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Abstract

The aim of the paper is to study relations between polynomial solu-
tions of generalized Moisil-Théodoresco (GMT) systems and polynomial
solutions of Hodge-de Rham systems and, using these relations, to describe
polynomial solutions of GMT systems. We decompose the space of homo-
geneous solutions of GMT system of a given homogeneity into irreducible
pieces under the action of the group O(m) and we characterize individual
pieces by their highest weights and we compute their dimensions.
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1 Introduction

In its classical form Clifford analysis is the study of properties of solutions of
the Dirac operator D acting on functions defined on Rm with values in the
corresponding Clifford algebra R0,m. It is, however, often important (and inter-
esting) to consider special types of solutions obtained by considering functions
taking values in suitable subspaces of R0,m. To describe some of such important
cases, we shall use the language of differential forms.

Let G be an open subset of the Euclidean space Rm and let

E(G) =

m
⊕

s=0

Es(G)

be the space of (smooth) differential forms on G. It is well known that the
Clifford algebra R0,m is isomorphic (as a vector space) with the Grassmann
algebra Λ∗(Rm). Hence the space of (smooth) Clifford algebra valued functions
on G can be identified with the space E(G) of (smooth) differential forms on
G. As was explained in detail in [3], the Dirac operator D corresponds under
this identification to the operator d + d∗ acting on the space of differential
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forms, where d and d∗ are the standard de Rham differential and its adjoint,
respectively.

In recent years, there was a growing interest in the study and better under-
standing of properties of solutions of generalized Moisil-Théodoresco systems
(see [13, 1, 9, 10, 6, 2]), which are defined as follows (see [1]).

Definition 1. Assume that r, p and q are non-negative integers such that p ≤ q
and r + 2q ≤ m. Furthermore, denote by E(r,p,q)(G) the subspace of E(G)
determined by

E(r,p,q)(G) =

q
⊕

j=p

Er+2j(G).

A generalized Moisil-Théodoresco system of type (r, p, q) (GMT system for
short) is then defined as the homogeneous system obtained by restricting the
operator d+ d∗ to the space E(r,p,q)(G), i.e.

(d+ d∗) ω = 0, ω ∈ E(r,p,q)(G).

Notice that if ω ∈ E(r,p,q)(G) is written out as

ω =

q
∑

j=p

ωr+2j

with ωr+2j ∈ Er+2j(G), then the equation (d+ d∗) ω = 0 means that

d∗ωr+2p = 0,

dωr+2j + d∗ωr+2j+2 = 0, j = p, . . . , q − 1, (1)

dωr+2q = 0.

Some special cases of GMT systems are well known and well understood.
It is possible to choose (r, p, q) in such a way that E(r,p,q)(G) is equal to the
space E+(G) (resp. E−(G)) of all even (resp. odd) forms. In these cases, the
corresponding GMT system is (equivalent to) the classical Dirac equation for
functions with values in the even (resp. odd) part of the Clifford algebra. Prop-
erties of these functions were carefully studied in classical Clifford analysis.

Another very important special case is the GMT system of type (r, 0, 0).
In this case, the space E(r,p,q)(G) reduces to the space Er(G) of forms of pure
degree r and the corresponding GMT system coincides with the Hodge-de Rham
system

dω = 0, d∗ω = 0, ω ∈ Er(G).

Solutions of the Hodge-de Rham system will play a key role in our study of
solutions of GMT systems. As discussed in [1], it is important to understand
the structure of homogeneous polynomial solutions of these systems.

The aim of the paper is to study relations between polynomial solutions
of GMT systems and polynomial solutions of Hodge-de Rham systems. Using
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these relations and results obtained by Y. Homma in [16] on solutions of Hodge-
de Rham systems, it is then possible to describe fully polynomial solutions of
GMT systems. To describe them in more details, we shall introduce a suitable
notation.

Denote by P the space of real-valued polynomials in Rm and by Pk the
space of polynomials of P which are homogeneous of degree k. Moreover, let
Λ∗(Rm) and Λs(Rm) stand for the exterior algebra and the space of s-vectors
over Rm, respectively. Of course,

P =

∞
⊕

k=0

Pk and Λ∗(Rm) =

m
⊕

s=0

Λs(Rm).

Let us now introduce the following spaces of differential forms with polynomial
coefficients: P∗

k = Pk

⊗

R
Λ∗(Rm), Ps

k = Pk

⊗

R
Λs(Rm) and, finally,

P
(r,p,q)
k =

q
⊕

j=p

Pr+2j
k .

