

)

= log

(
y∏
a

exp(A(s) ds)

)
+ log

(
x∏
a

exp(A(s) ds)

)−1

= log

( y∏
a

exp(A(s) ds)

)(
x∏
a

exp(A(s) ds)

)−1 = log

(
y∏
x

exp(A(s) ds)

)

because assumption (3.6) implies that
∏y
a exp(A(s) ds) and (

∏x
a exp(A(s) ds))

−1
commute. (Think of the

product integrals as the limits of products from Definition 3.7; these products obviously commute.)

Take an arbitrary ε > 0. There exists a gauge δ : [a, b]→ R+ such that

m∑
i=1

∥∥∥∥∥∥exp(A(ξi)(ti − ti−1))−
ti∏
ti−1

exp(A(s) ds)

∥∥∥∥∥∥ < ε

for every δ-fine tagged partition of [a, b]. Without loss of generality, assume the gauge δ is chosen so that

2‖A(ξ)‖δ(ξ) exp(2‖A(ξ)‖δ(ξ)) ≤ 1

2
, ξ ∈ [a, b],

which in turn means that

‖ exp(A(ξi)(ti− ti−1))−I‖ ≤ ‖A(ξ)‖(ti− ti−1) exp(‖A(ξ)‖(ti− ti−1)) < ‖A(ξ)‖2δ(ξi) exp(‖A(ξ)‖2δ(ξi)) ≤
1

2
,

and also

‖A(ξi)‖(ti − ti−1) < ‖A(ξi)‖2δ(ξi) ≤
1

2
< log 2.

Using the estimate (2.6), we get

m∑
i=1

‖A(ξi)(ti − ti−1)− (F (ti)− F (ti−1))‖ =

m∑
i=1

∥∥∥∥∥∥log (exp(A(ξi)(ti − ti−1)))− log

 ti∏
ti−1

exp(A(s) ds)

∥∥∥∥∥∥
11



≤
m∑
i=1

∥∥∥exp(A(ξi)(ti − ti−1))−
∏ti
ti−1

exp(A(s) ds)
∥∥∥

1−max
(
‖ exp(A(ξi)(ti − ti−1))− I‖,

∥∥∥∏ti
ti−1

exp(A(s) ds)− I
∥∥∥)

≤ 2

m∑
i=1

∥∥∥∥∥∥exp(A(ξi)(ti − ti−1))−
ti∏
ti−1

exp(A(s) ds)

∥∥∥∥∥∥ < 2ε,

i.e., A is strongly Henstock-Kurzweil integrable and
∫ b
a
A(t) dt = F (b)− F (a) = log

(∏b
a exp(A(s) ds)

)
.

Our next goal is to show that every Bochner integrable function is strongly McShane product integrable. In

the following lemma, the symbol µ stands for the Lebesgue measure in R.

Lemma 3.14. Assume that A : [a, b] → X is Bochner integrable. Then for every ε > 0, there is a gauge

δ : [a, b]→ R+ such that

r∑
i=1

s∑
j=1

‖ exp(A(ti)µ(Ji ∩ Lj))− exp(A(sj)µ(Ji ∩ Lj))‖ < ε

for each pair of δ-fine free tagged partitions (ti, Ji)
r
i=1 and (sj , Lj)

s
j=1.

Proof. Let M = exp
(

1 +
∫ b
a
‖A(t)‖dt

)
. Take an arbitrary ε > 0. Every Bochner integrable function is

strongly McShane integrable, and therefore satisfies the so-called condition S∗M (see [16, Lemma 3.6.12]),

i.e., there is a gauge δ : [a, b]→ R+ such that

r∑
i=1

s∑
j=1

‖A(ti)−A(sj)‖µ(Ji ∩ Lj) <
ε

M

for each pair of δ-fine free tagged partitions (ti, Ji)
r
i=1 and (sj , Lj)

s
j=1. Since ‖A‖ is Bochner and therefore

also McShane integrable, we can assume that δ is chosen in such a way that∣∣∣∣∣
r∑
i=1

‖A(ti)‖µ(Ji)−
∫ b

a

‖A(t)‖ dt

∣∣∣∣∣ < 1

for every δ-fine free tagged partition (ti, Ji)
r
i=1 of [a, b].

Consequently, using the estimate (2.5), we get

r∑
i=1

s∑
j=1

‖ exp(A(ti)µ(Ji ∩ Lj))− exp(A(sj)µ(Ji ∩ Lj))‖

≤
r∑
i=1

s∑
j=1

‖A(ti)−A(sj)‖µ(Ji ∩ Lj) exp(max(‖A(ti)‖µ(Ji ∩ Lj), ‖A(sj)‖µ(Ji ∩ Lj)))

≤

 r∑
i=1

s∑
j=1

‖(A(ti)−A(sj))µ(Ji ∩ Lj)‖

 exp

max

 r∑
i=1

‖A(ti)‖µ(Ji),

s∑
j=1

‖A(sj)‖µ(Lj)


≤

 r∑
i=1

s∑
j=1

‖(A(ti)−A(sj))µ(Ji ∩ Lj)‖

 exp

(
1 +

∫ b

a

‖A(t)‖ dt

)
< ε.

Theorem 3.15. If A : [a, b]→ X is Bochner integrable, then it is strongly McShane product integrable.
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Proof. By Corollary 3.11, it is enough to prove that A is strongly McShane exponentially product integrable.

