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Abstract

Spherical monogenics can be regarded as a basic tool for the study of harmonic analysis
of the Dirac operator in Euclidean space R

m. They play a similar role as spherical harmonics
do in case of harmonic analysis of the Laplace operator on R

m. Fix the direct sum R
m =

R
p
⊕R

q. In this paper we will study the decomposition of the space Mn(R
m
,Cm) of spherical

monogenics of order n under the action of Spin(p)×Spin(q). As a result we obtain a Spin(p)×
Spin(q)-invariant orthonormal basis for Mn(R

m
,Cm). In particular, using the construction

with p = 2 inductively, this yields a new orthonormal basis for the space Mn(R
m
,Cm).

Mathematics Subject Classification. 30G35, 33C45, 22E70.

Keywords. Clifford analysis, Dirac operators, Representations, Branching rules, Spin groups.

1 Introduction

One of the main subjects studied in Clifford analysis is the function theory of monogenic functions
and its interaction with the representation theory of the group Spin(m) (see e.g. [6],[8],[11]). Let
(e1, . . . , em) be an orthonormal basis of the Euclidean space Rm. With respect to this basis, the
Dirac operator on Rm is given by ∂x =

∑
j ej∂xj

. A monogenic function f is a Clifford algebra
(or spinor)-valued function satisfying ∂xf = 0 in some open set Ω ⊂ Rm.

A crucial result is the fact that all possible (half-)integer irreducible representations of Spin(m)
can be realized by means of so-called harmonic (monogenic) polynomials of several vector variables
(see e.g. [28] and in particular for the harmonic case [25] or [12] ). In this paper we will focus our
attention to the representations of highest weight (n, 0, . . . , 0) and (n+ 1

2 ,
1
2 , . . . ,

1
2 ).

The space Hn(R
m) of n-homogeneous harmonic polynomials in Rm is a well known model

for the first type of representation. These are the well known spherical harmonics which play
an important role in the harmonic analysis of the Laplace operator in Rm (see for example [21],
[29]). The action of s ∈ SO(m) on P (x) ∈ Hn(R

m) is given by h(s)P (x) = P (s−1xs) and
the corresponding Lie algebra so(m) is generated by the operators Lij = xi∂xj

− xj∂xi
, i < j;

i, j = 1, . . . ,m. Put N =
[
m
2

]
. Fix the Cartan subalgebra h = {L2j−1, 2j : j = 1, . . . , N} of so(m).

Using tools of Clifford analysis, the half-integer-representation can be described by means of
spherical monogenics of order n. These are homogeneous Rm (Cm)-valued monogenic polynomials
of degree n in Rm. (If one wants irreducibility one needs to consider spinor-valued monogenics.)
The corresponding spaces are denoted by Mn(R

m,Rm) or Mn(R
m,Cm). They are a refinement

of the notion of spherical harmonic in the sense that

Hn(R
m,Cm) = Mn(R

m,Cm)⊕ xMn−1(R
m,Cm)
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where left multiplication with the vector variable x is to be considered as a Spin(m)-invariant em-
bedding. The action of s ∈ Spin(m) on P (x) ∈ Mn(R

m) is now given by a different representation
L(s)P (x) = sP (s−1xs). The corresponding Lie algebra spin(m) is generated by the momentum
operators Mij = Lij − 1

2eij , i < j; i, j = 1, . . . ,m where eij = ei ∧ ej . Here we choose the Cartan
subalgebra h = {M2j−1, 2j : j = 1, . . . , N} of spin(m). Of course so(m) ≃ spin(m) ≃ o(m) as
Lie algebras. To stress the fact that our realizations of these Lie algebras arise from different
representations we will use both notations so(m) and spin(m).

Fix the direct sum R
m = R

p ⊕ R
q. The aim of this paper is to study the decomposition of

Hn(R
m) and in particular Mn(R

m,Cm) under the action of Spin(p)×Spin(q). We will prove that
this decomposition (in a certain sense) is multiplicity free. Moreover we provide a construction of
an orthonormal basis of Hn(R

m) and Mn(R
m,Cm). Another construction of a Spin(p)×Spin(q)-

invariant basis of Mn(R
m,Cm) was given in [8] and in the paper [23] by F. Sommen. The key

ingredients in our construction are the harmonic and monogenic Fischer decomposition which can
also be reformulated in the language of the Howe dual pairs (SO(m), sl(2)) and (Spin(m), osp(1|2)).
Another basic tool is the extremal projector (see [2], [30]) corresponding to the dual partners sl(2)
and osp(1|2) of our initial groups SO(m) and Spin(m). Using the explicit version of this projection
we obtain formulae for the basis vectors in terms of Jacobi polynomials. Similar expressions for
the basis vectors were obtained in [23] by solving a system of differential equations. As special
cases we will treat the cases p = 1, 2 in more detail.

