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Abstract

An explicit algorithmic construction is given for orthogonal bases for spaces of homogeneous
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1 Introduction

This paper is devoted to the construction of orthogonal bases for spaces of Hermitean monogenic
polynomials, and to establishing a recursive algorithm for this construction. The theory of Her-
mitean monogenic functions is one of the actual research topics in Clifford analysis, which, in
its most basic form, is a higher dimensional generalization of holomorphic function theory in the
complex plane, and a refinement of harmonic analysis, see e.g. [7, 29, 23, 31, 30]. At the heart
of this function theory lies the notion of a monogenic function, i.e. a Clifford algebra valued null
solution of the Dirac operator ∂ =

∑m
α=1 eα ∂Xα

, where (e1, . . . , em) is an orthonormal basis of
Rm underlying the construction of the real Clifford algebra R0,m. We refer to this setting as the
Euclidean case, since the fundamental group leaving the Dirac operator ∂ invariant is the orthog-
onal group O(m;R), which is doubly covered by the Pin(m) group of the Clifford algebra. In the
books [36, 19] and the series of papers [37, 24, 2, 3, 14, 25, 9] so–called Hermitean Clifford analysis
recently emerged as a refinement of Euclidean Clifford analysis, where the considered functions
now take their values in the complex Clifford algebra Cm or in complex spinor space. Hermitean
Clifford analysis is based on the introduction of an additional datum, a so–called complex structure
J , inducing an associated Dirac operator ∂J ; it then focusses on the simultaneous null solutions
of both operators ∂ and ∂J , called Hermitean monogenic functions. The corresponding function
theory is still in full development, see also [8, 15, 39, 6, 5, 26]. It is worth mentioning that the
traditional holomorphic functions of several complex variables are a special case of Hermitean
monogenic functions.

The construction of orthogonal bases for spaces of null solutions of differential operators is much
facilitated by the Gel’fand–Tsetlin approach, which will be used in this paper. The notion of
Gel’fand–Tsetlin (GT) basis applies to finite dimensional irreducible modules over a classical Lie
algebra (see [27, 34]); when this Lie algebra is realized explicitly, say as a subspace of null solutions
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of an invariant differential operator, then an algorithm for the construction of the GT-basis may
be devised. Recently much effort has been put into the construction of orthogonal bases for spaces
of monogenic polynomials in the framework of Euclidean Clifford analysis, to meet the needs for
numerical calculations. Indeed, the basis polynomials, mostly called Fueter polynomials, appearing
in the Taylor series expansion of monogenic functions, are not useful for that purpose since they are
not orthogonal with respect to the natural L2–inner product. Explicit constructions of orthogonal
polynomial bases in the Euclidean Clifford analysis context were carried out in e.g. [17, 18] in a di-
rect analytic way starting from spherical harmonics, and in e.g. [1, 32, 33, 40] by the GT–approach.

The present paper describes in a systematic and detailed way the GT–construction of orthogonal
bases for spaces of homogeneous Hermitean monogenic polynomials and in this way offers a full
account of some results already announced in [11, 12, 13]. Moreover, special attention is paid to the
so–called Appell property of the constructed bases in complex dimension 2, a property which is im-
portant for numerical applications. In Section 3 it is shown that, as is the case in Euclidean Clifford
analysis, also in the present Hermitean case, two powerful tools, viz. the Cauchy-Kovalevskaya ex-
tension theorem and the Fischer decomposition theorem, are indispensable when implementing the
Gel’fand–Tsetlin procedure. This GT–procedure together with the cited theorems enable devising
the algorithm aimed at, which can be used in any dimension. Section 4 shows how the well-known
orthogonal bases of polynomials in the complex plane fit into the general scheme. Sections 5 and
6 treat the exceptional cases where Hermitean monogenicity reduces to (anti–)holomorphy in sev-
eral complex variables. In Section 7, the algorithm is applied to full extent in order to explicitly
construct the orthogonal bases in complex dimension n = 2. In this particular dimension, the
constructed bases show a special and important property. Each of the four complex derivatives
maps any basis polynomial of a certain given bidegree of homogeneity, to a simple multiple of
another basis element of the corresponding lower bi-homogeneity degree. It means that all four
derivatives are represented, in this particular basis, by a matrix with a simple structure; details
are contained in Section 8. Finally, in the last section, using the fact that any solution of the
Hermitean monogenicity system of equations is automatically monogenic, we are able to construct
a suitable basis for spaces of monogenic polynomials of a given degree of homogeneity in terms of
the orthogonal bases of Hermitean monogenic polynomials constructed in this paper. To make the
paper self–contained an introductory section on Clifford analysis is included.

2 Preliminaries on Clifford analysis

For a detailed description of the structure of Clifford algebras we refer to e.g. [35]. Here we only
recall the necessary basic notions. The real Clifford algebra R0,m is constructed over the vector
space R0,m endowed with a non–degenerate quadratic form of signature (0,m) and generated by
the orthonormal basis (e1, . . . , em). The non–commutative Clifford or geometric multiplication in
R0,m is governed by the rules

eαeβ + eβeα = −2δαβ , α, β = 1, . . . ,m (1)

As a basis for R0,m one takes for any set A = {j1, . . . , jh} ⊂ {1, . . . ,m} the element eA = ej1 . . . ejh ,
with 1 ≤ j1 < j2 < · · · < jh ≤ m, together with e∅ = 1, the identity element. Any Clifford num-
ber a in R0,m may thus be written as a =

∑
A eAaA, aA ∈ R, or still as a =

∑m
k=0[a]k, where

[a]k =
∑

|A|=k eAaA is the so–called k–vector part of a. Euclidean space R0,m is embedded in R0,m

by identifying (X1, . . . , Xm) with the Clifford vector X =
∑m

α=1 eα Xα, for which it holds that
X2 = −|X|2. The vector valued first order differential operator ∂ =

∑m
α=1 eα ∂Xα

, called Dirac
operator, is the Fourier or Fischer dual of the Clifford variable X . It is this operator which under-
lies the notion of monogenicity of a function, a notion which is the higher dimensional counterpart
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of holomorphy in the complex plane. More explicitly, a function f defined and continuously differ-
entiable in an open region Ω of Rm and taking values in (a subspace of) the Clifford algebra R0,m,
is called (left) monogenic in Ω if ∂[f ] = 0 in Ω. As the Dirac operator factorizes the Laplacian:
∆m = −∂2, monogenicity can be regarded as a refinement of harmonicity. The Dirac operator
being rotationally invariant, this framework is usually referred to as Euclidean Clifford analysis.