From Remark 3.9, we already know that A is McShane exponentially product integrable. Let W (t) =∏t
a exp(A(s) ds), t ∈ [a, b]. Denote M = exp

(
1 +

∫ b
a
‖A(t)‖ dt

)
. Take an arbitrary ε > 0 and let δ :

[a, b] → R+ be the corresponding gauge from Lemma 3.14. Since ‖A‖ is Bochner integrable and therefore

also McShane integrable, we can assume that δ is chosen is such a way that if (ηi, [ui−1, ui])
m
i=1 is a δ-fine

free tagged partition of [a, b], then∣∣∣∣∣
m∑
i=1

‖A(ηi)‖(ui − ui−1)−
∫ b

a

‖A(t)‖ dt

∣∣∣∣∣ < 1. (3.7)

Consider an arbitrary δ-fine free tagged partition (ξi, [ti−1, ti])
k
i=1 of [a, b].

For every i ∈ {1, . . . , k}, A is Bochner integrable and therefore also exponentially McShane product integrable

on [ti−1, ti]. Hence, there exists a δ-fine free tagged partition (ξij , [t
i
j−1, t

i
j ])

li
j=1 of [ti−1, ti] such that∥∥∥∥∥∥

1∏
j=li

exp(A(ξij)∆t
i
j)−

ti∏
ti−1

exp(A(t) dt)

∥∥∥∥∥∥ < ε

k
, i ∈ {1, . . . , k}, (3.8)

where ∆tij = tij − tij−1.

Note that the collections (ξi, [t
i
j−1, t

i
j ]) and (ξij , [t

i
j−1, t

i
j ]), where i ∈ {1, . . . , k} and j ∈ {1, . . . , li}, are δ-fine

free tagged partitions of [a, b].

Using the identity (2.3), we obtain the estimate∥∥∥∥∥∥
1∏

j=li

exp(A(ξi)∆t
i
j)−

1∏
j=li

exp(A(ξij)∆t
i
j)

∥∥∥∥∥∥
≤

li∑
j=1

 j+1∏
p=li

exp(‖A(ξi)‖∆tip)

 ‖ exp(A(ξi)∆t
i
j)− exp(A(ξij)∆t

i
j)‖

 1∏
p=j−1

exp(‖A(ξip)‖∆tip)


≤ exp

 li∑
p=1

‖A(ξip)‖∆tip

 exp

 li∑
p=1

‖A(ξi)‖∆tip

 li∑
j=1

‖ exp(A(ξi)∆t
i
j)− exp(A(ξij)∆t

i
j)‖

≤ exp

 k∑
i=1

li∑
p=1

‖A(ξi)‖∆tip

 exp

 k∑
i=1

li∑
p=1

‖A(ξip)‖∆tip

 li∑
j=1

‖ exp(A(ξi)∆t
i
j)− exp(A(ξij)∆t

i
j)‖

≤M2
li∑
j=1

‖ exp(A(ξi)∆t
i
j)− exp(A(ξij)∆t

i
j)‖,

where the last inequality is a consequence of (3.7). According to the conclusion of Lemma 3.14, we get

k∑
i=1

∥∥∥∥∥∥
1∏

j=li

exp(A(ξi)∆t
i
j)−

1∏
j=li

exp(A(ξij)∆t
i
j)

∥∥∥∥∥∥ ≤M2
k∑
i=1

li∑
j=1

‖ exp(A(ξi)∆t
i
j)− exp(A(ξij)∆t

i
j)‖ < M2ε.

By combining the previous estimate with (3.8), we obtain

k∑
i=1

∥∥exp(A(ξi)(ti − ti−1))−W (ti)W (ti−1)−1
∥∥ =

k∑
i=1

∥∥∥∥∥∥
1∏

j=li

exp(A(ξi)∆t
i
j)−

ti∏
ti−1

exp(A(t) dt)

∥∥∥∥∥∥
≤

k∑
i=1

∥∥∥∥∥∥
1∏

j=li

exp(A(ξi)∆t
i
j)−

1∏
j=li

exp(A(ξij)∆t
i
j)

∥∥∥∥∥∥+

k∑
i=1

∥∥∥∥∥∥
1∏

j=li

exp(A(ξij)∆t
i
j)−

ti∏
ti−1

exp(A(t) dt)

∥∥∥∥∥∥ < ε(M2 + 1),

which proves that A is strongly McShane exponentially product integrable.
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4 Indefinite strong product integrals

In this section, we investigate the properties of the indefinite strong Kurzweil and McShane product integrals.

Also, we prove that strong McShane product integrability is equivalent to Bochner integrability. The proofs

of Theorems 4.1, 4.6, and 4.7 are fairly straightforward adaptations of the proofs of Theorems 3.1, 3.3, and

3.4 from [11], but we provide them here for reader’s convenience.

Theorem 4.1. Assume that A : [a, b] → X is strongly Kurzweil product integrable and W (t) =
∏t
a(I +

A(s) ds), t ∈ [a, b]. Then there exists a set Z ⊂ [a, b] of measure zero with the following property: For every

ε > 0 and t ∈ [a, b]\Z, there is a δ(t) > 0 such that

‖I +A(t)(y − x)−W (y)W (x)−1‖ ≤ ε(y − x) (4.1)

whenever [x, y] ⊂ (t− δ(t), t+ δ(t)) ∩ [a, b].