Let us consider first of all the harmonic case. Let p = 1. Take the standard ONB (e1, . . . , em)
of Rm and the corresponding chain of subgroups

SO(m) ⊃ SO(m− 1) ⊃ . . . ⊃ SO(2) ,

where SO(m − i) is the subgroup of SO(m) fixing the vectors e1, . . . , ei. Each inclusion SO(i) ⊃
SO(i − 1) gives rise to a branching of a (irreducible) SO(i)-representation under the action of
SO(i − 1). This branching is multiplicity free and by induction we thus obtain an orthonormal
basis for Hn(R

m). It is a standard result that this can be done for each irreducible representation
of SO(m) and one obtains an orthogonal basis which is indexed by Gel’fand-Zetlin patterns (see
[10]). Next, consider p = 2. Take the Cartan basis h = {L12, L34, . . . , L2N−1 2N} of so(m) and the
corresponding chain

SO(m) ⊃ SO(m− 2) ⊃ . . . ⊃ SO(2) or SO(1)

compatible with the maximal torus corresponding to the choice of h. Depending on the parity of
m this chain stops at SO(2) (m even) or SO(1) = {1} (m odd). By induction we thus obtain an
orthogonal basis of eigenfunctions of h for Hn(R

m).
Consider now the monogenic case and p = 1. Let Rm = R e1 ⊕ e⊥1 ≃ R e1 ⊕ Rm−1. The space

of spherical monogenics Mk(R,C1) on the line is non-trivial if k = 0 and M0(R,C1) ≃ C1 ≃
a+ be1, a, b ∈ C. Consider the chain of subgroups

Spin(m) ⊃ Spin(m− 1) ⊃ . . . ⊃ Spin(2)

in the maximal flag of subspaces

R
m ⊃ e⊥1 ⊃ . . . ⊃ (e1 ∧ . . . ∧ em−2)

⊥ .

Similar to the harmonic case we obtain again a Gel’fand-Zetlin type basis for Mn(R
m,Cm).

Next, take p = 2. Let R2 = span{e1, e2}. Then Rm = R2 ⊕ Rm−2. Take the Cartan basis
h = {M12,M34, . . . ,M2N−1 2N} of spin(m) and the corresponding chain

Spin(m) ⊃ Spin(m− 2) ⊃ . . . ⊃ Spin(2) or Spin(1)

in the maximal flag (preserved by the maximal torus)

R
m ⊃ (e1 ∧ e2)

⊥ ⊃ . . . ⊃ (e1 ∧ . . . ∧ em−2)
⊥ or (e1 ∧ . . . ∧ em−1)

⊥ .
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In this case, we reduce the symmetry from Spin(m) to Spin(2) × Spin(m − 2). The branching
rules for the product have the multiplicity one property, hence we can construct by induction an
analogue of the Gel’fand-Zetlin basis for the chain of inclusions

Spin(m) ⊃ Spin(2)× Spin(m− 2) ⊃ Spin(2)× Spin(2)× Spin(m− 4) . . .

This gives a new orthogonal basis for the space of spherical monogenics Mn(R
m,Cm).

The case p = 1 (which we refer to as step one branching) and p = 2 (step two branching)
are quite different in the sense that they behave differently with respect to the Cartan basis h.
If p = 1 (the Gel’fand-Zetlin basis), the basis vectors are not eigenvectors for the chosen Cartan
subalgebras. This is due to the fact that the chain of SO- or Spin-groups alternates between two
different types (B and D) and the embeddings are not compatible with the root systems. If p = 2,
the chains consist of Lie groups of the same type. The embeddings here respect the root systems
so that the basis of Hn(R

m) and Mn(R
m,Cm) consists of weight vectors. We will show that for

the type of representations of Spin(m) we consider in this paper, the basis which is induced by
the procedure of step two branching is also orthogonal.

2 Basic definitions from Clifford Analysis

In this section we collect some basic material and fix some notations. More detailed information
concerning Clifford algebras and Clifford analysis can be found in [6],[8],[11],[13].

Let (e1, . . . , em) be an orthonormal basis of Euclidean spaceRm endowed with the inner product
〈x, y〉 = ∑m

i=1 xiyi, x, y ∈ Rm. By R0,m we denote the real 2m-dimensional Clifford algebra over
Rm generated by the relations

eiej + ejei = −2δij .

