Railway Mazes: From Picture to Solution

Antonin SlavikCharles University, Prague, Czech Republic; slaw&@n.mff.cuni.cz
Stan Wagon, Macalester College, St. Paul, Minne&éf#\; wagon@macalester.edu

1. Introduction

Sir Roger Penrose, pursuing an idea first invesdydy his father, Lionel Penrose, presented skvera
examples of railway mazes in [1]. One of them, glanth some other puzzles, is carved in stone on
the Luppitt Millennium Bench in England [2]. A raihy maze, such as the example in Figure 1, uses
curves to represent tracks and asks for a route 8o F. But at each junction the train must follow
the direction of the track: there can be no revastdirection (though each track supports movement
in either direction and sometimes a certain loaplead to a reversal of direction). These mazesean
difficult to solve by hand so we wanted to see lawputation could be used.

Conceptually an algorithmic solution is simple: @séreadth-first search on the maze, allowing only
legal moves at each step. But we wanted to developethod that would start with just a picture of
maze, in jpeg form, say, and find the solution frtmat. If we succeeded, we could then investigate
further to see if there were any solutions (“cogksther than the one that the Penroses intended. We
use Mathematica since it has good image processing capabilitieaddition to its programming
strength. The heart of the problem is determiniwmpen at a junction point, the possible legal
continuations.

Figure 1. A simple railway maze that is relativegsy to solve by hand.

2. An Algorithm

Consider the maze in Figure 1, where one stardatspot on the circle around the st&tand aims
for the finish atF. To repeat, the rules require that at each junabime must follow the curves as a
train would. This example is not hard to solve laydh, since there is a bridge at center top thttds
only connection from the left side to the righteTfirst steps of a general algorithm are:

1. binarize the image, making each pixel pure wbiitpure black;
2. flip black and white for convenience becauseevborresponds to 1.

These two steps can be carried out byNtaghematica commandsBi nar i ze andCol or Negat e.
This leads to the image in Figure 2.



Figure 2. Some initial massaging simplifies theema

Next we want to thin this to a small, discrete getvhite points. A direct approach usiiMathemati-

ca's Thi nni ng command leaves small loops at certain junctiomgléat at right in Fig. 3). To elimi-
nate these we just blur the image, which turns spixels near the boundary gray, and then apply an
additional binarization and then some thinning. Tésult is quite good as it reduces the maze to a
sequence of points (Fig. 4, left). The small triangt upper right in Figure 4 is not a problemwals

be explained shortly. We will not shoMathematica code here, but a notebook with all the details is
available at [3].

Figure 3. Simple thinning leaves troublesome loops

After the blurring and thinning steps, we must deiae the coordinates of the pixels in the image an
then, for each pixel, the set of neighboring pixetsas to get an undirected graph. Figure 4,dbfiys
the result after the thinning, while the imageightris a closeup with segments indicating the Itegyu
graph structure. The first step is complicatedh®yfact that a nontraditional coordinate systennsisd

in images, but the solution is simply to apply thensformation(x, y) ~ (y, Y —Xx), whereY is the
number of pixels in the vertical dimension.



Figure 4. Discretization and thinning leads tetaf points
that will allow an algorithmic approach to the mandution.

Having an actual graph is not all that helpful csithe crux of the problem is that the legal mduvas

a point depend on how the point was reached. Fameple, if one is at a pixel at the center of a (@e
Y-junction) having reached that point via the stehen there are two legal moves, but if one has
arrived along one of the wye’s upper branches, Garemove only onto the stem. Similarly at points
that are not junctions: if one has moved frénto B, one cannot return t& but must leavé without
changing direction.

One approach is to add direction to each edgedrgthph, along with additional edges that cause the
rules to be enforced; for example, away from th&fions one can duplicate edges, with one track
directed one way and the other track the oppoBitéthis gets excessively complicated in cases &her
the junctions are not simple wyes. So instead Wwe & more straightforward approach that uses a
gueue to set up a breadth-first search in the atdn@ay, but with a separate algorithm that, aheac
step, uses the history to determine the legal soation moves.

At a degree-two vertex, there is only one legal en@ontinue forward). Finding possible moves at a
junction (a vertex with degree three or more) iedba The basic idea is to measure the turningeangl
between the incoming direction and all possiblegoung directions. Since the train cannot make sharp
turns, the legal moves are only those where theesponding angle does not exceed a certain thresh-
old. Our curves are made up of discrete pointsyesdave no access to the true tangent to the maze’s
curves. Instead we use secants to approximateatigents. To get reasonable secants we must skip
nearby points; experimentation led us to jump hisforward and 8 points backward to get segments
that allow good angle measurements (Fig. 5). Aftene trial and error, we found that accepting outgo
ing directions with turning angle no greater th@nf i8 a reasonable choice.



