Positive Periodic Solutions in Population Models

Robert Hakl

Institute of Mathematics, Czech Academy of Sciences

Quite wide class of population models leads to a functional differential equation

$$u'(t) = \ell(u)(t) + \lambda F(u)(t) \quad \text{for a. e. } t \in \mathbb{R},$$
(1)

where ℓ and $F: C_{\omega}(\mathbb{R}) \to L_{\omega}(\mathbb{R})$ are, respectively, linear and nonlinear operators transforming the space of continuous ω -periodic functions into the space of locally Lebesgue integrable ω -periodic functions, and $\lambda \in \mathbb{R}$ is a real parameter. We are interested in the existence of a positive ω -periodic solution to (1) particularly in the case when F(0)(t) = 0 for a. e. $t \in \mathbb{R}$. We will establish conditions guaranteeing the existence of a bifurcation point λ_c for ω -periodic solutions to the equation (1) provided the Green's function to the corresponding linear periodic boundary value problem is positive. The question how to estimate λ_c numerically will also be discussed.