Proof. Let Z ⊂ [a, b] be the set of all t ∈ [a, b] for which (4.1) does not hold. For every t ∈ Z, there exist

η(t) > 0 and sequences {xl(t)}∞l=1 and {yl(t)}∞l=1 such that

xl(t) ≤ t ≤ yl(t), lim
l→∞

(yl(t)− xl(t)) = 0,

‖I +A(t)(yl(t)− xl(t))−W (yl(t))W (xl(t))
−1‖ ≥ η(t)(yl(t)− xl(t)). (4.2)

Clearly, Z =
⋃∞
n=1 Zn. Assume that Z has outer Lebesgue measure µ∗(Z) > 0. Hence, there is an r ∈ N

such that µ∗(Zr) > 0. Consider an arbitrary gauge δ : [a, b] → R+. For every t ∈ Zr, find l0(t) ∈ N such

that

t− δ(t) < xl(t) ≤ t ≤ yl(t) < t+ δ(t)

for all l ≥ l0(t). The collection of intervals {[xl(t), yl(t)]; t ∈ Zr, l ≥ l0(t)} is a Vitali cover of the set Zr. By

the Vitali covering theorem, it contains a finite subsystem of intervals ([ξj , ηj ])
s
j=1 for which

τj − δ(τj) < ξj ≤ τj ≤ ηj < τj + δ(τj), τj ∈ Zr, j ∈ {1, 2, . . . , s},

ηj ≤ ξj+1, j ∈ {1, 2, . . . , s− 1},

µ∗
(
Zr \

s⋃
j=1

[ξj , ηj ]
)
<

1

2
µ∗(Zr).

Consequently,
s∑
j=1

(ηj − ξj) ≥ µ∗
(
Zr ∩

s⋃
j=1

[ξj , ηj ]
)
>

1

2
µ∗(Zr).

This inequality together with (4.2) yields

s∑
j=1

‖I +A(τj)(ηj − ξj)−W (ηj)W (ξj)
−1‖ ≥ 1

r

s∑
j=1

(ηj − ξj) >
1

2r
µ∗(Zr).

Since the expression on the right-hand side is a constant independent on the choice of the gauge δ, we get

a contradiction with the assumption that A is strongly Kurzweil product integrable.

Theorem 4.2. Assume that A : [a, b] → X is strongly Kurzweil product integrable and W (t) =
∏t
a(I +

A(s) ds), t ∈ [a, b]. Then W ′(t) = A(t)W (t) almost everywhere on [a, b].
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Proof. Consider an arbitrary ε > 0. By Theorem 4.1 there exists a Z ⊂ [a, b] of measure zero such that for

every t ∈ [a, b] \ Z there is δ(t) > 0 such that

‖I +A(t)(y − t)−W (y)W (t)−1‖ ≤ ε(y − t)

whenever y ∈ (t, t+ δ(t)). Dividing by (y − t), we get∥∥∥∥A(t)− W (y)−W (t)

y − t
W (t)−1

∥∥∥∥ ≤ ε,
and consequently ∥∥∥∥A(t)W (t)− W (y)−W (t)

y − t

∥∥∥∥ ≤ ε‖W (t)‖,

i.e., the right-sided derivative of W at the point t exists and equals A(t)W (t). A similar reasoning shows

that also the left-sided derivative of W at t exists and equals A(t)W (t).

Theorem 4.3. Every strongly Kurzweil product integrable function is strongly measurable.

Proof. If A : [a, b] → X is strongly Kurzweil product integrable, then the indefinite Kurzweil product

integral W (t) =
∏t
a(I +A(s) ds), t ∈ [a, b], satisfies W ′ = AW almost everywhere on [a, b]. W and W−1 are

continuous, and therefore strongly measurable. W ′ is also strongly measurable because it is the derivative

of a strongly measurable function (a verification of this fact, which is analogous to the proof for real-valued

functions, can be found e.g. in the proof of [9, Theorem 1.4.6]). Now, A = W ′W−1 is almost everywhere

equal to a product of two strongly measurable functions, and therefore A is also strongly measurable.

Example 4.4. Consider the space X of all bounded real functions defined on [0, 1] equipped with the

supremum norm. For two functions f, g ∈ X, let fg ∈ X be the function obtained by pointwise multiplication

of f and g. Clearly, X is a unital Banach algebra.

Let A : [0, 1] → X be given by A(t) = χ[0,t]. L. M. Graves observed in [7] that A is nowhere continuous,

but Riemann integrable. In [5, Example 12], R. Gordon noted that A is not strongly measurable. From the

viewpoint of product integration theory, it is useful to observe the following facts:

• A is Riemann product integrable (because it is Riemann integrable) and therefore also Kurzweil product

integrable.

• A is neither Bochner integrable nor strongly Kurzweil/McShane product integrable (because it is not

strongly measurable).

• A is McShane product integrable.