If there is no confusion possible we use the shorter notation Rm := R0,m. An element of Rm is
of the form a =

∑
A⊂M aAeA, aA ∈ R, M = {1, . . . ,m} where A is an ordered subset of M and

eφ = e0 = 1. The k-vector part of a is given by [a]k =
∑

|A|=k aAeA and a =
∑m

k=0[a]k with

[a]k ∈ R
(k)
m . Vectors x ∈ Rm are identified with 1-vectors x =

∑m
j=1 xjej ∈ R

(1)
m . The Clifford

product of two vectors x and y splits into minus the inner product and the wedge product of x
and y:

xy = −〈x, y〉+ x ∧ y .

The complex Clifford algebra Cm is the complexification of Rm. The following (anti-)involutions
are of importance. They are defined by their action on the basis elements ei and extended by
linearity to Rm:

• main involution a 7→ a′; (ac)′ = a′c′ , e′i = −ei ,

• reversion a 7→ ã; ãc = c̃ã , ẽi = ei ,

• conjugation a 7→ ā; ac = c̄ā , ēi = −ei .

The main involution ′ defines a Z2-grading on Rm. The eigenspaces R±
m of the main involution

′ are the so-called even and odd part of the Clifford algebra. The even part R+
m is a subalgebra

of Rm isomorphic to the Clifford algebra Rm−1 and Rm = R+
m ⊕ R−

m. Conjugation on Cm is the
anti-involution on Cm given by ā =

∑
A⊂M āAēA.

The following subgroups of the real Clifford algebra Rm are of interest. The Pin group Pin(m)
is the group consisting of products of unit vectors in Rm; the Spin group Spin(m) is the subgroup of
Pin(m) consisting of products of an even number of unit vectors in Rm. For an element s ∈ Pin(m)
the map χ(s) : Rm → Rm : x 7→ sx(s′)−1 induces an orthogonal transformation of Rm. In this
way Pin(m) defines a double covering of the orthogonal group O(m). The restriction of this map
to Spin(m) defines a double covering of the special orthogonal group SO(m).

The Dirac operator on Rm is given by ∂x =
∑m

j=1 ej∂xj
and has the fundamental property

that ∂2
x = −△x. Let Ω be an open subset of Rm and let f be a Clifford algebra (or spinor-valued)
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function; f is said to be monogenic in Ω if ∂xf = 0 in Ω . The unit sphere in Rm is denoted by
Sm−1. Consider polar coordinates (ρ, ω) ∈ R+ × Sm−1 in Rm:

x = ρω, ρ = |x| = (x2
1 + . . .+ x2

m)1/2 , ω ∈ Sm−1 .

The Dirac operator admits the polar decomposition

∂x = ω(∂ρ +
1

ρ
Γω) with Γω = −x ∧ ∂x

being the spherical Dirac operator on Sm−1. In terms of the momentum operators Lij = xi∂xj
−

xj∂xj
, the Γ-operator can be expressed as Γ = −

∑
i<j eijLij .

Let n ∈ N. The space of V -valued n-homogeneous monogenic polynomials on Rm is denoted
by Mn(R

m, V ). These type of polynomials are known as spherical monogenics of order n. For
our purposes, V is usually Rm, Cm or a spinor space S. Spherical monogenics can alternatively
be defined by the conditions:

ΓPn = −nPn , EPn = nPn ; E := 〈x, ∂x〉

being the Euler operator on Rm. Further information on spherical monogenics can be found in
e.g. [6],[8],[13],[22],[26] .

The space of C-valued n-homogeneous harmonic polynomials (△xP (x) = 0) on Rm is denoted
by Hn(R

m,C). Using the polar decomposition of the Laplacian

△x = ∂2
ρ +

m− 1

ρ
∂ρ +

1

ρ2
△LB ,

spherical harmonics can alternatively be defined by the conditions:

△LBPn = −n(n+m− 2)Pn , EPn = nPn

where △LB has a two-fold meaning: it is either the Laplace-Beltrami operator on the sphere or
the Casimir operator of the h-representation (see also next section).

3 Representations of Spin(m)

The Lie algebra spin(m) can be realized inside the space R
(2)
m of bivectors in Rm endowed with

the usual commutator product [ , ]: spin(m) ≃ span{− 1
2eij : i < j, i, j = 1, . . . ,m}. The bivectors

eij = ei ∧ ej satisfy the commutation relations

[eij , ekl] = 2δilekj + 2δjleik − 2δikelj − 2δjkeil .

Putting Bij = − 1
2eij one obtains the usual defining relations of so(m) (or here also frequently

denoted as spin(m)):

[Bij , Bkl] = −δilBkj − δjlBik + δikBlj + δjkBil .

Let ρ : Spin(m) → Aut(V ) be a representation of Spin(m) on some vector space V . The infinites-
imal (derived) representation of ρ on V is given by

dρ(w)f = lim
t→0

1

t
(ρ(exp(tw)) − 1)f , w ∈ R

(2)
m , f ∈ V.