When allowing for complex constants, the generators (e1, . . . , em), still satisfying (1), produce
the complex Clifford algebra Cm = R0,m ⊕ iR0,m. Any complex Clifford number λ ∈ Cm may
thus be written as λ = a+ ib, a, b ∈ R0,m, leading to the definition of the Hermitean conjugation
λ† = (a + ib)† = a − ib, where the bar notation stands for the Clifford conjugation in R0,m,
i.e. the main anti–involution for which eα = −eα, α = 1, . . . ,m. This Hermitean conjugation
leads to a Hermitean inner product on Cm given by (λ, µ) = [λ†µ]0 and its associated norm
|λ| =

√
[λ†λ]0 = (

∑
A |λA|

2)1/2. This is the framework for Hermitean Clifford analysis, which
emerges from Euclidean Clifford analysis by introducing an additional datum, a so–called complex
structure, i.e. an SO(m;R)–element J with J2 = −1 (see [2, 3]), forcing the dimension to be
even; from now on we put m = 2n. Usually J is chosen to act upon the generators of C2n as
J [ej] = −en+j and J [en+j ] = ej , j = 1, . . . , n. By means of the projection operators ± 1

2 (1 ± iJ)

associated to J , first the Witt basis elements (fj , f
†
j)

n
j=1 for C2n are obtained:

fj =
1

2
(1+ iJ)[ej] =

1

2
(ej − i en+j), j = 1, . . . , n

f
†
j = −

1

2
(1− iJ)[ej] = −

1

2
(ej + i en+j), j = 1, . . . , n

The Witt basis elements satisfy the respective Grassmann and duality identities

fjfk + fkfj = f
†
jf

†
k + f

†
kf

†
j = 0, fjf

†
k + f

†
kfj = δjk, j, k = 1, . . . , n

whence they are isotropic: (fj)
2 = 0, (f†j)

2 = 0, j = 0, . . . , n. Next, a vector in R0,2n is now denoted

by (x1, . . . , xn, y1, . . . , yn) and identified with the Clifford vector X =
∑n

j=1(ej xj + en+j yj),

producing, by projection, the Hermitean Clifford variables z and z†:

z =
1

2
(1+ iJ)[X ] =

n∑

j=1

fj zj , z† = −
1

2
(1− iJ)[X] =

n∑

j=1

f
†
j z

c
j

where complex variables zj = xj+iyj have been introduced, with complex conjugates zcj = xj−iyj,
j = 1, . . . , n. Finally, the Euclidean Dirac operator ∂ gives rise, in the same manner, to the
Hermitean Dirac operators ∂z and ∂†

z :

∂†
z =

1

4
(1+ iJ)[∂] =

n∑

j=1

fj ∂zc
j
, ∂z = −

1

4
(1− iJ)[∂] =

n∑

j=1

f
†
j ∂zj

involving the Cauchy–Riemann operators ∂zj
= 1

2 (∂xj
+ i∂yj

) and their complex conjugates ∂zj =
1
2 (∂xj

− i∂yj
) in the zj–planes, j = 1, . . . , n. Observe that Hermitean vector variables and Dirac

operators are isotropic, i.e. z2 = (z†)2 = 0 and (∂z)
2 = (∂†

z)
2 = 0, whence the Laplacian allows for

the decomposition and factorization

∆2n = 4(∂z∂
†
z + ∂†

z∂z) = 4(∂z + ∂†
z)

2 = −4(∂†
z − ∂z)

2

while dually
−(z − z†)2 = (z + z†)2 = z z† + z†z = |z|2 = |z†|2 = |X |2
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We consider functions with values in an irreducible representation Sn of C2n, called spinor space,
which is realized within C2n using a primitive idempotent I = I1 . . . In, with Ij = fjf

†
j , j = 1, . . . , n.

With that choice, fjI = 0, j = 1, . . . , n, and so Sn ≡ C2nI ∼=
∧†

nI, where
∧†

n denotes the Grassmann

algebra generated by the f
†
j ’s. Hence Sn decomposes into homogeneous parts as

Sn =

n⊕

r=0

S
(r)
n =

n⊕

r=0

(
∧†

n
)(r)I

with (
∧†

n)
(r) = spanC(f

†
k1

∧ f
†
k2

∧ · · · ∧ f
†
kr

: {k1, . . . , kr} ⊂ {1, . . . , n}).

A continuously differentiable function g in an open region Ω of R2n with values in (a subspace of)
the complex Clifford algebra C2n then is called (left) Hermitean monogenic (or h–monogenic) in
Ω if and only if it satisfies in Ω the system ∂z g = 0 = ∂†

z g, or, equivalently, the system ∂ g = ∂J g,
with ∂J = J [∂]. A major difference between Hermitean and Euclidean Clifford analysis concerns
the underlying group invariance. Where the Euclidean Dirac operator ∂ is invariant under the
action of SO(m), the system invariance of (∂z , ∂

†
z) breaks down to the group U(n), see e.g. [2, 3].

For this reason U(n) will play a fundamental role in our construction of orthogonal bases of spaces
of Hermitean monogenic polynomials.

The spaces of homogeneous polynomials on Cn with bidegree of homogeneity (a, b) in (z, z†) and

taking values in S
(r)
n , will be denoted by P

(r)
a,b (C

n). By Ma,b(C
n) we denote the space of Hermitean

monogenic polynomials of bidegree (a, b) in (z, z†), and by M
(r)
a,b(C

n) its subspace with values in

S
(r)
n .

3 The Gel’fand–Tsetlin procedure for U(n)-modules

As was already pointed out in the foregoing section, the fundamental group of Hermitean Clifford
analysis in Cn is the unitary group U(n). The construction of a Gel’fand–Tsetlin (GT) basis for
an irreducible U(n)–module first requires a chain of subgroups U(n) ⊃ U(n − 1) ⊃ . . . ⊃ U(1).
We choose these embeddings in such a way that in each step the last variable is preserved by the
corresponding subgroup. Next we need the branching rules for U(n)–modules, which are expressed
in terms of the highest weights of the corresponding irreducible modules. Irreducible U(n)–modules
are classified according to their highest weight λ = (λ1, . . . , λn), where the integers λi satisfy the
traditional condition λ1 ≥ λ2 ≥ . . . ≥ λn. The branching rules then are the following, see e.g. [28].

Theorem 1. When restricting to U(n− 1), an irreducible U(n)-module Vλ with highest weight λ
decomposes as

Vλ =
⊕

µ≺λ

Vµ

where each of the summands Vµ is an irreducible U(n − 1)–module with highest weight µ =
(µ1, µ2, . . . , µn−1); this multiplicity free direct sum is taken over all possible highest weights µ

such that λ ≻ µ, i.e. λ1 ≥ µ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ µn−1 ≥ λn. If, moreover, Vλ is endowed with
a U(n)–invariant inner product, then this decomposition is orthogonal w.r.t. that inner product.

Proceeding by induction Theorem 1 generates the GT–basis for Vλ; this result reads as follows.

Theorem 2. With respect to the chain of subgroups U(n) ⊃ U(n−1) ⊃ . . . ⊃ U(1), the irreducible

U(n)–module Vλ(n) with highest weight λ(n) = (λ
(n)
1 , . . . , λ

(n)
n ) decomposes into a direct sum of
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one-dimensional subspaces

Vλ(n) =
⊕

Λ

VΛ

taken over all possible GT–patterns Λ =
(
λ(n), . . . , λ(1)

)
such that λ(n) ≻ λ(n−1) ≻ . . . ≻ λ(1), with

λ(j) = (λ
(j)
1 , . . . , λ

(j)
j ). If moreover Vλ(n) is endowed with a U(n)–invariant inner product, then the

above decomposition is orthogonal w.r.t. that inner product.