Let us verify the last claim. First, we show that A is McShane integrable (cf. [3, Example 3.1], which is

concerned with a similar function t 7→ χ[t,1]) and
∫ 1

0
A(t) dt = S, where S(τ) = 1−τ for τ ∈ [0, 1]. For a given

ε > 0, let δ(t) = ε for all t ∈ [0, 1]. Now, consider an arbitrary δ-fine free tagged partition (ξi, [ti−1, ti])
m
i=1

of [0, 1]. We have∥∥∥∥∥
m∑
i=1

A(ξi)(ti − ti−1)− S

∥∥∥∥∥ = sup
τ∈[0,1]

∣∣∣∣∣
m∑
i=1

A(ξi)(τ)(ti − ti−1)− S(τ)

∣∣∣∣∣ = sup
τ∈[0,1]

∣∣∣∣∣∣
∑
i; ξi≥τ

(ti − ti−1)− (1− τ)

∣∣∣∣∣∣
Note that ξi ≥ τ implies ti−1 > ξi − ε ≥ τ − ε, and therefore∑

i; ξi≥τ

(ti − ti−1) < 1− (τ − ε) = 1− τ + ε.
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A lower bound for the same sum is obtained by finding an upper bound for
∑
i; ξi<τ

(ti − ti−1). Now ξi < τ

implies ti < ξi + ε < τ + ε. It follows that
∑
i; ξi<τ

(ti − ti−1) < τ + ε, and consequently∑
i; ξi≥τ

(ti − ti−1) = 1−
∑
i; ξi<τ

(ti − ti−1) > 1− (τ + ε) = 1− τ − ε.

This proves ∥∥∥∥∥
m∑
i=1

A(ξi)(ti − ti−1)− S

∥∥∥∥∥ = sup
τ∈[0,1]

∣∣∣∣∣∣
∑
i; ξi≥τ

(ti − ti−1)− (1− τ)

∣∣∣∣∣∣ ≤ ε, (4.3)

or
∫ 1

0
A(t) dt = S.

Next, we claim that A is McShane product integrable with
∏1

0(I+A(t) dt) = expS. Take an arbitrary ε > 0

and consider the corresponding gauge δ : [0, 1]→ R+ from Lemma 3.10. Without loss of generality, assume

that δ(ξ) ≤ ε for all ξ ∈ [0, 1]. For every δ-fine free tagged partition (ξi, [ti−1, ti])
m
i=1 of [0, 1], we get∥∥∥∥∥

1∏
i=m

(I +A(ξi)(ti − ti−1))− expS

∥∥∥∥∥ ≤
∥∥∥∥∥

1∏
i=m

(I +A(ξi)(ti − ti−1))−
1∏

i=m

exp(A(ξi)(ti − ti−1))

∥∥∥∥∥
+

∥∥∥∥∥
1∏

i=m

exp(A(ξi)(ti − ti−1))− expS

∥∥∥∥∥ .
An estimate for the first term can be obtained using identity (2.3):∥∥∥∥∥

1∏
i=m

(I +A(ξi)(ti − ti−1))−
1∏

i=m

exp(A(ξi)(ti − ti−1))

∥∥∥∥∥
≤

m∑
i=1

 i+1∏
j=m

(1 + ‖A(ξj)‖(tj − tj−1))

‖I+A(ξi)(ti−ti−1)−exp(A(ξi)(ti−ti−1))‖

 1∏
j=i−1

exp(‖A(ξj)‖(tj − tj−1))


≤ exp

 m∑
j=1

‖A(ξj)‖(tj − tj−1)

 m∑
i=1

‖I +A(ξi)(ti − ti−1)− exp(A(ξi)(ti − ti−1))‖ ≤ (exp 1) ε

To estimate the second term, we use inequality (2.5) together with (4.3), as well as the fact that X is

a commutative algebra:∥∥∥∥∥
1∏

i=m

exp(A(ξi)(ti − ti−1))− expS

∥∥∥∥∥ =

∥∥∥∥∥exp

(
m∑
i=1

A(ξi)(ti − ti−1)

)
− expS

∥∥∥∥∥
≤

∥∥∥∥∥
m∑
i=1

A(ξi)(ti − ti−1)− S

∥∥∥∥∥ exp

(
max

(∥∥∥∥∥
m∑
i=1

A(ξi)(ti − ti−1)

∥∥∥∥∥ , ‖S‖
))
≤ ε exp 1.

This confirms that the McShane product integral
∏1

0(I +A(t) dt) exists and equals expS.

Definition 4.5. A function W : [a, b]→ X is said to satisfy the strong Luzin condition on [a, b] if for every

ε > 0 and Z ⊂ [a, b] of measure zero, there exists a function δ : Z → R+ such that

m∑
j=1

‖W (vj)−W (uj)‖ < ε

for every collection of point-interval pairs (τj , [uj , vj ])
m
j=1 with [uj , vj ] ⊂ [a, b], τj ∈ Z, and τj − δ(τj) < uj ≤

τj ≤ vj < τj + δ(τj) for all j ∈ {1, 2, . . . ,m}.
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We remark that every function which satisfies the strong Luzin condition is necessarily continuous.

Theorem 4.6. If A : [a, b]→ X is strongly Kurzweil product integrable, then the indefinite product integral

W (t) =
∏t
a(I +A(s) ds), t ∈ [a, b], satisfies the strong Luzin condition on [a, b].

Proof. Let M = supt∈[a,b] ‖W (t)‖. Take arbitrary ε > 0 and Z ⊂ [a, b] of measure zero. For every i ∈ N,

let Zi = {t ∈ Z; i − 1 ≤ ‖A(t)‖ < i}. Since Zi has measure zero, it can be enclosed in an open set of an

arbitrarily small measure. Hence, there exists a function δi : Zi → R+ such that

µ

( ⋃
t∈Zi

(t− δi(t), t+ δi(t))

)
≤ ε

i2i
.