The Casimir operator of the representation ρ of Spin(m) is then defined by

C(ρ) =
1

4

∑

i<j

dρ(eij)
2.
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The Casimir operator C(ρ) acts as a multiple of the identity on each Spin(m)-irreducible piece
occurring in V . Take now for V the space of Cm-valued polynomials P(Rm,Cm) and take s ∈
Spin(m). Consider the following two unitary (for the Fischer inner product) representations of
Spin(m) on P(Rm,Cm):

H(s)P (x) = sP (s−1xs)s−1 = sP (s̄xs)s̄

L(s)P (x) = sP (s−1xs) = sP (s̄xs) .

The L-representation typically acts on (spinor-valued) monogenic polynomials. The action a 7→
sas−1 preserves the space C

(k)
m of k-vectors, hence the H-representation may also act on the space

P(Rm,C
(k)
m ) of C

(k)
m -valued polynomials. This defines for each k = 0, . . . ,m a representation of

SO(m). In case H acts on scalar-valued polynomials (k = 0) one also uses the notation h instead
of H . We thus get the usual representation h of SO(m) on P(Rm,C) and

dh(eij) = −2Lij := −2(xi∂xj
− xj∂xi

) , dL(eij) = −2Lij + eij := −2Mij .

The corresponding Casimir operators are

C(h) =
∑

i<j

L2
ij = △LB

C(L) =
∑

i<j

M2
ij = △LB + Γ− 1

4

(
m
2

)
= Γ(m− 1− Γ)− 1

4

(
m
2

)

The Cartan subalgebra h of spin(m) is fixed by h = {M2j−1, 2j : j = 1, . . . , N =
[
m
2

]
}. The

exponential of h yields the corresponding maximal torus

H = {exp(−1

2
e12t1) . . . exp(−

1

2
e2N−1 2N tN ), ti ∈ [0, 2π[}, N =

[m
2

]
.

4 Spherical monogenics and representations

Models for irreducible representations of Spin(m) can be realized by means of monogenic polyno-
mials of several vector variables (see [28]). We will illustrate this for the type of representations
which appear in this paper. First of all, models for the spinor representation can be realized inside
the complex Clifford algebra Cm. The action L(s)a = sa of s ∈ Spin(m) on Cm leads to the
fundamental representation of Spin(m) on the spinor space S. A model for S can be constructed
as follows. Let m = 2N + 1 be odd. Consider the Witt basis

Tj,+ :=
1

2
(e2j−1 + ie2j) , Tj,− :=

1

2
(e2j−1 − ie2j)

and the idempotents Ij,+ = −Tj,+Tj,−. The product I+ = I1,+ . . . IN,+ defines a primitive idem-
potent; the ideal C+

mI+ is minimal and gives a model for the spinor space S. The action of the
maximal torus gives

L(s)I+ = exp(−1

2
(t1e12 + . . .+ tNe2N−1,2N))I+

= exp(
i

2
(t1 + . . .+ tN))I+;

and the weight is given by (12 , . . . ,
1
2 ). A model for the irreducible representation with weight

(n + 1
2 ,

1
2 , . . . ,

1
2 ) can be obtained by considering the L-action of Spin(m) on the highest weight

vector
(x1 + ix2)

nI+ .
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For s of the maximal torus H , we have that

L(s)(x1 + ix2)
nI+ = exp(−nt1e12) exp(−

1

2
(t1e12 + . . .+ tNe2N−1,2N))(x1 + ix2)

nI+

= exp(int1) exp(
i

2
(t1 + . . .+ tN ))(x1 + ix2)

nI+ .

The resulting irreducible Spin(m)-module is the space of spinor-valued spherical monogenics of
order n:

Mn(R
m, S) := Mn(R

m,C+
m)I+ ≃ (n+

1

2
,
1

2
, . . . ,

1

2
) .

Thus Mn(R
m,Cm) is the direct sum of several equivalent representations with weight (n +

1
2 ,

1
2 , . . . ,

1
2 ).

The even dimensional case (m = 2N) requires a little bit more care because there are now two
inequivalent spinor representations of Spin(m). Consider now the spinor spaces S+ ≃ C+

mI+ and
S− ≃ C+

mI− where the primitive idempotents I+ and I− are given by

I+ := I1,+ . . . IN−1,+IN,+ , I− := I1,+ . . . IN−1,+IN,− ,

and

IN,− :=
1

2
(1− iem−1em).