Note that each module VΛ is uniquely determined by its GT–pattern Λ =
(
λ(n), . . . , λ(1)

)
, which

in its turn depends uniquely on the chosen chain of subgroups of U(n).

This Gel’fand–Tsetlin procedure will now be used to establish an induction algorithm allowing
for the explicit construction of orthogonal bases for spaces of spherical Hermitean monogenics,

defined in Cn and taking values in the homogeneous parts S
(r)
n of spinor space Sn. To that end it is

quite necessary to explicitly describe the branching rule of Theorem 1. Let us have a closer look at
the induction step from (n−1) to n. By the induction hypothesis it is assumed that the GT–bases

are known, in dimension (n− 1), for all spaces M̃
(r)
a,b(C

n−1) of Hermitean monogenic polynomials

in the variables (z̃, z̃†) = (z1, . . . , zn−1, z1, . . . , zn−1), which are homogeneous of bidegree (a, b) and

take their values in S
(r)
n−1, r = 0, . . . , n− 1. Now consider the space M

(r)
a,b(C

n) with a, b and r fixed.
We will consider the general case 0 < r < n, since for r = 0 and r = n there are small variations
in the form of the highest weights which do not fit into the general approach. As a matter of
fact the exceptional cases r = 0 and r = n are quite easily treated since in those cases the notion
of Hermitean monogenicity is nothing else but (anti-)holomorphy in several complex variables;

those two particular cases will be treated in Sections 5 and 6. The highest weight of M
(r)
a,b(C

n) is

λ(n) = (a + 1, 1, . . . , 1, 0, . . . , 0,−b) with the last component 1 at the r-th place. We denote this
weight shortly by λ(n) = [a,−b]r. From Theorem 1 we know that the irreducible U(n)-module

M
(r)
a,b(C

n) may be decomposed as

M
(r)
a,b(C

n) =
⊕

µ≺λ(n)

Vµ

where the Vµ are irreducible U(n − 1)-modules with highest weights µ ≺ λ(n) = [a,−b]r. Those
highest weights are clearly of the form [j, k]r and [j, k]r−1 with j = 0, . . . , a and k = −b, . . . , 0.
These may be interpreted as the co-ordinates of the lattice points in two rectangular grids, one
for the spinor homogeneity degree r and one for (r − 1), with vertices (0, 0), (a, 0), (0,−b) and
(a,−b) (see Figures 1 and 2). This means that in the above decomposition 2(a+1)(b+1) U(n−1)-
modules of polynomials of different homogeneity bidegrees (j,−k), j = 0, . . . , a, k = −b, . . . , 0 are

needed. Moreover these U(n − 1)-modules have to be embedded into M
(r)
a,b(C

n) while preserving
the U(n− 1)-invariance. We will now show that Hermitean Clifford analysis provides the adequate
tools to achieve this goal.

Embedding homogeneous polynomials into a space of homogeneous Hermitean monogenic poly-

nomials such as M
(r)
a,b(C

n) while keeping U(n − 1)-invariance, is exactly the context of the so-
called Cauchy-Kovalevskaya (CK) extension principle, which, originally, is about the existence and
uniqueness of solutions of initial value problems for PDE (see [20] for a historic overview). The
classical idea of the CK extension is to characterize solutions of suitable (systems of) PDE’s by
their restriction, sometimes together with the restrictions of a number of their derivatives, to a
submanifold of real codimension 1. A well–known typical result in this context concerns a real-
analytic function f(x) in a neighbourhood of the origin on the real axis, for which there exists the
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CK-operator exp
(
iy d

dx

)
, such that

F (x) = exp

(
iy

d

dx

)
[f(x)] =

∞∑

k=0

1

k!
(iy)kf (k)(x)

is holomorphic in a neigbourhood of the origin in the complex plane, and its restriction to the real
axis is exactly f(x). Even so, in Euclidean Clifford analysis, for a real-analytic function f(X) in a

neighbourhood of the origin in R
m, there is the CK-operator exp

(
Xmem∂̃

)
such that

F (X) = exp
(
Xmem∂̃

)
[f(X)] =

∞∑

k=0

1

k!
Xk

m(em∂̃)k [f(X)]

is monogenic in a neighbourhood of the origin in R
m+1 (see [7]) and its restriction to R

m is f(X).

Recently, in [10], we have obtained a CK-extension theorem for Hermitean monogenic functions
by restricting the null solutions of the Hermitean Dirac operators, and a number of their derivatives,
to the vector subspace Cn−1 of complex codimension 1. To that end we single out the variables

(zn, zn) and consider restrictions to {zn = 0 = zn} identified with Cn−1. The value space S
(r)
n =(∧†

n

)(r) (
f
†
1, . . . , f

†
n

)
I is then split as

S
(r)
n =

(∧†

n−1

)(r) (
f
†
1, . . . , f

†
n−1

)
I ⊕ f†n

(∧†

n−1

)(r−1) (
f
†
1, . . . , f

†
n−1

)
I

and functions are split accordingly as F = F 0 + f†nF
1, where F 0 takes its values in (

∧†
n−1)

(r)I,

while F 1 takes its values in (
∧†

n−1)
(r−1)I. In the same order of ideas the Hermitean variables and

the Hermitean Dirac operators are split as

z = z̃ + fnzn , z† = z̃
† + f†nzn

and

∂z = ∂̃z + f†n∂zn , ∂†
z = ∂̃

†
z + fn∂zn

The CK-extension theorem of Hermitean Clifford analysis then reads as follows (see [10]).

Theorem 3. Given homogeneous polynomials p0a,b−j, j = 0, . . . , b and p1a−i,b, i = 0, . . . , a, respec-

tively taking values in (
∧†

n−1)
(r)(f†1, . . . , f

†
n−1) I and in (

∧†
n−1)

(r−1)(f†1, . . . , f
†
n−1) I, and satisfying

the respective compatibility conditions

∂̃zp
0
a,b = 0, ∂̃zp

0
a,b−1 = 0, . . . , ∂̃zp

0
a,0 = 0 (r < n− 1)

∂̃
†
zp

1
a,b = 0, ∂̃

†
zp

1
a−1,b = 0, . . . , ∂̃

†
zp

1
0,b = 0 (r > 1)

there exists a unique Hermitean monogenic homogeneous polynomial Ma,b such that

(i) Ma,b|Cn−1 = pa,b = p0a,b + f†np
1
a,b;

(ii)
∂j

∂
j
zc
n

Ma,b|Cn−1 = pa,b−j = p0a,b−j − f†n∂̃
†
zp

0
a,b−j+1, j = 1, . . . , b;

(iii)
∂i

∂i
zn

Ma,b|Cn−1 = pa−i,b = ∂̃zp
1
a−i+1,b + f†np

1
a−i,b, i = 1, . . . , a.
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This CK–extension Ma,b is given by

Ma,b =
b∑

j=0

M0
a,b−j +

a∑

i=0

M1
a−i,b

where

M0
a,b−j = (zn)

j
min (2a+1,2b−2j)∑

k=0

1

⌊k
2 ⌋!