Using the strong product integrability of A, we find a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖I +A(ξi)(ti − ti−1)−W (ti)W (ti−1)−1‖ < ε (4.4)

for every δ-fine tagged partition of [a, b]. Without loss of generality, we can assume that δ(t) ≤ δi(t) whenever

t ∈ Zi. Take an arbitrary collection of point-interval pairs (τj , [uj , vj ])
m
j=1 satisfying [uj , vj ] ⊂ [a, b], τj ∈ Z,

and τj − δ(τj) < uj ≤ τj ≤ vj < τj + δ(τj) for all j ∈ {1, 2, . . . ,m}. Then

m∑
j=1

‖A(τj)‖(vj − uj) =

∞∑
i=1

∑
j; τj∈Zi

‖A(τj)‖(vj − uj) ≤
∞∑
i=1

i
ε

i2i
= ε.

It follows from (4.4) that

m∑
j=1

‖I −W (vj)W (uj)
−1‖ ≤

m∑
j=1

‖I +A(τj)(vj − uj)−W (vj)W (uj)
−1‖+

m∑
j=1

‖A(τj)‖(vj − uj) < 2ε,

and therefore
m∑
j=1

‖W (vj)−W (uj)‖ ≤
m∑
j=1

‖W (vj)W (uj)
−1 − I‖ · ‖W (uj)‖ ≤ 2Mε,

which confirms that W satisfies the strong Luzin condition.

Theorem 4.7. Consider a function A : [a, b]→ X. Assume there is a function W : [a, b]→ X which satisfies

the strong Luzin condition, W (t)−1 exists for all t ∈ [a, b], and W ′(t) = A(t)W (t) for every t ∈ [a, b]\Z,

where µ(Z) = 0. Then A is strongly Kurzweil product integrable and
∏b
a(I +A(t) dt) = W (b)W (a)−1.

Proof. The strong Luzin condition implies that W is continuous. Hence, W−1 is continuous as well. Let

M = supt∈[a,b] ‖W (t)−1‖. Take an arbitrary ε > 0.

For every t ∈ [a, b]\Z, there exists a ∆ > 0 such that

‖W (y)−W (t)−W ′(t)(y − t)‖ ≤ ε(y − t), y ∈ [t, t+ ∆) ∩ [a, b],

‖W (t)−W (x)−W ′(t)(t− x)‖ ≤ ε(t− x), x ∈ (t−∆, t] ∩ [a, b].

Consequently,

‖W (y)−W (x)−W ′(t)(y−x)‖ ≤ ‖W (y)−W (t)−W ′(t)(y− t)‖+ ‖W (t)−W (x)−W ′(t)(t−x)‖ ≤ ε(y−x)
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whenever x, y ∈ [a, b] and t−∆ < x ≤ t ≤ y < t+ ∆. This means that

lim
x,y→t,

x 6=y, t∈[x,y]

W (y)−W (x)

y − x
= W ′(t),

and thus

lim
x,y→t,

x 6=y, t∈[x,y]

W (y)W (x)−1 − I
y − x

= lim
x,y→t,

x 6=y, t∈[x,y]

(
W (y)−W (x)

y − x
W (x)−1

)
= W ′(t)W (t)−1 = A(t).

It follows that for every t ∈ [a, b]\Z and ε > 0, there exists a δ(t) > 0 such that∥∥∥∥W (y)W (x)−1 − I
y − x

−A(t)

∥∥∥∥ < ε

b− a

whenever x, y ∈ [a, b], t− δ(t) < x ≤ t ≤ y < t+ δ(t), and x < y. Hence, we also have

∥∥W (y)W (x)−1 − I −A(t)(y − x)
∥∥ < ε(y − x)

b− a

if x, y ∈ [a, b] and t− δ(t) < x ≤ t ≤ y < t+ δ(t).

Next, we extend the domain of δ to the whole interval [a, b] by taking the function δ : Z → R+ from

Definition 4.5. Moreover, using the same argument as in the proof of Theorem 4.6, we can assume that δ is

chosen in such a way that
l∑

j=1

‖A(τj)‖(vj − uj) < ε

for every collection of point-interval pairs (τj , [uj , vj ])
l
j=1 satisfying [uj , vj ] ⊂ [a, b], τj ∈ Z, and τj − δ(τj) <

uj ≤ τj ≤ vj < τj + δ(τj) for all j ∈ {1, 2, . . . , l}.
Now, for every δ-fine tagged partition of [a, b], we obtain

m∑
i=1

‖I+A(ξi)(ti−ti−1)−W (ti)W (ti−1)−1‖ ≤
∑
i; ξi∈Z

‖A(ξi)‖(ti−ti−1)+
∑
i; ξi∈Z

‖W (ti)−W (ti−1)‖·‖W (ti−1)−1‖

+
∑

i; ξi∈[a,b]\Z

‖I +A(ξi)(ti − ti−1)−W (ti)W (ti−1)−1‖ < ε+ εM +
∑

i; ξi∈[a,b]\Z

ε(ti − ti−1)

b− a
≤ ε(M + 2).

Hence, A is strongly Kurzweil product integrable and
∏b
a(I +A(t) dt) = W (b)W (a)−1.

As an immediate consequence of Theorems 4.2, 4.6 and 4.7, we obtain the following characterization of

strongly Kurzweil product integrable functions.

Corollary 4.8. For every function A : [a, b]→ X, the following conditions are equivalent:

1. A is strongly Kurzweil product integrable.

2. There is a function W : [a, b] → X which satisfies the strong Luzin condition, W (t)−1 exists for all

t ∈ [a, b], and W ′(t) = A(t)W (t) for every t ∈ [a, b]\Z, where µ(Z) = 0.

