
Railway Mazes: From Picture to Solution
Antonín Slavík, Charles University, Prague, Czech Republic; slavik@karlin.mff.cuni.cz
Stan Wagon, Macalester College, St. Paul, Minnesota, USA; wagon@macalester.edu

1. Introduction

Sir Roger Penrose, pursuing an idea first investigated by his father, Lionel Penrose, presented several
examples of railway mazes in [1]. One of them, along with some other puzzles, is carved in stone on
the Luppitt Millennium Bench in England [2]. A railway maze, such as the example in Figure 1, uses
curves to represent tracks and asks for a route from S to F. But at each junction the train must follow
the direction of the track: there can be no reversal of direction (though each track supports movement
in either direction and sometimes a certain loop can lead to a reversal of direction). These mazes can be
difficult to solve by hand so we wanted to see how computation could be used.

Conceptually an algorithmic solution is simple: use a breadth-first search on the maze, allowing only
legal moves at each step. But we wanted to develop a method that would start with just a picture of
maze, in jpeg form, say, and find the solution from that. If we succeeded, we could then investigate
further to see if there were any solutions (“cooks”) other than the one that the Penroses intended. We
use Mathematica since it has good image processing capabilities in addition to its programming
strength. The heart of the problem is determining, when at a junction point, the possible legal
continuations.

Figure 1. A simple railway maze that is relatively easy to solve by hand.

2. An Algorithm

Consider the maze in Figure 1, where one starts at any spot on the circle around the start, S, and aims
for the finish at F. To repeat, the rules require that at each junction one must follow the curves as a
train would. This example is not hard to solve by hand, since there is a bridge at center top that is the
only connection from the left side to the right. The first steps of a general algorithm are:

1. binarize the image, making each pixel pure white or pure black;

2. flip black and white for convenience because white corresponds to 1.

These two steps can be carried out by the Mathematica commands Binarize and ColorNegate.

This leads to the image in Figure 2.

Figure 2. Some initial massaging simplifies the maze.

Next we want to thin this to a small, discrete set of white points. A direct approach using Mathemati-

ca’s Thinning command leaves small loops at certain junctions (evident at right in Fig. 3). To elimi-

nate these we just blur the image, which turns some pixels near the boundary gray, and then apply an
additional binarization and then some thinning. The result is quite good as it reduces the maze to a
sequence of points (Fig. 4, left). The small triangle at upper right in Figure 4 is not a problem, as will
be explained shortly. We will not show Mathematica code here, but a notebook with all the details is
available at [3].

Figure 3. Simple thinning leaves troublesome loops.

After the blurring and thinning steps, we must determine the coordinates of the pixels in the image and
then, for each pixel, the set of neighboring pixels, so as to get an undirected graph. Figure 4, left, shows
the result after the thinning, while the image at right is a closeup with segments indicating the resulting
graph structure. The first step is complicated by the fact that a nontraditional coordinate system is used
in images, but the solution is simply to apply the transformation Hx, yL # Hy, Y - xL, where Y is the

number of pixels in the vertical dimension.

Figure 4. Discretization and thinning leads to a set of points
that will allow an algorithmic approach to the maze solution.

Having an actual graph is not all that helpful, since the crux of the problem is that the legal moves from
a point depend on how the point was reached. For example, if one is at a pixel at the center of a wye (a
Y-junction) having reached that point via the stem, then there are two legal moves, but if one has
arrived along one of the wye’s upper branches, one can move only onto the stem. Similarly at points
that are not junctions: if one has moved from A to B, one cannot return to A but must leave B without
changing direction.

One approach is to add direction to each edge in the graph, along with additional edges that cause the
rules to be enforced; for example, away from the junctions one can duplicate edges, with one track
directed one way and the other track the opposite. But this gets excessively complicated in cases where
the junctions are not simple wyes. So instead we take a more straightforward approach that uses a
queue to set up a breadth-first search in the standard way, but with a separate algorithm that, at each
step, uses the history to determine the legal continuation moves.

At a degree-two vertex, there is only one legal move (continue forward). Finding possible moves at a
junction (a vertex with degree three or more) is harder. The basic idea is to measure the turning angle
between the incoming direction and all possible outgoing directions. Since the train cannot make sharp
turns, the legal moves are only those where the corresponding angle does not exceed a certain thresh-
old. Our curves are made up of discrete points, so we have no access to the true tangent to the maze’s
curves. Instead we use secants to approximate the tangents. To get reasonable secants we must skip
nearby points; experimentation led us to jump 7 points forward and 8 points backward to get segments
that allow good angle measurements (Fig. 5). After some trial and error, we found that accepting outgo-
ing directions with turning angle no greater than 70° is a reasonable choice.