1

⌊k+1
2 + j⌋!

(
zn ∂̃z fn + zn ∂̃

†
z f

†
n

)k [
p0a,b−j

]

and

M1
a−i,b = zin

min (2a−2i,2b+1)∑

k=0

1

⌊k
2⌋!

1

⌊k+1
2 + i⌋!

(
zn ∂̃z fn + zn ∂̃

†
z f

†
n

)k [
f†n p

1
a−i,b

]

In fact this means that there are a+ b+ 2 spaces of initial data, viz.

A
(r)
a,b−j = {p0a,b−j ∈ P

(r)
a,b−j(C

n−1) : ∂̃z p
0
a,b−j = 0} , j = 0, . . . , b

and

B
(r)
a−i,b = {f†n p

1
a−i,b : p

1
a−i,b ∈ P

(r−1)
a−i,b (C

n−1) and ∂̃
†
z p

1
a−i,b = 0} , i = 0, . . . , a

which by the CK-extension procedure are mapped isomorphically to subspaces of M
(r)
a,b(C

n). In

this way the whole of M
(r)
a,b(C

n) is recovered, which is confirmed by counting dimensions. Indeed,
we know from [16, 10] that

xa,b,r = dim(A
(r)
a,b−j) =

r

a+ r

(
n− 1

r

)(
a+ n− 1

a

)(
b+ n− 2

b

)

ya,b,r = dim(B
(r)
a−i,b) =

r

b+ n− r

(
n− 1

r

)(
a+ n− 2

a

)(
b+ n− 1

b

)

while

m
(r)
a,b = dim(M

(r)
a,b(C

n)) =
r(a+ b+ n)

(a+ r)(b + n− r)

(
n− 1

r

)(
a+ n− 1

a

)(
b+ n− 1

b

)

and it may be readily verified that

b∑

j=0

xa,j,r +
a∑

i=0

yi,b,r = m
(r)
a,b

It is important to note that the dimension m
(r)
a,b = dim(M

(r)
a,b(C

n)) was determined in [16] in-
dependently of the CK-extension context, even by two approaches, one of them involving the
decomposition of harmonic homogeneous polynomials in terms of Hermitean monogenic ones, the
other being based on the Weyl dimension formula (see [28], p.382).

As the CK-extension operator commutes with the action of U(n − 1), we will obtain, by the

CK-extension, a decomposition of M
(r)
a,b(C

n) into a direct sum of U(n− 1)-invariant subspaces, if

at least we are able to decompose the spaces of initial polynomials A
(r)
a,b−j and B

(r)
a−i,b into U(n−1)-

irreducibles. This kind of decomposition is the content of the so-called Fischer decomposition
theorem, which is, quite naturally, very well-known for spherical harmonics, but also exists in the
Euclidean and the Hermitean Clifford analysis setting (see [23, 21, 9, 16]). In particular the kernels
of the Hermitean Dirac operators may be decomposed in terms of spherical Hermitean monogenics,
a result which reads, in a form adapted to the present situation, as follows (see [12]).
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Theorem 4. (i) Under the action of U(n− 1) the space A
(r)
a,b = {p0a,b ∈ P

(r)
a,b (C

n−1) : ∂̃zp
0
a,b = 0}

has the multiplicity free irreducible decomposition

A
(r)
a,b = M̃

(r)
a,b ⊕

min(a,b−1)⊕

k=0

|z̃|2kz̃†M̃
(r−1)
a−k,b−k−1

⊕

min(a−1,b−1)⊕

k=0

|z̃|2k
(
z̃
†
z̃ +

a− k − 1 + r

a+ r
z̃z̃

†

)
M̃

(r)
a−k−1,b−k−1

(ii) Under the action of U(n − 1) the space B
(r)
a,b = {f†np

1
a,b : p1a,b ∈ P

(r−1)
a,b (Cn−1) and ∂̃

†
zp

1
a,b = 0}

has the multiplicity free irreducible decomposition

B
(r)
a,b = f†n(M̃

(r−1)
a,b ⊕

min(a−1,b)⊕

k=0

|z̃|2kz̃M̃
(r)
a−k−1,b−k

⊕

min(a−1,b−1)⊕

k=0

|z̃|2k
(
z̃z̃

† +
b− k − 1 + n− r

b+ n− r
z̃
†
z̃

)
M̃

(r−1)
a−k−1,b−k−1)

Combining the CK-extension and Fischer decomposition theorems now leads to an inductive

algorithm for the Gel’fand-Tsetlin construction of a basis for M
(r)
a,b(C

n), which will be orthogonal
w.r.t. the natural inner product:

(i) step 0 (induction hypothesis)

keeping a, b, r, n fixed, it is assumed that the orthogonal bases of each of the spaces M
(s)
k,l (C

n−1),
0 ≤ s ≤ n− 1, 0 ≤ k ≤ a, 0 ≤ l ≤ b are known;

(ii) step 1

by means of Theorem 4, the initial data spaces A
(r)
a,b−j , j = 0, . . . , b and B

(r)
a−i,b, i = 0, . . . , a are

decomposed in terms of U(n − 1)-irreducibles, which are shifted versions of the M
(s)
k,l (C

n−1), ob-
taining, by means of the induction hypothesis, their basis polynomials;

(iii) step 2
by means of Theorem 3, construct the CK-extension of each of the initial basis polynomials ob-

tained in step 1; these CK–extensions taken together form an orthogonal basis of M
(r)
a,b(C

n).

Now we will show that this algorithmic construction matches the decomposition ofM
(r)
a,b(C

n) into

U(n − 1)-irreducibles Vµ with µ ≺ λ(n) = (a + 1, 1, . . . , 1, 0, . . . , 0,−b) = [a,−b]r, as predicted by

Theorem 1. In the Fischer decomposition of the initial data space A
(r)
a,b into U(n− 1)-irreducibles,

the set of highest weights of the components with values in S
(r)
n−1, is the string [a,−b]r, [a− 1,−b+

1]r, [a − 2,−b + 2]r, . . . ending either with [a − b, 0]r or with [0,−b + a]r. The components with

values in S
(r−1)
n−1 give rise to the string of highest weights [a,−b+ 1]r−1, [a− 1,−b+ 2]r−1, . . . end-

ing either with [a − b + 1, 0]r−1 or with [0,−b + a + 1]r−1. Those two strings correspond to an
anti-diagonal segment in the lattices introduced above (see Figure 1 for the case a > b and Figure

2 for the case a < b). Similarly, for the initial data space A
(r)
a,b−1, we obtain the strings of highest

weights [a,−b + 1]r, [a− 1,−b + 2]r, . . ., ending either with [a − b + 1, 0]r or [0,−b + a+ 1]r, and
[a,−b+2]r−1, [a− 1,−b+ 3]r−1, . . ., ending either with [a− b+ 2, 0]r−1 or with [0,−b+ a+ 2]r−1,
which, again, correspond to an anti-diagonal segment in each of the two lattices. Continuing

in the same way, we obtain the strings [a,−1]r, [a − 1, 0]r and [a, 0]r−1 for A
(r)
a,1 and finally the

string [a, 0]r for A
(r)
a,0. Starting with the initial data space B

(r)
a,b, we obtain the strings of highest

8



weights [a,−b]r−1, [a − 1,−b + 1]r−1, . . ., ending either with [a − b, 0]r−1 or [0,−b + a]r−1, and
[a − 1,−b]r, [a − 2,−b + 1]r, . . ., ending either with [a − b − 1, 0]r or [0,−b + a − 1]r. The last

string [0,−b]r−1 is obtained from B
(r)
0,b , and finally it is found that all predicted highest weights µ

represented by all the lattice points in the two rectangular grids, are recovered by our construc-
tion. In fact, in this way we have given, by the sole use of Hermitean Clifford analysis tools, an
independent proof of the branching rules for the representations which are realized as spaces of
Hermitean monogenic polynomials.