As the pseudoscalar eM := e1 . . . em is actually Spin(m)-invariant (but not Pin(m)-invariant) and
e2M = (−1)N , there are two Spin(m)-invariant projections

P+ =
1

2
(1 + iNeM ) and P− =

1

2
(1 − iNeM )

onto the ±-eigenspaces of iNeM . Now I+ = P+I+ and I− = P−I−, hence the spinor spaces C+
mI+

and C+
mI− are inequivalent under the action of Spin(m). The weights are obtained from the action

of the maximal torus and are given by (12 , . . . ,
1
2 ,

1
2 ) resp. (

1
2 , . . . ,

1
2 ,− 1

2 ).
A model for the irreducible representation with weight (n+ 1

2 ,
1
2 , . . . ,± 1

2 ) can be obtained by
considering the L-action of Spin(m) on the highest weight vectors

(x1 + ix2)
nI+ and (x1 − ix2)

nI− .

In the first case, the action of the maximal torus yields the same weight as in the odd dimensional
case. In the second case, the last entry in the weight changes sign because now

L(s)(x1 − ix2)
nI− = exp(−nt1e12) exp(−

1

2
(t1e12 + . . .+ tNe2N−1,2N))(x1 − ix2)

nI−

= exp(int1) exp(
i

2
(t1 + . . .+ tN−1 − tN ))(x1 − ix2)

nI− .

The resulting non-equivalent irreducible Spin(m)-modules are the spaces of spinor (S+ or S
−)-

valued spherical monogenics of order n:

Mn(R
m, S+) := Mn(R

m,C+
m)I+ and Mn(R

m, S−) := Mn(R
m,C+

m)I− .

5 Inner products on Mn(R
m
,Cm)

In the context of spherical monogenics one usually considers the so-called Fischer inner product
or the standard inner product on the sphere. Let P,Q be Cm-valued polynomials on Rm. The
Fischer inner product of P and Q is the positive definite Hermitean inner product defined as

〈P,Q〉m := [P̄ (∂x)Q(x)]0|x=0 .

6



This definition implies immediately that polynomials of different degree are Fischer orthogonal.
The adjoint of A ∈ End(P(Rm,Cm)) relative to the Fischer inner product is denoted by A∗. Up
to a sign the variables xi and the derivatives ∂xi

are Fischer-adjoint while the generators ei of the
Clifford algebra Cm are skew-adjoint:

〈xiP,Q〉m = −〈P, ∂xi
Q〉m

〈eiP,Q〉m = −〈P, eiQ〉m .

Therefore the Fischer-adjoint of |x|2 is the Laplace operator △x on Rm and the Fischer-adjoint
of the vector variable x is the Dirac operator ∂x on R

m. This plays a crucial role in the Fischer
decomposition which will be explained later on. Call Am the surface area of the unit sphere Sm−1.
The normalized Cm-valued inner product on L2(S

m−1, Cm) is given by:

〈f, g〉 = 1

Am

∫

Sm−1

f̄(ω)g(ω) dS(ω) .

This inner product can be turned into a C-valued inner product by projecting it onto its scalar
part. The corresponding inner product will be denoted as 〈 , 〉Sm−1 . All of these inner products are
Spin(m)-invariant. As the space Mn(R

m,Cm) is basically irreducible under the action of Spin(m),
it is not surprising that the Fischer inner product on Mn(R

m,Cm) and the inner product on the
sphere are proportional. They are related as follows:

〈P,Q〉m =
2nΓ(n+ m

2 )

Γ(m2 )
〈P,Q〉Sm−1 , P,Q ∈ Mn(R

m,Cm) .

More details of the notions presented here can also be found in e.g. [11],[9],[8],[13].

6 The harmonic projection

The following Lemma lists the (anti-)commutation relations between various Spin(m)-invariant
operators which play a fundamental role in classical Clifford analysis in one vector variable. They
follow from standard calculations (see also [5]).

Lemma 1 (Basic (anti-)commutation relations in Rm)

[
△x, |x|2

]
= 4(Ex + m

2 ) {x, ∂x} = −m− 2Ex
[
Ex + m

2 , |x|2
]
= 2|x|2

[
Ex + m

2 , x
]
= x

[
Ex + m

2 ,△x

]
= −2△x

[
Ex + m

2 , ∂x
]
= −∂x

[
∂x, |x|2l

]
= 2l |x|2l−2x

{
∂x, |x|2l

}
= (−m− 2Ex + 2l)|x|2l−2

[
△x, |x|2j

]
= 4j(Ex + m

2 − j + 1)|x|2j−2

Identify

B+ := −1

2
△x , B− :=

1

2
|x|2 , B0 := −(Ex +

m

2
) , F+ := − 1√

2
∂x , F− := − 1√

2
x . (1)

Then {B+, B−, B0, F+, F−} satisfy the (anti-)commutation relations of the Lie super algebra
osp(1|2). As a Lie super algebra this algebra is generated by the odd (fermionic) generators
F+, F−. The even (bosonic) elements B+, B−, B0 generate the even Lie subalgebra sl(2). Let us
first consider the Fischer decomposition related to the Laplace operator: this means that we are
only considering the even part sl(2) of osp(1|2). We have

P(Rm) =

∞⊕

s=0

|x|2sH(Rm)
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=
∞⊕

k=0

∞⊕

s=0

|x|2sHk(R
m)

≃
∞⊕

k=0

Ik ⊗Hk(R
m) .