In what follows, we shall mainly study the space

MT
(r,p,q)
k = {P ∈ P

(r,p,q)
k : (d+ d∗)P = 0} (2)

of polynomial solutions of the generalized Moisil-Théodoresco system of homo-
geneity k. We shall relate them to the spaces

Hs
k = {P ∈ Ps

k : dP = 0, d∗P = 0} (3)

of polynomial solutions of the Hodge-de Rham system of homogeneity k and
use the results obtained by Y. Homma in [16] for Hs

k.

In Section 2, we decompose MT
(r,p,q)
k into a sum of pieces isomorphic to

spaces Hs
k of polynomial solutions of various Hodge-de Rham systems (see The-

orem 1). In such a way, we shall be able to characterize irreducible components
of these spaces under the action of the group O(m) and count the dimension
of the space of polynomial solutions of given homogeneity. In Section 3, we
shall review results from [16] on the decomposition of the space Ker sk∆ of har-
monic polynomials of homogeneity k with values in Λs(Rm) into four different
pieces and the description of the spaces Hs

k. In the last section, we shall add an
alternative description of the four pieces in the decomposition of Ker sk∆.

2 The decomposition of MT
(r,p,q)
k

In this part, we shall describe a decomposition of the spaces MT
(r,p,q)
k into

a direct sum of spaces isomorphic to spaces of solutions of various Hodge-de
Rham systems. It will give us (as we shall see later) a decomposition of the

spaces MT
(r,p,q)
k into a sum of irreducible components under the O(m)-action.

We shall need the following refined version of the Poincaré Lemmas (see also [3]
and [10]).

3



Lemma 1. The following properties hold:
(i) For P s

k ∈ Ps
k with s > 0, dP s

k = 0 if and only if there exists P s−1
k+1 ∈ Ps−1

k+1

such that d∗P s−1
k+1 = 0 and dP s−1

k+1 = P s
k .

(ii) For P s
k ∈ Ps

k with s < m, d∗P s
k = 0 if and only if there exists P s+1

k+1 ∈ Ps+1
k+1

such that dP s+1
k+1 = 0 and d∗P s+1

k+1 = P s
k .

Notice that Hs
0 = Ps

0 and MT
(r,p,q)
0 = P

(r,p,q)
0 .

Now we can state the main result of this section.

Theorem 1. Let k ∈ N. Denote by Φ the restriction of the operator d to the

space MT
(r,p,q)
k . Then

KerΦ =

q
⊕

j=p

Hr+2j
k and ImΦ =

q−1
⊕

j=p

Hr+2j+1
k−1 .

Moreover, we have that

MT
(r,p,q)
k ≃ KerΦ⊕ ImΦ.

Proof. Let Pk ∈ MT
(r,p,q)
k , that is, Pk = P r+2p

k + P r+2p+2
k + · · · + P r+2q

k with

P r+2j
k ∈ Pr+2j

k . By (1) we have that

d∗P r+2p
k = 0,

dP r+2j
k = −d∗P r+2j+2

k , j = p, . . . , q − 1, (4)

dP r+2q
k = 0.

For j = p, . . . , q−1, put P r+2j+1
k−1 = dP r+2j

k . Obviously, P r+2j+1
k−1 = −d∗P r+2j+2

k

and Φ(Pk) = P r+2p+1
k−1 + P r+2p+3

k−1 + · · · + P r+2q−1
k−1 . Moreover, by virtue of (4),

we have that

KerΦ =

q
⊕

j=p

Hr+2j
k .

Using the fact that d2 = 0 and (d∗)2 = 0, we get that

ImΦ ⊂

q−1
⊕

j=p

Hr+2j+1
k−1 .

To show the opposite inclusion, consider an arbitrary form

Pk−1 = P r+2p+1
k−1 + P r+2p+3

k−1 + · · ·+ P r+2q−1
k−1

with P r+2j+1
k−1 ∈ Hr+2j+1

k−1 . Then it is sufficient to find a form Pk ∈ MT
(r,p,q)
k

such that Φ(Pk) = Pk−1. By using Lemma 1, we shall construct such a Pk as
follows.
(i) For dP r+2p+1

k = 0 we can find P r+2p
k ∈ Pr+2p

k such that

dP r+2p
k = P r+2p+1

k−1 and d∗P r+2p
k = 0.
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For d∗P r+2p+1
k = 0 we can take P̃ r+2p+2

k ∈ Pr+2p+2
k such that

d∗P̃ r+2p+2
k = −P r+2p+1

k−1 and dP̃ r+2p+2
k = 0.