Finally note that on each irreducible representation of U(n) there always exists an invariant

inner product, uniquely determined up to a constant. On M
(r)
a,b two well–known realizations of this

inner product are the L2 inner product and the Fischer inner product, this last one being given

for P (z, z†) and Q(z, z†) in M
(r)
a,b by

〈P,Q〉 = P †(∂†
z , ∂z)

[
Q(z, z†)

]

• • • •

•

•••••
@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@@

(0, 0)

(0,-b) (b,-b) (a,-b)(a-1,-b)

(a, 0)(a-b, 0)(a-b+1, 0)(a-b-1, 0)

(a,-b+1)

S
(r)
n−1 valued S

(r−1)
n−1 valued

• • ••

•

••••••

@
@

@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

• •

(0, 0)

(0,-b) (1,-b)

(a, 0)

(a,-b)

(0,-b+1) (a,-b+1)

(a,-b+2)

(a-b, 0)(a-b+1, 0)

B
(r)
1,b

B
(r)
b+1,b

B
(r)
a,b

A
(r)
a,b

A
(r)
a,b−1

B
(r)
1,b

B
(r)
a,b

A
(r)
a,b

A
(r)
a,b−1

Figure 1: Case a > b

4 Orthogonal bases of M
(r)
a,b in complex dimension n = 1.

In the complex plane (n = 1) the self–adjoint idempotent I is given by I = f1f
†
1, and spinor space

S1 is the direct sum of two homogeneous parts S
(0)
1 = spanC{1}I and S

(1)
1 = spanC{f

†
1}I. For func-

tions F : C −→ S
(0)
1 the equation ∂†

zF = f1∂z1
F = 0 is trivially fulfilled, and ∂zF = f

†
1∂z1F = 0

means that F is anti-holomorphic in the variable z1, forcing the first of the bidegrees of the ho-

mogeneous Hermitean monogenic polynomials to be zero. Each of the U(1)-modules M
(0)
0,k, k =

0, 1, 2, . . ., is one-dimensional; it has highest weight (−k) and it is spanned by the standard poly-

nomial P(−k) =
zk
1

k! I, which shows the differentiation property ∂z1
P(−k) = P(−k+1) and hence also

(∂z1
)kP(−k) = P(0) = I.

On the other hand, for functions G : C −→ S
(1)
1 , it is the equation ∂zG = f

†
1∂z1G = 0 which

is trivially fulfilled, while the equation ∂†
zG = f

†
1∂z1

G = 0 means that G is holomorphic in the
variable z1. For holomorphic homogeneous polynomials the second of the bidegrees must be zero.

Each of the U(1)-modules M
(1)
k,0, k = 0, 1, 2, . . ., is one-dimensional; it has highest weight (k + 1)
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S
(r)
n−1 valued S

(r−1)
n−1 valued

(0, 0)

(0,-b)

(a, 0)(a-1, 0)

(a,-b)(a-1,-b)

(0, 0)

(0,-b)(1,-b)

(a, 0)

(a,-b)

(0,-b+a-1)

(0,-b+a)

(0,-b+a+1)

(a,-1)

(a,-b+1) (a,-b+1)

(a,-b+2)

(0,-b+a)

(0,-b+a+1)

(0,-b+a+2)

(0,-b+1)

B
(r)
1,b

B
(r)
a,b

A
(r)
a,b

A
(r)
a,b−1

A
(r)
a,1

B
(r)
1,b

B
(r)
a,b

A
(r)
a,b

A
(r)
a,b−1

A
(r)
a,1

Figure 2: Case a < b

and it is spanned by the standard polynomial P(k+1) =
zk
1

k! f
†
1, showing the differentiation property

∂z1P(k+1) = P(k) and hence also (∂z1)
kP(k+1) = P(1) = f

†
1.

5 Orthogonal bases of M
(0)
0,b(C

n).

We have already pointed out that the cases where r = 0 and r = n are to be treated separately
from the general approach. In this section we consider the case r = 0.

For functions F taking their values in S
(0)
n = spanC{1}I, I = f1f

†
1 · · · fnf

†
n, the equation ∂†

zF =∑n
j=1 fj∂zj

F = 0 is trivially satisfied. The equation ∂zF =
∑n

j=1 f
†
j∂zjF = 0 means that F is

anti–holomorphic in the variables (z1, z2, . . . , zn), forcing the first of the bidegrees of the anti–
holomorphic homogneous polynomials considered to be zero. This implies that the U(n)–module

M
(0)
0,b(C

n) consists of all homogeneous polynomials of degree b in the variables (z1, z2, . . . , zn). The

dimension of M
(0)
0,b(C

n) is m
(0)
0,b(C

n) = (n+b−1)!
(n−1)!b! and its highest weight is (0, 0, . . . , 0,−b)︸ ︷︷ ︸

n

.

The, very well–known, basis polynomials of M
(0)
0,b(C

n) are obtained through CK–extension

from the initial polynomials in the spaces A
(0)
0,b−j , j = 0, . . . , b, which are nothing else but the

U(n−1)–modulesM
(0)
0,b−j(C

n−1) of dimensionm
(0)
0,b−j(C

n−1) = (n+b−j−2)!
(n−2)!(b−j)! and with highest weight

(0, 0, . . . ,−b+ j)︸ ︷︷ ︸
n−1

≺ (0, 0, . . . , 0,−b)︸ ︷︷ ︸
n

. Note that indeed

b∑

j=0

m
(0)
0,b−j(C

n−1) =
b∑

j=0

(n+ b− j − 2)!

(n− 2)!(b − j)!
=

(n+ b− 1)!