Remark 4.9. From Corollary 4.8, we deduce that the strong Kurzweil product integral has the following

properties:
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• In Remark 3.6, we already noticed that strong product integrability on [a, b] implies strong product

integrability on every subinterval. Now, consider an arbitrary c ∈ (a, b). If A : [a, b] → X is strongly

Kurzweil product integrable on [a, c] and [c, b], then A is strongly Kurzweil product integrable on [a, b].

To see this, it is enough to let

W (t) =

{∏t
a(I +A(s) ds), t ∈ [a, c],∏t
c(I +A(s) ds)

∏c
a(I +A(s) ds), t ∈ (c, b],

and apply Corollary 4.8. (A different proof can be found in [10].)

• If A1, A2 : [a, b] → X are such that A1 = A2 almost everywhere and A1 is strongly Kurzweil product

integrable, then A2 is strongly Kurzweil product integrable and
∏b
a(I +A2(t) dt) =

∏b
a(I +A1(t) dt).

• We have the following Hake-type theorem: Assume that the strong product integral
∏t
a(I + A(s) ds)

exists for all t ∈ [a, b). If limt→b−
∏t
a(I +A(s) ds) exists and is invertible, then

∏b
a(I +A(s) ds) exists

as well and is equal to the limit. (For a different proof, see [10].)

In practice, it can be difficult to verify whether a given function W satisfies the strong Luzin condition. The

next theorem shows that if the relation W ′(t) = A(t)W (t) holds on [a, b]\Z with a countable set Z, then it

is enough to assume that W is continuous.

Theorem 4.10. Consider a function A : [a, b]→ X. Assume there is a continuous function W : [a, b]→ X

such that W (t)−1 exists for all t ∈ [a, b], and W ′(t) = A(t)W (t) for all t ∈ [a, b]\Z, where Z is countable.

Then A is strongly Kurzweil product integrable and
∏b
a(I +A(t) dt) = W (b)W (a)−1.

Proof. Denote Z = {z1, z2, . . .}. Take an arbitrary ε > 0. For every n ∈ N, let δ(zn) > 0 be such that

‖A(zn)‖(y − x) <
ε

2n

and

‖W (y)W (x)−1 − I‖ < ε

2n

for every interval [x, y] ⊂ (zn − δ(zn), zn + δ(zn)) ∩ [a, b]. (Note that (x, y) 7→ W (y)W (x)−1 is a product of

two continuous functions, and therefore a continuous function on [a, b]× [a, b], which equals I when x = y.)

Next, consider an arbitrary t ∈ [a, b]\Z. As in the proof of the previous theorem, there exists a δ(t) > 0

such that ∥∥W (y)W (x)−1 − I −A(t)(y − x)
∥∥ < ε(y − x)

b− a
whenever [x, y] ⊂ (t− δ(t), t+ δ(t)) ∩ [a, b].

The function δ is now defined on [a, b]. For an arbitrary δ-fine tagged partition of [a, b], we get

m∑
i=1

‖W (ti)W (ti−1)−1 − I −A(ξi)(ti − ti−1)‖

=
∑

i∈{1,...,m},
ξi /∈Z

‖W (ti)W (ti−1)−1 − I −A(ξi)(ti − ti−1)‖+
∑

i∈{1,...,m},
ξi∈Z

‖W (ti)W (ti−1)−1 − I −A(ξi)(ti − ti−1)‖

< ε+
∑

i∈{1,...,m},
ξi∈Z

(
‖W (ti)W (ti−1)−1 − I‖+ ‖A(ξi)‖(ti − ti−1)

)
≤ ε+ 2

∞∑
n=1

ε

2n
= 3ε.

Note that both W and W−1 are continuous, and therefore bounded. Hence, A is strongly Kurzweil product

integrable and
∏b
a(I +A(t) dt) = W (b)W (a)−1.
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Example 4.11. If A(t) = A for all t ∈ [a, b], then the strong Kurzweil product integral
∏b
a(I + A(t) dt)

exists and equals exp ((b− a)A); to see this, it is enough to apply Theorem 4.10 with W (t) = exp((t− a)A).

According to Remark 4.9, the same result holds if A(t) = A almost everywhere on [a, b].

We now turn to the properties of the strong McShane product integrals. The proof of the following theorem

is a simple adaptation of the proof of [20, Theorem 18].

Theorem 4.12. If A is strongly McShane product integrable, then the indefinite product integral W (t) =∏t
a(I +A(s) ds), t ∈ [a, b], is absolutely continuous on [a, b].

Proof. Let M = supt∈[a,b] ‖W (t)‖. Take an arbitrary ε > 0. There is a gauge δ : [a, b]→ R+ such that

m∑
i=1

‖I +A(ξi)(ti − ti−1)−W (ti)W (ti−1)−1‖ < ε

2M

for every δ-fine free tagged partition of [a, b]. We fix one of these δ-fine free tagged partitions and let

σ =
ε

2M(maxi=1,...,m ‖A(ξi)‖+ 1)
.

Consider an arbitrary collection of non-overlapping intervals ([uj , vj ])
r
j=1 in [a, b], where

∑r
j=1(vj −uj) < σ.