(ii) For dP r+2p+3
k = 0 we can find P̄ r+2p+2

k ∈ Pr+2p+2
k such that

dP̄ r+2p+2
k = P r+2p+3

k−1 and d∗P̄ r+2p+2
k = 0.

For d∗P r+2p+3
k = 0 we can take P̃ r+2p+4

k ∈ Pr+2p+4
k such that

d∗P̃ r+2p+4
k = −P r+2p+3

k−1 and dP̃ r+2p+4
k = 0.

Define P r+2p+2
k = P̃ r+2p+2

k + P̄ r+2p+2
k . By (i) and (ii), obviously,

d∗P r+2p+2
k = −P r+2p+1

k−1 and dP r+2p+2
k = P r+2p+3

k−1 .

By induction, we can thus construct, for each j = p, . . . , q, a form P r+2j
k ∈ Pr+2j

k

such that
d∗P r+2j

k = −P r+2j−1
k−1 and dP r+2j

k = P r+2j+1
k−1

where P r+2p−1
k−1 = 0 and P r+2q+1

k−1 = 0. Then the form

Pk = P r+2p
k + P r+2p+2

k + · · ·+ P r+2q
k

has the required properties.

Not too much is known in general about the spaces MT
(r,p,q)
k . In the case

R3, a basis for the space MT
(1,0,0)
k = H1

k is given in [15] and orthonormal bases

for the spaces MT
(1,0,0)
k = H1

k and MT
(0,0,1)
k are constructed in [5]. In the

case R4, a procedure has been worked out in [10] for constructing bases for the

spaces MT
(r,p,q)
k . In the general case Rm, bases for the space MT

(1,0,0)
k = H1

k

have been given in [9] and [17]. Furthermore, denote by M+
k the real vector

space of left monogenic polynomials in Rm which are homogeneous of degree k
and which take values in the even part R+

0,m of the Clifford algebra R0,m and
put n = [m2 ]. Then the following result is well-known (see [1] and [11]).

Lemma 2. MT
(0,0,n)
k ≃ M+

k and dimMT
(0,0,n)
k = dimM+

k = c(k,m) where

c(k,m) = 2m−1

(

k +m− 2

m− 2

)

. (5)

5



3 The O(m)-modules H
s
k

In this section, we shall use some known facts from representation theory of
the group O(m). We refer to [14, 5.2.2] for more details. The classification
of irreducible O(m)-modules is closely related to the classification of irreducible
SO(m)-modules. Let us recall that the latter classification is standardly given in
terms of the highest weight of the module. In the even dimensional casem = 2n,
a highest weight of an irreducible SO(m)-module is a vector λ = (λ1, . . . , λn) of
integers satisfying the relation λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ |λn|. On the other hand,
in the odd dimensional case m = 2n + 1, the vector λ satisfies the condition
λ1 ≥ . . . ≥ λn ≥ 0.

The classification of O(m)-modules also differs in even and odd dimensions.
In the case when the dimension m is odd, each irreducible representation V of
the group O(m) remains irreducible even as a representation over the special
orthogonal group SO(m). Moreover, the irreducible O(m)-representation V =
V(λ,ǫ) is uniquely determined by the highest weight λ of V for SO(m) and by
a number ǫ ∈ {±1}.

In the even dimensional case, the situation is a bit more complicated. In what
follows, denote by Vλ an irreducible SO(m)-module with the highest weight λ.
Assume now that m = 2n and V is an irreducible O(m)-module. Then there are
two possibilities. The first one is that the module V remains irreducible even
as SO(m)-module and V is isomorphic to Vλ for some λ = (λ1, . . . , λn−1, 0).
In this case, the irreducible O(m)-representation V = V(λ,ǫ) is again uniquely
determined by the highest weight λ and a number ǫ ∈ {±1}. On the other
hand, there is yet another possibility. It may happen that, as SO(m)-module,
V is reducible and V ≃ Vλ ⊕ Vλ̄ for some λ = (λ1, . . . , λn) with λn > 0 and
λ̄ = (λ1, . . . , λn−1,−λn). In that case, we denote V by V(λ,0). See [14, 5.2.2] for
details.