Figure 5. A junction with two outgoing directioaad the
corresponding secant vectors that are used foeang|
measurements.

Another technical point arises from the fact thet heighbors of a point are chosen from the eight
possible neighboring pixels. Thus one can seetgngsuch as that in Figure 6. As we go from pikel
to 2 we arrive at a point having degree four. Nelghg the incoming direction, there are three pgassi
continuations: to 3, 4, or 6. But it would be ilé¢do go to 3, then 4, and then back to 2, aswioatd
reverse direction. Therefore upon reaching a joncsuch as 2 we skip the neighboring pixels having
degree three or more (3, 4, and 6 in the figure)@msider only moves to pixels having degree two (
and 7). Only the latter are allowed as possibldioaations. This approach also means that configura
tions such as the small triangle that shows upetpper right of Figure 4 cause no problems.

716|345

HE - BN
HE ' NN

Figure 6. A wye junction with pixel 2 connectedlioee pixels
(3, 4, and 6) having degree three. These mustimeed when
determining legal continuations.

With the coordinate data of the points and a robusthod for determining legal moves in hand, it is
straightforward to set up a queue-based progracarny out a breadth-first search to explore theenaz
This yields the shortest path from start to finistierms of the number of points visited. This diyc
solves the maze; the solution is shown in Figure 7.



Figure 7. The original maze and a solution foupa breadth-first search.

3. Harder Mazes

The approach of 82 works well on the example olifggl, but the maze is quite simple. The method
works with essentially no change on some complicat@zes, but in one case some further manual
intervention was needed. Figures 8-10 show thremesnfiom [1] that are all challenging to solve by

hand. Our basic method works fine on the first {aolutions in Figs. 11 and 12). But the third maze

presents some new difficulties.

Figure 8. An elegant railway maze designed by éi@md
Roger Penrose in 1958.






basic algorithm.



To solve the maze in Figure 10, we first try oure#iinold angle of 70° but find that that leads to an
incorrect solution; see Fig. 13, which shows tviegil turns; there are more elsewhere in the maze.

illegal turns

Figure 13. Using the 70° threshold for continugngpute
leads to two illegal turns at lower right.

The problem is the fuzziness of the image in pla¥ékile one can use a photo editing program to
clean up and sharpen the image near the illegaktwe wanted to pursue our main idea of using
programming as much as possible. Thus we took smareual intervention and stated that certain

moves are forbidden when determining possible noations. After a few iterations, the solution
shown in Figure 14 was found.

Figure 14. A correct solution to a whimsical raywmaze. There are
two places where the path traverses a sectiontindicections.



Having an automated process allows us to checkdoks. That is, starting with the expected unique
solution, we can delete from the maze an edge ft@ahsolution and see if any new solutions arise.
We did this for the three mazes presented heretheofirst two we found only solutions that diffdre

in inessential ways from the expected ones: oneyavwhas a choice of direction when traversing a
direction-reversing loop. However, for the mazd-mjure 14 there are many ways, and they are some-
what different, of traversing the leftmost of theotdirection-reversing loops (see Fig. 15 for onehs.
Thus unlike the other two mazes, this one is ndaeao pure. The solution in Figure 14 is the sgirt

Figure 15. There are several different ways oérewg direction using
the configuration of circles at upper left. Her®@me of them.

A possible project for the interested reader idd¢weelop an algorithm that would take a scanned @nag
and automatically perform the necessary sharpewirminate the sort of issue that causes problems
in the maze of Figure 10. Another project is toteve program that will automatically generate ieser

ing railway mazes with unique solutions. And theralways the more general problem of going from
a picture to a solution for other types of planaizes.

Acknowledgment. The authors are grateful to Joan Hutchinson féwakde input related to a solving
method using a transformation to a directed graph.

References

1. R. Penrose, Railway mazes,ArLifetime of Puzzes, E. D. Demaine, M. L. Demaine, T. Rodgers
(eds.), AK Peters, Wellesley, Mass., 2008, 133-148.
2. The Millenium Monument in Luppitt, Devon, Engtirttp://puzzlemuseum.com/luppitt/Imb02.htm

3. Electronic supplemeniathematica file) to this article; http://stanwagon.com/public
RailwayMaze.nb