(n− 1)!b!
= m

(0)
0,b(C

n).
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Proceeding in the same way we will end up with the one–dimensional U(1)–modules M
(0)
0,k, k =

0, . . . , b, with highest weights (−k), as prescribed by the Gel’fand–Tsetlin procedure. A basis for

M
(0)
0,b(C

n) is thus given, up to a multiplicative constant, by the polynomials

P(0, . . . , 0,−b)︸ ︷︷ ︸
n

(0, . . . , 0,−b+ jn−1)︸ ︷︷ ︸
n−1

... (0,−b+ jn−1 + · · ·+ j2)︸ ︷︷ ︸
2

(−b+ jn−1 + · · ·+ j1)︸ ︷︷ ︸
1

=

z
jn−1
n

jn−1!

z
jn−2

n−1

jn−2!
· · ·

z
j1
2

j1!

z
(b−jn−1−···−j1)
1

(b− jn−1 − · · · − j1)!
I

where jn−1 = 0, . . . , b, jn−2 = 0, . . . , b− jn−1, . . . , j1 = 0, . . . , b− jn−1 − · · · − j2.

As an illustration let us consider the low dimensional cases n = 1, 2, 3. For n = 1, we have already

seen in the foregoing section that the U(1)–module M
(0)
0,b(C) is spanned by the basis polynomial

P(−b) =
zb1
b!
I

which shows the differentiation properties

∂z1
P(−b) = P(−b+1) (2)

∂z1P(−b) = 0 (3)

For n = 2, the U(2)–module M
(0)
0,b(C

2) has dimension (b+1) and highest weight (0,−b). Its basis

stems, via CK-extension, from the initial data spaces A
(0)
0,b−j1

, j1 = 0, . . . , b, which are nothing else

but M
(0)
0,b−j1

(C) = spanC{P(−b+j1) =
z
b−j1
1

(b−j1)!
I}, with corresponding highest weights (−b+ j1), j1 =

0, . . . , b. It follows that an orthogonal basis for M
(0)
0,b(C

2) is given by the polynomials

P(0,−b)(−b+j1) =
z
j1
2

j1!

z
b−j1
1

(b− j1)!
I, j1 = 0, . . . , b (4)

showing the differentiation properties

∂z2
P(0,−b)(−b+j1) = P(0,−b+1)(−b+j1), j1 = 1, . . . , b (5)

∂z1P(0,−b)(−b+j1) = P(0,−b+1)(−b+j1+1), j1 = 0, . . . , b− 1

For n = 3, the U(3)–module M
(0)
0,b(C

3) has dimension m
(0)
0,b(C

3) = (b+1)(b+2)
2 and highest weight

(0, 0,−b). Its basis is obtained through CK–extension of the initial polynomials contained in the

spaces A
(0)
0,b−j2

, j2 = 0, . . . , b. More explicitly:

A
(0)
0,0

∼= M
(0)
0,0(C

2)
CK
−→ P(0,0,−b)(0,0)(0) =

zb3
b!
I

...

A
(0)
0,b−j2

∼= M
(0)
0,b−j2

(C2)
CK
−→ P(0,0,−b)(0,−b+j2)(−b+j2+j1) =

z
j2
3

j2!

z
j1
2

j1!

z
(b−j2−j1)
1

(b − j2 − j1)!
I,

j1 = 0, . . . , b− j2
...

A
(0)
0,b

∼= M
(0)
0,b(C

2)
CK
−→ P(0,0,−b)(0,−b)(−b+j1) =

z
j1
2

j1!

z
(b−j1)
1

(b − j1)!
I,

j1 = 0, . . . , b

11



Note the differentiation properties

∂z3
P(0,0,−b)(0,−b+j2)(−b+j2+j1) = P(0,0,−b+1)(0,−b+j2)(−b+j2+j1),

j2 = 1, . . . , b, j1 = 0, . . . , b− j2

∂z2
P(0,0,−b)(0,−b+j2)(−b+j2+j1) = P(0,0,−b+1)(0,−b+j2+1)(−b+j2+j1),

j2 = 0, . . . , b− 1, j1 = 1, . . . , b− j2

∂z1
P(0,0,−b)(0,−b+j2)(−b+j2+j1) = P(0,0,−b+1)(0,−b+j2+1)(−b+j2+j1+1),

j2 = 0, . . . , b− 1, j1 = 0, . . . , b− j2 − 1

6 Orthogonal bases of M
(n)
a,0(C

n).

In this section we consider the exceptional case r = n.

For functions F taking their values in S
(n)
n = spanC{f

†
1f

†
2 · · · f

†
n}I = spanC{f

†
1f

†
2 · · · f

†
n}, the equa-

tion ∂zF =
∑n

j=1 f
†
j∂zjF = 0 is trivially satisfied. The equation ∂†

zF =
∑n

j=1 fj∂zj
F = 0 means

that F is holomorphic in the variables (z1, z2, . . . , zn), forcing the second of the bidegrees of the
holomorphic homogeneous polynomials considered to be zero. This implies that the U(n)–module

M
(n)
a,0(C

n) consists of all homogeneous polynomials of degree a in the variables (z1, z2, . . . , zn). The

dimension of M
(n)
a,0(C

n) is m
(n)
a,0(C

n) = (n+a−1)!
(n−1)!a! and its highest weight is (a+ 1, 1, . . . , 1)︸ ︷︷ ︸

n

.

The, very well–known, basis polynomials of M
(n)
a,0(C

n) are obtained through CK–extension from

the initial polynomials in the spaces B
(n)
a−i,0, i = 0, . . . , a, which are nothing else but shifted versions

(with embedding factor f†n) of the U(n− 1)–modules M
(n)
a−i,0(C

n−1) of dimension m
(n)
a−i,0(C

n−1) =
(n+a−i−2)!
(n−2)!(a−i)! and with highest weight (a+ 1− i, 1, . . . , 1)︸ ︷︷ ︸

n−1

≺ (a+ 1, 1, . . . , 1)︸ ︷︷ ︸
n

. Note that indeed

a∑

i=0

m
(n)
a−i,0(C

n−1) =

a∑

i=0

(n+ a− i− 2)!

(n− 2)!(a− i)!
=

(n+ a− 1)!

(n− 1)!a!
= m

(n)
a,0(C

n).

Proceeding in the same way we will end up with the one–dimensional U(1)–modules f†n M
(n)
k,0 , k =

0, . . . , a, with highest weights (k + 1), as prescribed by the Gel’fand–Tsetlin procedure. A basis

for M
(n)
a,0(C

n) is thus given by the polynomials

P(a+ 1, 1, . . . , 1)︸ ︷︷ ︸
n

(a+ 1− in−1, 1, . . . , 1)︸ ︷︷ ︸
n−1

... (a+ 1− in−1 − · · · − i2, 1)︸ ︷︷ ︸
2

(a+ 1− in−1 − · · · − i1)︸ ︷︷ ︸
1

=

z
in−1
n

in−1!

z
in−2

n−1

in−2!
· · ·

zi12
i1!

z
(a−in−1−···−i1)
1

(a− in−1 − · · · − i1)!
f
†
1 · · · f

†
n

where in−1 = 0, . . . , a, in−2 = 0, . . . , a− in−1, . . . , i1 = 0, . . . , a− in−1 − · · · − i2.

