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1.  Introduction

Sir Roger Penrose, pursuing an idea first investigated by his father, Lionel Penrose, presented several
examples of railway mazes in [1].  One of them, along with some other puzzles, is carved in stone on
the Luppitt Millennium Bench in England [2]. A railway maze, such as the example in Figure 1, uses
curves to represent tracks and asks for a route from S to F. But at each junction the train must follow
the direction of the track: there can be no reversal of direction (though each track supports movement
in either direction and sometimes a certain loop can lead to a reversal of direction). These mazes can be
difficult to solve by hand so we wanted to see how computation could be used.

Conceptually an algorithmic solution is simple:  use a breadth-first  search on the maze, allowing only
legal  moves  at  each step.  But  we wanted  to  develop a method that  would  start  with  just  a picture of
maze,  in  jpeg form,  say,  and find  the solution  from that.  If  we succeeded,  we could  then  investigate
further to see if there were any solutions (“cooks”) other than the one that the Penroses intended. We
use  Mathematica  since  it  has  good  image  processing  capabilities  in addition  to  its  programming
strength.  The  heart  of  the  problem  is  determining,  when  at  a  junction  point,  the  possible  legal
continuations.

Figure 1.  A simple railway maze that is relatively easy to solve by hand.

2.  An Algorithm

Consider the maze in Figure 1, where one starts at any spot on the circle around the start, S, and aims
for  the  finish at  F.  To repeat,  the rules require that  at  each junction one must  follow the curves as  a
train would. This example is not hard to solve by hand, since there is a bridge at center top that is the
only connection from the left side to the right. The first steps of a general algorithm are:

1. binarize the image, making each pixel pure white or pure black;

2. flip black and white for convenience because white corresponds to 1.

These two steps can be carried out  by the Mathematica  commands Binarize  and ColorNegate.

This leads to the image in Figure 2.



Figure 2.  Some initial massaging simplifies the maze.

Next we want to thin this to a small, discrete set of white points. A direct approach using Mathemati-

ca’s Thinning command leaves small loops at certain junctions (evident at right in Fig. 3). To elimi-

nate these we just blur the image, which turns some pixels near the boundary gray, and then apply an
additional  binarization  and  then  some  thinning.  The result  is  quite  good  as  it  reduces  the  maze  to  a
sequence of points (Fig. 4, left). The small triangle at upper right in Figure 4 is not a problem, as will
be explained shortly. We will  not show Mathematica  code here, but a notebook with all the details is
available at [3].

Figure 3.  Simple thinning leaves troublesome loops.

After the blurring and thinning steps, we must determine the coordinates of the pixels in the image and
then, for each pixel, the set of neighboring pixels, so as to get an undirected graph. Figure 4, left, shows
the result after the thinning, while the image at right is a closeup with segments indicating the resulting
graph structure. The first step is complicated by the fact that a nontraditional coordinate system is used
in  images,  but  the  solution  is  simply  to  apply  the  transformation  Hx, yL # Hy, Y - xL,  where  Y  is  the

number of pixels in the vertical dimension.



Figure 4.  Discretization and thinning leads to a set of points 
that will allow an algorithmic approach to the maze solution.

Having an actual graph is not all that helpful, since the crux of the problem is that the legal moves from
a point depend on how the point was reached. For example, if one is at a pixel at the center of a wye (a
Y-junction)  having  reached  that  point  via  the  stem, then  there  are  two  legal  moves,  but  if  one  has
arrived along one of the wye’s upper branches, one can move only onto the stem. Similarly at  points
that are not junctions: if one has moved from A to B, one cannot return to A but must leave B without
changing direction. 

One approach is to add direction to each edge in the graph, along with additional edges that cause the
rules  to  be  enforced;  for  example,  away from  the  junctions  one  can  duplicate  edges,  with  one  track
directed one way and the other track the opposite. But this gets excessively complicated in cases where
the  junctions  are  not  simple  wyes.  So  instead  we  take  a  more  straightforward  approach  that  uses  a
queue to set  up a breadth-first  search in the standard way, but  with a separate algorithm that,  at each
step, uses the history to determine the legal continuation moves.

At a degree-two vertex, there is only one legal move (continue forward). Finding possible moves at a
junction (a vertex with degree three or more) is harder. The basic idea is to measure the turning angle
between the incoming direction and all possible outgoing directions. Since the train cannot make sharp
turns, the legal moves are only those where the corresponding angle does not exceed a certain thresh-
old. Our curves are made up of discrete points, so we have no access to the true tangent to the maze’s
curves.  Instead  we  use  secants  to  approximate  the  tangents.  To  get  reasonable  secants  we  must  skip
nearby points; experimentation led us to jump 7 points forward and 8 points backward to get segments
that allow good angle measurements (Fig. 5). After some trial and error, we found that accepting outgo-
ing directions with turning angle no greater than 70° is a reasonable choice.