By subdividing the intervals [uj , vj ] if necessary, it can be assumed that for every j ∈ {1, . . . , r}, we have

[uj , vj ] ⊂ [ti−1, ti] for a certain i ∈ {1, . . . ,m}; let τj = ξi. Then

r∑
j=1

‖W (vj)−W (uj)‖ ≤
r∑
j=1

‖I −W (vj)W
−1(uj)‖ · ‖W (uj)‖

≤M
r∑
j=1

‖I +A(τj)(vj − uj)−W (vj)W
−1(uj)‖+M max

i=1,...,q
‖A(ξi)‖

r∑
j=1

(vj − uj) <
ε

2
+
ε

2
= ε,

which proves that W is absolutely continuous.

Lemma 4.13. Consider a function A : [a, b] → X and suppose there is an absolutely continuous function

W : [a, b]→ X such that W (t)−1 exists for all t ∈ [a, b], and W ′(t) = A(t)W (t) almost everywhere on [a, b].

Then A is Bochner integrable.

Proof. W is continuous, and therefore strongly measurable. Consequently, its derivative W ′, which is defined

almost everywhere on [a, b] and can be extended to [a, b] in an arbitrary way, is also strongly measurable.

Now, A = W ′W−1 is almost everywhere equal to a product of two strongly measurable functions, and

therefore A is also strongly measurable. Next, note that AW is Bochner integrable (since it has an absolutely

continuous primitive W ). Hence, ‖AW‖ is Lebesgue integrable. Because W−1 is continuous, it follows that

‖W−1‖ is bounded and measurable on [a, b]. Consequently, ‖A‖ = ‖AWW−1‖ ≤ ‖AW‖·‖W−1‖ is Lebesgue

integrable, which in turn means that A is Bochner integrable.

Theorem 4.14. For every function A : [a, b]→ X, the following conditions are equivalent:

1. A is strongly McShane product integrable.

2. There is an absolutely continuous function W : [a, b] → X such that W (t)−1 exists for all t ∈ [a, b],

and W ′(t) = A(t)W (t) for every t ∈ [a, b]\Z, where µ(Z) = 0.

3. A is Bochner integrable.
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4. A is strongly measurable and ‖A‖ is Kurzweil product integrable.

Proof. The implication 1 ⇒ 2 follows from Theorems 4.2 and 4.12, implication 2 ⇒ 3 from Lemma 4.13,

and implication 3 ⇒ 1 from Theorem 3.15. Let us prove 4 ⇒ 3: Because ‖A‖ is real-valued and Kurzweil

product integrable, it is strongly Kurzweil product integrable. By Theorem 3.13, ‖A‖ is Henstock-Kurzweil

integrable. For nonnegative functions, Henstock-Kurzweil integrability implies Lebesgue integrability (see [6,

Theorem 9.13]). Taking into account that A is strongly measurable, we deduce that A is Bochner integrable.

Finally, we prove the implication 3 ⇒ 4: Bochner integrability of A implies that A is strongly measurable,

and also that ‖A‖ is Lebesgue integrable, which in turn means that ‖A‖ is Kurzweil product integrable.

Example 4.15. If A(t) = A almost everywhere on [a, b], we know from Example 4.11 that the strong

Kurzweil product integral
∏b
a(I+A(t) dt) exists and equals exp ((b− a)A). For the same reason, the Kurzweil

product integral
∏b
a(1 + ‖A(t)‖ dt) exists and equals exp ((b− a)‖A‖). Hence, by Theorem 4.14, the strong

McShane product integral
∏b
a(I +A(t) dt) exists as well.

A simple consequence is that for step functions with finitely many steps, the strong Kurzweil and strong

McShane product integrals always exist and are easy to calculate. Indeed, if there is a partition a = t0 <

t1 < · · · < tm = b and A(t) = Ai ∈ X for all t ∈ (ti−1, ti), then

b∏
a

(I +A(t) dt) =

1∏
i=m

ti∏
ti−1

(I +A(t) dt) =

1∏
i=m

exp(Ai(ti − ti−1)).

5 Functions with countably many discontinuities

Our next goal is to obtain necessary and sufficient conditions for product integrability of functions with

countably many discontinuities. This class includes every right regulated or left regulated function because

these functions have only countably many discontinuities (see [8, Lemma 2.6]).

Theorem 5.1. If A : [a, b] → X has countably many discontinuities, then the following conditions are

equivalent:

1. A is Riemann product integrable.

2. A is bounded.

If any of these conditions is satisfied, there is a Lipschitz-continuous function W : [a, b] → X such that

W (t)−1 exists for all t ∈ [a, b], and W ′(t) = A(t)W (t) for all t ∈ [a, b]\Z, where Z ⊂ [a, b] is countable.

Proof. Recall that A is Riemann product integrable if and only if A is Riemann integrable. The implication

1 ⇒ 2 follows from the fact that every Riemann integrable function is bounded. On the other hand, every

bounded function which is almost everywhere continuous is Riemann integrable (see [7, Theorem 1]); this

verifies the implication 2⇒ 1. To prove the final statement, let

W (t) =

t∏
a

(I +A(s) ds), t ∈ [a, b].

Then (see [12, Theorem 23.1] or [17, Theorem 5.6.1])

W (t) = I +

∫ t

a

A(s)W (s) ds, t ∈ [a, b],
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where the integral on the right-hand side is the Riemann integral. The set Z of all discontinuities of

A is countable, and we have W ′(t) = A(t)W (t) for all t ∈ [a, b]\Z. Both A and W are bounded; let

L = supt∈[a,b] ‖A(t)W (t)‖. Consequently,

‖W (y)−W (x)‖ =

∥∥∥∥∫ y

x

A(s)W (s) ds

∥∥∥∥ ≤ L|y − x|
whenever x, y ∈ [a, b]; this proves that W is Lipschitz-continuous.