As an illustration let us again consider the low dimensional cases n = 1, 2, 3. For n = 1, we have

already seen in Section 4 that the U(1)–module M
(1)
a,0(C) is spanned by the basis polynomial

P(a+1) =
za1
a!

f
†
1
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showing the differentiation properties

∂z1
P(a+1) = 0 (6)

∂z1P(a+1) = P(a) (7)

For n = 2, the U(2)–module M
(2)
a,0(C

2) has dimension (a + 1) and highest weight (a + 1, 1). Its

basis stems, via CK-extension, from the initial data spaces B
(2)
a−i1,0

, i1 = 0, . . . , a, which are nothing

else but f†2 M
(1)
a−i,0(C), with corresponding highest weights (a + 1 − i1), i1 = 0, . . . , a. As we have

that

M
(1)
a−i,0(C) = spanC{P(a+1−i1) =

za−i1
1

(a− i1)!
f
†
1I}

it follows that an orthogonal basis for M
(2)
a,0(C

2) is given by the polynomials

P(a+1,1)(a+1−i1) =
zi12
i1!

za−i1
1

(a− i1)!
f
†
1f

†
2, i1 = 0, . . . , a (8)

showing the differentiation properties

∂z2P(a+1,1)(a+1−i1) = P(a,1)(a+1−i1), i1 = 1, . . . , a (9)

∂z1P(a+1,1)(a+1−i1) = P(a,1)(a−i1), i1 = 0, . . . , a− 1

For n = 3, the U(3)–module M
(3)
a,0(C

3) has dimension m
(3)
a,0(C

3) = (a+1)(a+2)
2 and highest weight

(a + 1, 1, 1). Its orthogonal basis is obtained through CK–extension of the initial data spaces

B
(3)
a−i2,0

, i2 = 0, . . . , a, more explicitly:

B
(3)
a,0

∼= f
†
3 M

(2)
a,0(C

2)
CK
−→ P(a+1,1,1)(a+1,1)(a+1−i1) =

zi12
i1!

za−i1
1

(a− i1)!
f
†
1f

†
2f

†
3,

i1 = 0, . . . , a

...

B
(3)
a−i2,0

∼= f
†
3 M

(2)
a−i2,0

(C2)
CK
−→ P(a+1,1,1)(a+1−i2,1)(a+1−i2−i1) =

zi23
i2!

zi12
i1!

z
(a−i2−i1)
1

(a− i2 − i1)!
f
†
1f

†
2f

†
3,

i1 = 0, . . . , a− i2
...

B
(3)
0,0

∼= f
†
3 M

(2)
0,0(C

2)
CK
−→ P(a+1,1,1)(1,1)(1) =

za3
a!

f
†
1f

†
2f

†
3

These basis polynomials show the differentiation properties

∂z3P(a+1,1,1)(a+1−i2,1)(a+1−i2−i1) = P(a,1,1)(a+1−i2,1)(a+1−i2−i1),

i2 = 1, . . . , a, i1 = 0, . . . , a− i2

∂z2P(a+1,1,1)(a+1−i2,1)(a+1−i2−i1) = P(a,1,1)(a−i2,1)(a+1−i2−i1),

i2 = 0, . . . , a− 1, i1 = 1, . . . , a− i2

∂z1P(a+1,1,1)(a+1−i2,1)(a+1−i2−i1) = P(a,1,1)(a−i2,1)(a−i2−i1),

i2 = 0, . . . , a− 1, i1 = 0, . . . , a− i2 − 1
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7 Orthogonal bases of M
(r)
a,b in complex dimension n = 2

In this section we will construct explicitly orthogonal bases for the spaces M
(r)
a,b(C

2) of spherical

Hermitean monogenics p(z1, z2, z1, z2) with values in the homogeneous parts S
(r)
2 of spinor space

S2. In this way we do not only provide an illustration of the algorithm devised in Section 3, but the
bases themselves are important for applications in real dimension 4. Spinor space S2 decomposes

into three homogeneous parts S
(0)
2 = spanC{1}I, S

(1)
2 = spanC{f

†
1, f

†
2}I, and S

(2)
2 = spanC{f

†
1f

†
2}I.

The cases r = 0 and r = 2 having been treated in the foregoing sections for arbitrary complex
dimension n, we concentrate on the case r = 1.

The U(2)-module M
(1)
a,b(C

2) has dimension m
(1)
a,b(C

2) = a+ b+2, and highest weight (a+1,−b).

There are (a + b + 2) spaces of initial polynomials A
(1)
a,b−j , j = 0, . . . , b and B

(1)
a−i,b, i = 0, . . . , a,

each of them being one-dimensional, since xa,b,1 = 1 and ya,b,1 = 1. The general theory of the
CK-extension procedure, see Theorem 3, predicts that the compatibility conditions imposed on
these initial polynomials will be trivially fulfilled, which means that these initial polynomials are
simply all homogeneous polynomials in the variables z1 and z1 of the appropriate bidegree. This
is moreover confirmed by the Fischer decomposition. Indeed, taking into account that

M̃
(0)
0,b(C) = spanC{P(−b) =

zb1
b!
I}

M̃
(1)
a,0(C) = spanC{P(a+1) =

za1
a!

f
†
1I}

by Theorem 4 we obtain

A
(1)
a,b−j = spanC

{
z1

a

a!

z1
b−j

(b − j)!
f
†
1 I

}
, j = 0, . . . , b

B
(1)
a−i,b = spanC

{
z1

a−i

(a− i)!

z1
b

b!
f
†
2 I

}
, i = 0, . . . , a

Via CK-extension, each of the spaces of initial polynomials thus gives rise to exactly one Hermitean

monogenic basis polynomial, establishing in this way an isomorphism between M
(1)
a,b(C

2), which is
of dimension (a+ b + 2), and the direct sum of one-dimensional subspaces

b⊕

j=0

A
(1)
a,b−j ⊕

a⊕

i=0

B
(1)
a−i,b

Now let us check the branching rules for the space M
(1)
a,b(C

2) which we recall to have highest

weight λ = (a+ 1,−b). If a > b then A
(1)
a,b−j is a shifted version of the U(1)-module M̃

(1)
a−b+j,0(C)

with highest weight (a− b+ j + 1), for all j = 0, . . . , b. At the same time B
(1)
a−i,b is either a shifted

version of the U(1)-module M̃
(1)
a−i−b−1,0 with highest weight (a−i−b), for all i = 0, . . . , a−b−1, or

a shifted version of the U(1)-module M̃
(0)
0,b−a+i with highest weight (a−i−b), for all i = a−b, . . . , a.

If a < b then A
(1)
a,b−j is either a shifted version of the U(1)-module M̃

(1)
a−b+j,0(C) with highest weight

(a − b + j + 1), for all j = b − a, . . . , b, or it is a shifted version of the U(1)-module M̃
(0)
0,b−j−a−1,

again with highest weight (a + 1 + j − b), for all j = 0, . . . , b − a − 1. At the same time B
(1)
a−i,b

is a shifted version of the U(1)-module M̃
(0)
0,b−a−i with highest weight (a− i−b), for all i = 0, . . . , a.
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In both cases exactly all the highest weights µ ≺ λ = (a+ 1,−b) are recovered, confirming that

the CK-isomorphism yields the splitting of the irreducible U(2)-module M
(1)
a,b(C

2) into a direct
sum of (a+ b+ 2) one-dimensional irreducible U(1)-modules Vµ, µ = −b, . . . , a+ 1.