Now let n be a positive integer such that either m = 2n or m = 2n+ 1. For
1 ≤ s ≤ n and k ∈ N0, let λ

s
k be the vector in Rn having s non-zero components

and given by
λs
k = (k + 1, 1, . . . , 1, 0, . . . , 0).

Moreover, put λ0
0 = (0, . . . , 0) ∈ Rn.

The following theorem tells us that all (non-trivial) O(m)-modules Hs
k are

irreducible and mutually inequivalent. Moreover, it gives a characterization of
the corresponding irreducible O(m)-modules using the classification mentioned
above. Using the Weyl dimensional formula, we can then compute the dimension
of all these spaces. As a corollary, a formula for the dimension of the space

MT
(r,p,q)
k is obtained.

Theorem 2. The following properties hold:

(a1) H0
0 ≃ V(λ0

0
,1) and Hm

0 ≃ V(λ0

0
,−1).

Moreover, for k ≥ 1, H0
k ≃ {0} and Hm

k ≃ {0}.

(a2) Let m = 2n+ 1, 1 ≤ s ≤ n and let k ∈ N0.
Then Hs

k ≃ V(λs

k
,1) and Hm−s

k ≃ V(λs

k
,−1).
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(a3) Let m = 2n, 1 ≤ s ≤ n− 1 and let k ∈ N0.
Then Hs

k ≃ V(λs

k
,1), H

m−s
k ≃ V(λs

k
,−1) and Hn

k ≃ V(λn

k
,0).

(a4) Let 1 ≤ s ≤ m− 1 and let k ∈ N0. Putting

d(k,m, s) =

(

m− 2

s− 1

)(

k +m− 2

m− 2

)

(2k +m)(k +m− 1)

(k + s)(k +m− s)
, (6)

we have that dimHs
k = d(k,m, s).

Corollary 1. Let r, p and q be non-negative integers such that p ≤ q and
r + 2q ≤ m. Then

dimMT
(r,p,q)
k =

q
∑

j=p

d(k,m, r + 2j) +

q−1
∑

j=p

d(k − 1,m, r + 2j + 1)

where for 1 ≤ s ≤ m− 1, d(k,m, s) is given by (6). Furthermore,

d(k,m, s) =















1 for k = 0 and s = 0,m;

0 for k ≥ 1 and s = 0,m;

0 for k = −1.

There is a useful additional information describing a decomposition of har-
monic forms.

Lemma 3. Let 0 ≤ s ≤ m and let k ∈ N0. Then we have that

Ker sk∆ = Hs
k ⊕ Us

k ⊕ V s
k ⊕W s

k

where Hs
k denotes the space of solutions of the Hodge-de Rham equations and

Us
k , V

s
k and W s

k are irreducible O(m)-modules with the following properties:

(a1) H0
0 ≃ V(λ0

0
,1) and Hm

0 ≃ V(λ0

0
,−1).

Moreover, for k ≥ 1, H0
k ≃ {0} and Hm

k ≃ {0}.

(a2) Let m = 2n+ 1, 1 ≤ s ≤ n and let k ∈ N0.
Then Hs

k ≃ V(λs

k
,1) and Hm−s

k ≃ V(λs

k
,−1).

(a3) Let m = 2n, 1 ≤ s ≤ n− 1 and let k ∈ N0.
Then Hs

k ≃ V(λs

k
,1), H

m−s
k ≃ V(λs

k
,−1) and Hn

k ≃ V(λn

k
,0).

(a4) For 0 ≤ s ≤ m and k ≥ 0, we have that dimHs
k = d(k,m, s).

(b) For 1 ≤ s ≤ m and k ≥ 1, we have that Us
k ≃ Hs−1

k−1 and U0
k ≃ {0}.

(c) For 0 ≤ s ≤ m− 1 and k ≥ 1, we have that V s
k ≃ Hs+1

k−1 and V m
k ≃ {0}.

(d) For 1 ≤ s ≤ m− 1 and k ≥ 2, we have that W s
k ≃ Hs

k−2, W
s
1 ≃ {0},

W 0
k ≃ {0} and Wm

k ≃ {0}.

Proofs of Theorem 2 and Lemma 3 can be easily deduced from results proved
in [16].

7



4 The decomposition of the kernel of the Hodge

Laplacian

In Lemma 3, the kernel of the Hodge Laplacian has been decomposed into
irreducible O(m)-modules

Ker sk∆ = Hs
k ⊕ Us

k ⊕ V s
k ⊕W s

k .