Here Ik is the irreducible sl(2)-module with weight −(k + m
2 ). The last isomorphism indicates

that the space P(Rm) has a multiplicity free decomposition under the joint action sl(2)× SO(m).
The pair (sl(2), SO(m)) is a particular example of a Howe dual pair. Each H(x) ∈ H(Rm) can
be regarded as a highest weight vector annihilated by the positive root B+ := − 1

2△x. The
corresponding sl(2)-module generated by Hk(x) ∈ Hk(R

m) is the infinite dimensional module⊕∞
s=0 |x|2sHk(x). Given a polynomial P ∈ P(Rm) we thus have a unique decomposition

P (x) =

∞∑

j=0

|x|2jH(j)(x)

where H(j)(x) ∈ H(Rm). The harmonic polynomial H(0)(x) is called the harmonic part of P (x)
and the corresponding map PH : P(Rm) → H(Rm) is the harmonic projection as mentioned
in [29]. In the same way one can define the projections PH,2s : P(Rm) 7→ |x|2sH(Rm). These
projections are closely related to the harmonic projection PH . Obviously PH,0 = PH . We will
now give a formula to determine PH,2s. Because of its importance we derive the formula for our
specific situation. We also would like to point out that the explicit expression for PH is not new
and appears at various places in the literature.

Another useful interpretation is that PH is a specific realization of the extremal projector of
the Lie algebra sl(2). Consider the Gauss decomposition sl(2) = n−+h+n+. For an sl(2)-module
V , the extremal projector P is an operator which is constructed in a suitable extension of U(sl(2))
and projects V onto its subspace V n+ (of highest weight vectors) parallel to n−V . The extremal
projectors corresponding to the classical Lie algebras and more general algebraic structures have
been studied by various authors (see [24], [30]).

Theorem 2 Consider the Fischer orthogonal direct sum P(Rm) =
⊕∞

s=0 |x|2sH(Rm). The har-

monic projection PH : P(Rm) → H(Rm) and the projections PH,2s : P(Rm) 7→ |x|2sH(Rm) can be

expressed by means of the operators

PH =

∞∑

j=0

1

22jj !

Γ(−Ex − m
2 + 2)

Γ(−Ex − m
2 + j + 2)

|x|2j△j
x

=
∞∑

j=0

1

22jj !
κj(−Ex − m

2
)|x|2j△j

x

PH,2s = As(Ex − 2s)|x|2sPH△s
x ,

where

κj(z) :=
Γ(z + 2)

Γ(z + j + 2)
=

1

(z + 2) . . . (z + j + 1)
=

1

(z + 2)j

As(Ex) :=
1

22ss!

1

(Ex + m
2 )s

.

Proof.

As ansatz we take

P =

∞∑

j=0

Kj(Ex)|x|2j△j
x (2)

8



where Kj(Ex) are unknown functions (not necessarily polynomials) of Ex. Thus P rather belongs
to some extension of U(sl(2)). We will now determine the solution of △xP = 0 in this extension
(which will be described afterwards). Since

△xP =

∞∑

j=0

Kj(Ex + 2)△x|x|2j△j
x

=

∞∑

j=0

(
4(j + 1)Kj+1(Ex + 2)(Ex +

m

2
− j) +Kj(Ex + 2)

)
|x|2j△j+1

x

one obtains that △xP = 0 if

Kj+1(Ex + 2)

Kj(Ex + 2)
= − 1

4(j + 1)(Ex + m
2 − j)

.

We thus obtain the unique solution (if we put K0 = 1):

Kj(Ex + 2) =
(−1)j

22jj !

1

(Ex + m
2 − j + 1) . . . (Ex + m

2 )
.

The function Kj(Ex) turns out to be a rational function in Ex. The Poincaré-Birkhoff-Witt-

Theorem tells us that U(sl(2)) as a vector space has a basis consisting of the elements Bi
0B

j
−B

k
+.

Denoting the space of rational functions in Ex by R(Ex) ≃ C(Ex) we see that the appropriate ex-
tension of U(sl(2)) is of the form R(h)⊗hU(sl(2)). This space has a basis of the form R(B0)B

j
−B

k
+

where R(B0) is a rational function in B0; the expression (2) is precisely of this form. Hence

Kj(Ex) =
(−1)j

22jj !