Finally an orthogonal basis for M
(1)
a,b(C

2) is explicitly constructed by applying the CK-extension

to the initial polynomials contained in the spaces A
(1)
a,b−j , j = 0, . . . , b, and B

(1)
a−i,b, i = 0, . . . , a. The

following closed form expressions are obtained for these basis polynomials:
(i) for j = 0, . . . , b one has

P(a+1,−b),(a+1−b+j) =

min(a,b−j)∑

k=0

(−1)b−j−k z2
k

k!

z2
k+j

(k + j)!

z1
a−k

(a− k)!

z1
b−j−k

(b− j − k)!
f
†
1 I (10)

+

min(a,b−j−1)∑

k=0

(−1)b−j−k−1 z2
k

k!

z2
k+j+1

(k + j + 1)!

z1
a−k

(a− k)!

z1
b−j−k−1

(b − j − k − 1)!
f
†
2 I

(ii) for i = 0, . . . , a one has

P(a+1,−b),(a−b−i) =

min(a−i,b)∑

k=0

(−1)b−k z2
k+i

(k + i)!

z2
k

k!

z1
a−i−k

(a− i− k)!

z1
b−k

(b− k)!
f
†
2 I (11)

+

min(a−i−1,b)∑

k=0

(−1)b−k z2
k+i+1

(k + i+ 1)!

z2
k

k!

z1
a−i−k−1

(a− i− k − 1)!

z1
b−k

(b− k)!
f
†
1 I

In the next section we study the properties of these basis polynomials under derivation with respect
to the four variables z2, z2, z1, z1.

8 The Appell property in complex dimension n = 2

In this section we show that in complex dimension n = 2, the system of the constructed orthogonal
bases of Hermitean monogenic polynomials possesses the Appell property with respect to all the
variables, that is, by differentiating any basis element with respect to one of the variables z2, z2,
z1 or z1, always a multiple of another basis element is obtained. This property is obvious for the

S
(0)
2 – and S

(2)
2 –valued basis polynomials, see (5) in Section 5 and (9) in Section 6 respectively. For

S
(1)
2 –valued polynomials, the following result is obtained (see also [13]).

Theorem 5. Let the S
(1)
2 –valued basis polynomials P(a+1,−b),(µ) be defined as in (10) and (11)

above. Then one has that

(i) ∂z2P(a+1,−b),(µ) = P(a+1,−b+1),(µ);

(ii) ∂z2P(a+1,−b),(µ) = P(a,−b),(µ);

(iii) ∂z1P(a+1,−b),(µ) = −P(a+1,−b+1),(µ+1);

(iv) ∂z1P(a+1,−b),(µ) = P(a,−b),(µ−1).

Here we have put P(a+1,−b),(µ) = 0 unless −b ≤ µ ≤ a+ 1.
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Remark 1. The meaning of the Appell property formulated in Theorem 5 is the following. We
can consider a finite dimensional subspace of Hermitean monogenic polynomials with bidegree of
homogeneity bounded by fix constants a, b. On this subspace, each of the four derivatives is repre-
sented in the constructed bases by a very simple nilpotent matrix. It has the property being a block
matrix (with respect to the decomposition given by the irreducible pieces of the considered subspace)
where almost all blocks are zero matrices and where each non–zero block has the property that every
column contains at most one nontrivial entry! In this way this Appell property can make numerical
calculations very effective.

Remark 2. Note that the conditions (i) and (ii) of Theorem 5 are in fact properties which hold
in any dimension n, since derivation w.r.t. the ”last variables” zn and zn is obviously U(n− 1)-
invariant. Thus we have that the derivative of any basis polynomial with respect to the variable zn
or zn equals a multiple of another basis element. In other words, in any dimension higher than 2
the system of the considered orthogonal bases has still the Appell property with respect to the last
variables, but not with respect to all variables.

9 Orthogonal bases of spinor valued spherical monogenics

In [16, 21], spinor valued spherical monogenics in R2n are expressed in terms of Hermitean mono-
genic polynomials as follows.

Theorem 6. Let Mk(R
2n, Sn) stand for the space of Sn-valued monogenic polynomials in R2n

which are k-homogeneous. Then, under the action of the group U(n), the space Mk(R
2n, Sn) has

a multiplicity free irreducible decomposition

Mk(R
2n, Sn) =

(
k⊕

a=0

n⊕

r=0

M
(r)
a,k−a(C

n)

)
⊕

(
k−1⊕

a=0

n−1⊕

r=1

(
z

a+ n− r
+

z†

k − 1− a+ r

)
M

(r)
a,k−1−a(C

n)

)

In particular, this decomposition is orthogonal with respect to the Fischer (or any invariant) inner
product.

As a direct consequence of this decomposition, we can produce orthogonal bases of the spaces
Mk(R

2n, Sn) composed of the constructed bases of homogeneous Hermitean monogenic polynomi-
als. Indeed, we have the following result.

Corollary 1. Let O
(r)
a,b denote a GT basis of the space M

(r)
a,b(C

n). Then the set

O =

(
k⋃

a=0

n⋃

r=0

O
(r)
a,k−a

)
∪

(
k−1⋃

a=0

n−1⋃

r=1

(
z

a+ n− r
+

z†

k − 1− a+ r

)
O

(r)
a,k−1−a

)

is a basis of the space Mk(R
2n, Sn) of spinor valued spherical monogenics which is orthogonal with

respect to the Fischer (or any invariant) inner product.

Remark 3. For the monogenic polynomials of standard Clifford analysis, there exist already vari-
ous constructions of orthogonal bases (see, e.g., [38, 23, 17, 18, 1, 32, 33, 40, 22]). As pointed out
in Remark 1, derivation with respect to each of the variables is represented, in a given basis, by a
nilpotent matrix. The construction of the basis for spaces of standard spherical monogenics from
Hermitean monogenic ones is clearly reducing the size of the block matrix due to the fact that the
space of monogenics of a given degree splits into a sum of many smaller U(n)-irreducible parts.
Consequently, the size of the individual blocks is substantially reduced by such decomposition. On
the other hand, it is clear that only a part of the above mentioned block will have the Appell prop-
erty, while other blocks (with nontrivial embedding factors) will be more complicated and should be
computed explicitly to see their form.
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10 Conclusion

In this paper we have studied the construction of orthogonal bases for spaces of homogeneous
Hermitean monogenic polynomials. We have taken advantage of the Gel’fand–Tsetlin approach, the
fundamental symmetry group in Hermitean Clifford analysis being the unitary group. Two earlier
obtained powerful theorems, viz. the Cauchy-Kovalevskaia extension theorem and the Fischer
decomposition theorem were shown to be crucial in devising the corresponding algorithm which
can be used in any dimension. For complex dimension n = 2 the orthogonal bases were explicitly
constructed and the Appell property with respect to all the variables for the system of the obtained
orthogonal bases has been established. Note that for the explicit construction in higher dimension,
we have developed a Maple programme, which will be discussed in the forthcoming paper [4].
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