Now we would like to give an analytic description of the spaces Us
k , V

s
k and W s

k .

Theorem 3. Let 0 ≤ s ≤ m and let k ∈ N0. Then the following properties
hold:

(a) Us
k ≃ Ker sk dd∗/Ker sk d∗ and V s

k ≃ Ker sk d∗d/Ker sk d,

(b) W s
k ≃ Ker sk∆ / (Ker sk dd∗ ∩Ker sk d∗d) ,

(c) Ker sk dd∗ ∩Ker sk d = Hs
k ⊕ Us

k and Ker sk d∗d ∩Ker sk d∗ = Hs
k ⊕ V s

k ,

(d) Ker sk dd∗ ∩Ker sk d∗d = Hs
k ⊕ Us

k ⊕ V s
k .

The Fisher decomposition [13, p. 167] tells us that

Pk =

[k/2]
⊕

j=0

r2jHk−2j and thus Ps
k =

[k/2]
⊕

j=0

r2jKer sk−2j∆.

From Lemma 3, we obtain the decomposition

Ps
k = Hs

k ⊕

[k/2]
⊕

j=0

r2jUs
k−2j ⊕

[k/2]
⊕

j=0

r2jV s
k−2j ⊕

[k/2]
⊕

j=0

r2jZs
k−2j (7)

where Zs
k = r2Hs

k−2 ⊕W s
k .

Putting

Xs
k,j = r2jZs

k−2j ∩Ker sk d and Y s
k,j = r2jZs

k−2j ∩Ker sk d∗,

we first prove

Lemma 4. The following properties hold:

(a) r2jZs
k−2j = Xs

k,j ⊕ Y s
k,j and Xs

k,j ≃ Y s
k,j ≃ Hs

k−2−2j ;

(b) Ker sk d = Hs
k ⊕

⊕[k/2]
j=0 r2jUs

k−2j ⊕
⊕[k/2]

j=0 Xs
k,j ;

(c) Ker sk d∗ = Hs
k ⊕

⊕[k/2]
j=0 r2jV s

k−2j ⊕
⊕[k/2]

j=0 Y s
k,j .
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Proof. The proof will be given by induction on the degree s. For s = 0, the
statements are obvious. Assume that the statements (a), (b) and (c) of Lemma
4 are true for some s = 0, . . . ,m− 1. Then we need to verify them for s+ 1.

(α) By Lemma 1 and by using the assumption (c), we have that

Ker s+1
k−1 d = d(Ker sk d∗) = d(V s

k )⊕

[k/2]
⊕

j=1

d(r2jV s
k−2j)⊕

[k/2]
⊕

j=0

d(Y s
k,j).

Using the invariance of the differential d and Lemma 3, we get that Hs+1
k−1 =

d(V s
k ), while for j = 0, . . . , [(k − 1)/2]

Xs+1
k−1,j = d(r2(j+1)V s

k−2−2j) and r2jUs+1
k−1−2j = d(Y s

k,j).

Of course, Xs+1
k−1,j ≃ Hs+1

k−3−2j .

(β) By Lemma 1 and by (α), we have that

d∗(Ker s+1
k+1 d) =

[(k+1)/2]
⊕

j=0

d∗(r2jUs+1
k+1−2j)⊕

[(k+1)/2]
⊕

j=0

d∗(Xs+1
k+1,j).

Using the invariance of the codifferential d∗ and Lemma 3, we get that for
j = 0, . . . , [k/2]

r2jV s
k−2j = d∗(Xs+1

k+1,j), Hs
k = d∗(Us+1

k+1) and Y s
k,j = d∗(r2(j+1)Us+1

k−1−2j).

Hence, as d∗(Ker s+1
k+1 d) = d∗(Ps+1

k+1), by virtue of (7), we may conclude that

d∗(r2jZs+1
k+1−2j) = d∗(Xs+1

k+1,j) and thus r2jZs+1
k+1−2j ≃ d∗(Xs+1

k+1,j)⊕ Y s+1
k+1,j .

This shows that r2jZs+1
k+1−2j = Xs+1

k+1,j ⊕ Y s+1
k+1,j , which completes the proof.

Proof of Theorem 3. The arguments used in the steps (α) and (β) of the proof
of Lemma 4 show that

Ker sk dd∗ = Ker sk d∗ ⊕ Us
k and Ker sk d∗d = Ker sk d⊕ V s

k .

This easily implies all statements of Theorem 3.
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Mathematical Institute, Charles University,
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