1

(Ex + m−2
2 − j)j

=
1

22jj !

1

(−Ex − m
2 + 2)j

=
1

22jj !

Γ(−Ex − m
2 + 2)

Γ(−Ex − m
2 + j + 2)

.

Here Γ(z) denotes the Gamma-function. This proves the statement.
Next we determine PH,2s. Remark that △s

x preserves the Fischer decomposition:

△s
x :

∞∑

i=0

|x|2iH(i)(x) →
∞∑

i=s

|x|2i−2sH(i)(x) , H(i) ∈ H(Rm) .

Hence PH,2s is up to some element of End(H(Rm)) of the form |x|2sPH△s
x. Now take H(x) ∈

H(Rm). Then

△s
x|x|2sH(x) = 22ss! (Ex +

m

2
)s H(x) =

1

As(Ex)
H(x)

if we put

As(Ex) :=
1

22ss!

1

(Ex + m
2 )s

.

The corresponding projection is now given by

PH,2s = |x|2sPHAs(Ex)△s
x

= As(Ex − 2s)|x|2sPH△s
x ,

9



which completes the proof.

Recall the identification (1). Denoting

κj(B0) =
1

(B0 + 2) . . . (B0 + j + 1)
=

Γ(B0 + 2)

Γ(B0 + j + 2)

we have

PH =

∞∑

j=0

(−1)j

j !
κj(B0)B

j
−B

j
+ .

This form of PH is the so-called extremal projector for sl(2) (see e.g. the work of Tolstoy [24],
Zhelobenko [30]). As mentioned before, the extremal projector PH does not belong to U(sl(2))
but it belongs to some extension TU(sl(2)) of the universal enveloping algebra. A series S belongs
to the space TU(sl(2)) of formal Taylor series if

S =

∞∑

i,j=0

Ri,j(B0)B
i
−B

j
+

where Ri,j(B0) are rational functions of the Cartan element B0 and such that there exists a natural
number n for which |i−j| ≤ n. One can show that TU(sl(2)) is an associative algebra with respect
to the multiplication of formal series. The enveloping algebra U(sl(2)) has no zero divisors and
therefore contains no non-trivial projections. As a result the equations

B+P = PB− = 0

have no non-trivial solutions in U(sl(2)). The algebra TU(sl(2)) on the other hand does contain
non-trivial projections and the following system of equations

B+P = PB− = 0 , [B0, P ] = 0 , P 2 = P

has precisely the extremal projector PH as its unique solution in TU(sl(2)). If we put

αs(B0) = (−1)s22sAs(−B0 −m− 2s)

we have under the usual identification

PH,2s = αs(B0)B
s
−PHBs

+ .

7 The monogenic projection

We now consider the Fischer decomposition for the Dirac operator. Here we use the short notation
P(Rm) = P(Rm,Cm), Mk(R

m) = Mk(R
m,Cm). We have:

P(Rm) =

∞⊕

s=0

xsM(Rm)

=
∞⊕

j=0

|x|2jM(Rm)⊕
∞⊕

j=0

x|x|2jM(Rm)

=
∞⊕

k=0

∞⊕

s=0

xsMk(R
m)

≃
∞⊕

k=0

Jk ⊗Mk(R
m) .

10



This decomposition is a refinement of the harmonic (or sl(2)-) case in the sense that

H(Rm) = M(Rm)⊕ xM(Rm)

Here Jk is an irreducible osp(1|2)-module with weight −(k+ m
2 ). As an sl(2)-module Jk splits into

two irreducible sl(2)-modules with weights −(k+ m
2 ) and −(k + 1+ m

2 ). If we consider the space
P(Rm, S) of spinor-valued polynomials, one obtains

P(Rm, S) =

∞⊕

k=0

Jk ⊗Mk(R
m, S) .

This decomposition is once again multiplicity free if we now consider the joint action osp(1|2)×
Spin(m), thus providing another particular example of a Howe dual pair. Each Mk(x) ∈ Mk(R

m)
can be regarded as a highest weight vector annihilated by the positive root F+ := − 1√

2
∂x. The cor-

responding osp(1|2)-module generated by Mk(x) is the infinite dimensional module
⊕∞

s=0 x
sMk(x)

which contains the two inequivalent sl(2)-modules
⊕∞

s=0 x
2sMk(x) and

⊕∞
s=0 x

2sxMk(x). Given
a polynomial P ∈ P(Rm) we thus have a unique decomposition

P (x) =
∞∑

s=0

xsM (s)(x)

≃
∞∑

j=0

|x|2jM (2j)(x) +

∞∑

j=0

x|x|2jM (2j+1)(x)

where M (s)(x) ∈ M(Rm). The monogenic polynomial M (0)(x) is called the monogenic part of
P (x) and the corresponding map PM : P(Rm) → M(Rm) is the monogenic projection. In the
same way one can define two other type of projections

PM,2s : P(Rm) → |x|2sM(Rm)

PM,2s+1 : P(Rm) → |x|2sxM(Rm)

These projections are clearly closely related to the monogenic projection PM .