Theorem 5.2. Assume that A : [a, b] → X has countably many discontinuities and is Kurzweil product

integrable. Let

W (t) =

t∏
a

(I +A(s) ds), t ∈ [a, b].

Then W ′(t) = A(t)W (t) for all t ∈ [a, b]\Z, where Z ⊂ [a, b] is countable.

Proof. Consider an arbitrary t ∈ (a, b) such that A is continuous at t. There exists a δ > 0 such that A is

bounded on [t− δ, t + δ] ⊂ [a, b]. Consequently, A is Riemann product integrable on [t− δ, t + δ]. Also, we

have

W (s) =

s∏
t−δ

(I +A(u) du)

t−δ∏
a

(I +A(u) du), s ∈ [t− δ, t+ δ].

The first product integral is understood in Riemann’s sense; hence, at every point s where A is continuous,

W ′(s) exists and equals (see the proof of Theorem 5.1)

W ′(s) = A(s)

s∏
t−δ

(I +A(u) du)

t−δ∏
a

(I +A(u) du).

In particular, for s = t we get

W ′(t) = A(t)

t∏
t−δ

(I +A(u) du)

t−δ∏
a

(I +A(u) du) = A(t)W (t).

This proves that W ′(t) = A(t)W (t) for all t ∈ [a, b]\Z, where Z ⊂ [a, b] is countable.

Theorem 5.3. If A : [a, b] → X has countably many discontinuities, then the following conditions are

equivalent:

1. A is strongly Kurzweil product integrable.

2. A is Kurzweil product integrable.

3. There is a continuous function W : [a, b] → X such that W (t)−1 exists for all t ∈ [a, b], W is

differentiable on [a, b] with the possible exception of a countable set Z, and W ′(t) = A(t)W (t) for

all t ∈ [a, b]\Z.

Proof. The implication 1 ⇒ 2 follows from Theorem 3.5, the implication 2 ⇒ 3 from Theorem 5.2, and

3⇒ 1 is a consequence of Theorem 4.10.

Theorem 5.4. If A : [a, b] → X has countably many discontinuities, then the following conditions are

equivalent:
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1. A is Bochner integrable.

2. A is strongly McShane product integrable.

3. There is an absolutely continuous function W : [a, b] → X such that W (t)−1 exists for all t ∈ [a, b],

and W ′(t) = A(t)W (t) for all t ∈ [a, b]\Z, where Z ⊂ [a, b] is countable.

Proof. The equivalence 1⇔ 2 follows from Theorem 4.14.

If A is strongly McShane product integrable, consider the indefinite McShane integral

W (t) =

t∏
a

(I +A(s) ds), t ∈ [a, b].

It follows from Theorem 5.2 that W ′ = AW on [a, b]\Z, where Z is countable. Also, W is absolutely

continuous by Theorem 4.12; this proves the implication 2⇒ 3. Finally, the implication 3⇒ 1 follows from

Lemma 4.13.

Additional criteria concerning product integrability of functions with countably many discontinuities (espe-

cially right regulated functions) can be found in the recent paper [10].

Remark 5.5. In general (even for functions with countably many discontinuities), Henstock-Kurzweil in-

tegrability and Kurzweil product integrability do not imply each other; see [11, Example 4.7]. However, we

have seen that in some special cases, product integrability is equivalent to integrability. Let us recall that

• Riemann product integrability is equivalent to Riemann integrability,

• strong McShane product integrability is equivalent to Bochner (or strong McShane) integrability,

• for functions whose values commute with themselves, strong Kurzweil product integrability is equivalent

to strong Henstock-Kurzweil integrability.

In these situations, one can use existing criteria of integrability, such as those presented in [8], to study

product integrability.

6 Open problems

We conclude the paper with a list of several open problems:

• If we restrict ourselves to functions with countably many discontinuities, is it true that McShane

product integrability implies strong McShane product integrability (i.e., Bochner integrability)? If

not, is there any other simple characterization of McShane product integrable functions with countably

many discontinuities? Note that McShane product integrability implies Kurzweil product integrability,

which in turn implies strong Kurzweil product integrability (see Theorem 5.3). Hence, the question

reduces to the problem whether the indefinite McShane product integral is absolutely continuous.

• Since strong McShane product integrability coincides with Bochner integrability, it is clear that the

class of strongly McShane product integrable functions is a vector space. However, it is not at all

obvious whether this statement holds for Kurzweil/McShane product integrable functions and strongly

Kurzweil product integrable functions. A partial result in this direction can be found in [10], where

it is shown that the sum of a strongly Kurzweil product integrable function and a Bochner integrable

function is strongly Kurzweil product integrable.
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• ForX = Rn×n, exponential Kurzweil/McShane product integrability is equivalent to Kurzweil/McShane

product integrability. Is this still true in infinite-dimensional Banach algebras? We only know that the

answer is affirmative for strong product integrals.

• Does Riemann product integrability imply McShane product integrability?
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[10] S. Heikkilä, A. Slav́ık, On summability, multipliability, product integrability, and parallel translation, submitted
for publication. Preprint at http://www.karlin.mff.cuni.cz/~slavik/papers/multipliability.pdf.
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