Figure 5. A junction with two outgoing directions and the
corresponding secant vectors that are used for angle
measurements.

Another technical point arises from the fact that the neighbors of a point are chosen from the eight
possible neighboring pixels. Thus one can see situations such as that in Figure 6. As we go from pixel 1
to 2 we arrive at a point having degree four. Neglecting the incoming direction, there are three possible
continuations: to 3, 4, or 6. But it would be illegal to go to 3, then 4, and then back to 2, as that would
reverse direction. Therefore upon reaching a junction such as 2 we skip the neighboring pixels having
degree three or more (3, 4, and 6 in the figure) and consider only moves to pixels having degree two (5
and 7). Only the latter are allowed as possible continuations. This approach also means that configura-
tions such as the small triangle that shows up at the upper right of Figure 4 cause no problems.

1
2
3 4 567

Figure 6. A wye junction with pixel 2 connected to three pixels
(3, 4, and 6) having degree three. These must be ignored when
determining legal continuations.

With the coordinate data of the points and a robust method for determining legal moves in hand, it is
straightforward to set up a queue-based program to carry out a breadth-first search to explore the maze.
This yields the shortest path from start to finish in terms of the number of points visited. This quickly
solves the maze; the solution is shown in Figure 7.

Figure 7. The original maze and a solution found by a breadth-first search.

3. Harder Mazes

The approach of §2 works well on the example of Figure 1, but the maze is quite simple. The method
works with essentially no change on some complicated mazes, but in one case some further manual
intervention was needed. Figures 8–10 show three mazes from [1] that are all challenging to solve by
hand. Our basic method works fine on the first two (solutions in Figs. 11 and 12). But the third maze
presents some new difficulties.

Figure 8. An elegant railway maze designed by Lionel and
Roger Penrose in 1958.

Figure 9. Sir Roger’s maze that is etched in stone in Luppitt [2].

Figure 10. Another maze by the Penroses from 1958.

Figure 11. Solution to the maze of Figure 8, found by our
basic algorithm.

Figure 12. Solution to the maze of Figure 9, found by our
basic algorithm.

To solve the maze in Figure 10, we first try our threshold angle of 70° but find that that leads to an
incorrect solution; see Fig. 13, which shows two illegal turns; there are more elsewhere in the maze.

A
illegal turns

Figure 13. Using the 70° threshold for continuing a route
leads to two illegal turns at lower right.

The problem is the fuzziness of the image in places. While one can use a photo editing program to
clean up and sharpen the image near the illegal turns, we wanted to pursue our main idea of using
programming as much as possible. Thus we took some manual intervention and stated that certain
moves are forbidden when determining possible continuations. After a few iterations, the solution
shown in Figure 14 was found.

Figure 14. A correct solution to a whimsical railway maze. There are
two places where the path traverses a section in both directions.

Having an automated process allows us to check for cooks. That is, starting with the expected unique
solution, we can delete from the maze an edge from that solution and see if any new solutions arise.
We did this for the three mazes presented here. For the first two we found only solutions that differed
in inessential ways from the expected ones: one always has a choice of direction when traversing a
direction-reversing loop. However, for the maze of Figure 14 there are many ways, and they are some-
what different, of traversing the leftmost of the two direction-reversing loops (see Fig. 15 for one such).
Thus unlike the other two mazes, this one is not quite so pure. The solution in Figure 14 is the shortest.

Figure 15. There are several different ways of reversing direction using
the configuration of circles at upper left. Here is one of them.

A possible project for the interested reader is to develop an algorithm that would take a scanned image
and automatically perform the necessary sharpening to eliminate the sort of issue that causes problems
in the maze of Figure 10. Another project is to write a program that will automatically generate interest-
ing railway mazes with unique solutions. And there is always the more general problem of going from
a picture to a solution for other types of planar mazes.

Acknowledgment. The authors are grateful to Joan Hutchinson for valuable input related to a solving
method using a transformation to a directed graph.

References

1. R. Penrose, Railway mazes, in A Lifetime of Puzzles, E. D. Demaine, M. L. Demaine, T. Rodgers
(eds.), AK Peters, Wellesley, Mass., 2008, 133–148.

2. The Millenium Monument in Luppitt, Devon, England; http://puzzlemuseum.com/luppitt/lmb02.htm

3. Electronic supplement (Mathematica file) to this article; http://stanwagon.com/public/
RailwayMaze.nb