Figure 5.  A junction with two outgoing directions and the 
corresponding secant vectors that are used for angle 
measurements.

Another  technical  point  arises  from  the  fact  that  the  neighbors  of  a  point  are  chosen  from  the  eight
possible neighboring pixels. Thus one can see situations such as that in Figure 6. As we go from pixel 1
to 2 we arrive at a point having degree four. Neglecting the incoming direction, there are three possible
continuations: to 3, 4, or 6. But it would be illegal to go to 3, then 4, and then back to 2, as that would
reverse direction. Therefore upon reaching a junction such as 2 we skip the neighboring pixels having
degree three or more (3, 4, and 6 in the figure) and consider only moves to pixels having degree two (5
and 7). Only the latter are allowed as possible continuations. This approach also means that configura-
tions such as the small triangle that shows up at the upper right of Figure 4 cause no problems.
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Figure 6.  A wye junction with pixel 2 connected to three pixels 
(3, 4, and 6) having degree three. These must be ignored when 
determining legal continuations.

With the coordinate data of the points and a robust method for determining legal moves in hand, it is
straightforward to set up a queue-based program to carry out a breadth-first search to explore the maze.
This yields the shortest path from start to finish in terms of the number of points visited. This quickly
solves the maze; the solution is shown in Figure 7.



Figure 7.  The original maze and a solution found by a breadth-first search.

3.  Harder Mazes

The approach of §2 works well on the example of Figure 1, but the maze is quite simple. The method
works  with  essentially  no  change  on  some complicated  mazes,  but  in  one  case  some further  manual
intervention was needed. Figures 8–10 show three mazes from [1]  that are all challenging to solve by
hand. Our basic method works fine on the first two (solutions in Figs. 11 and 12). But the third maze
presents some new difficulties.

Figure 8.  An elegant railway maze designed by Lionel and 
Roger Penrose in 1958.



Figure 9.  Sir Roger’s maze that is etched in stone in Luppitt  [2].

Figure 10.  Another maze by the Penroses from 1958.



Figure 11.  Solution to the maze of Figure 8, found by our 
basic algorithm.

Figure 12.  Solution to the maze of Figure 9, found by our 
basic algorithm.



To solve the maze in  Figure 10,  we first  try our  threshold angle of  70°  but  find that  that  leads to  an
incorrect solution; see Fig. 13, which shows two illegal turns; there are more elsewhere in the maze.
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Figure 13.  Using the 70° threshold for continuing a route 
leads to two illegal turns at lower right.

The  problem is  the  fuzziness  of  the  image  in  places.  While  one  can  use  a  photo  editing  program  to
clean  up  and  sharpen  the  image  near  the  illegal  turns,  we  wanted  to  pursue  our  main  idea  of  using
programming  as  much  as  possible.  Thus  we  took  some  manual  intervention  and  stated  that  certain
moves  are  forbidden  when  determining  possible  continuations.  After  a  few  iterations,  the  solution
shown in Figure 14 was found.

Figure 14.  A correct solution to a whimsical railway maze. There are 
two places where the path traverses a section in both directions.



Having an automated process allows us to check for cooks. That is, starting with the expected unique
solution,  we can delete from the maze an edge from that  solution and see if  any new solutions arise.
We did this for the three mazes presented here. For the first two we found only solutions that differed
in  inessential  ways  from  the  expected  ones:  one  always  has  a  choice  of  direction  when  traversing  a
direction-reversing loop. However, for the maze of Figure 14 there are many ways, and they are some-
what different, of traversing the leftmost of the two direction-reversing loops (see Fig. 15 for one such).
Thus unlike the other two mazes, this one is not quite so pure. The solution in Figure 14 is the shortest.

Figure 15.  There are several different ways of reversing direction using 
the configuration of circles at upper left. Here is one of them.

A possible project for the interested reader is to develop an algorithm that would take a scanned image
and automatically perform the necessary sharpening to eliminate the sort of issue that causes problems
in the maze of Figure 10. Another project is to write a program that will automatically generate interest-
ing railway mazes with unique solutions. And there is always the more general problem of going from
a picture to a solution for other types of planar mazes.
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