Theorem 3 Consider the Fischer orthogonal direct sum

P(Rm) =

∞⊕

s=0

|x|2sM(Rm)⊕
∞⊕

s=0

x|x|2sM(Rm)

The monogenic projection PM : P(Rm) → M(Rm) is given by the operator

PM =
x∂x + 2Ex +m− 2

2Ex +m− 2
PH

and the other projections can be expressed as

PM,2s = As(Ex − 2s)|x|2sPM△s
x

PM,2s+1 = − As(Ex − 2s− 1)

2(Ex + m
2 − s− 1)

|x|2sxPM△s
x∂x

Proof.

Put H(x) = PHP (x), then H(x) = M (0)(x) + xM (1)(x). Now ∂xH(x) = ∂xxM
(1)(x) = −(m +

2Ex)M
(1)(x). Hence

M (1)(x) = − 1

m+ 2Ex
∂xH(x) , M (0) =

1

m+ 2Ex − 2
(m+ 2Ex − 2 + x∂x)H(x)
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and the monogenic projection takes the form

PM =
1

m+ 2Ex − 2
(m+ 2Ex − 2 + x∂x)PH

= PH +
1

m+ 2Ex − 2
(x∂x)PH .

To determine PM,2s remark that △s
x preserves the Fischer decomposition:

△s
x :

∞∑

i=0

xiM (i)(x) →
∞∑

i=2s

xi−2sM (i)(x) , M (i)(x) ∈ M(Rm) .

Therefore PM,2s is up to some element of End(M(Rm)) of the form |x|2sPM△s
x. Now take M(x) ∈

M(Rm). Then

△s
x|x|2sM(x) =

1

As(Ex)
M(x) .

Hence

PM,2s = |x|2sPMAs(Ex)△s
x

= As(Ex − 2s)|x|2sPM△s
x

Next, under the action of △s
x∂x:

△s
x∂x :

∞∑

i=0

xiM (i)(x) →
∞∑

i=2s+1

xi−2s−1M (i)(x) , M (i)(x) ∈ M(Rm) .

Now PM,2s+1 is up to some element of End(M(Rm)) of the form |x|2sxPM△s
x∂x and:

△s
x∂xx|x|2sM(x) = −△s

x(x∂x +m+ 2Ex)|x|2sM(x)

= −△s
x(x∂x)|x|2sM(x)−△s

x(m+ 2Ex)|x|2sM(x)

= −△s
xx(|x|2s∂x + 2s|x|2s−2x)M(x) − (m+ 2Ex + 4s)△s

x|x|2sM(x)

= −(m+ 2Ex + 2s)△s
x|x|2sM(x)

=
−2(Ex + m

2 + s)

As(Ex)
M(x) .

This gives the expression

PM,2s+1 = −|x|2sxPM
As(Ex)

2(Ex + m
2 + s)

△s
x∂x

= − As(Ex − 2s− 1)

2(Ex + m
2 − s− 1)

|x|2sxPM△s
x∂x ,

which completes the proof.

By means of the identification (1) we thus obtain

PM = (1− 1

B0 + 1
F−F+)PH

The element PM is the extremal projector for osp(1|2) (see also Tolstoy [24], Zhelobenko [30]).
For the other projections we have under the usual identification

PM,2s = αs(B0)B
s
−PMBs

+

PM,2s+1 =
αs(B0 + 1)

B0 + s+ 1
Bs

−F−PMBs
+F+ .
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8 ONB for spherical harmonics

Recall the Fischer decomposition

P(Rp) =

∞⊕

s=0

|u|2sH(Rp) =

∞⊕

s=0

∞⊕

k=0

|u|2sHk(R
p) .

Identify P(Rm) with P(Rp ⊕Rq). Let F (u, v) ∈ P(Rp ⊕Rq) and apply the Fischer decomposition
in Rp and Rq, then:

F (u, v) =

∞∑

s,k=0

∞∑

r,i=0

|u|2s|v|2rHk(u)Gi(v)

where Hk(u) ∈ Hk(R
p), Gi(v) ∈ Hi(R

q). Project this identity on the orthogonal complement of
|x|2P(Rm). Using the relation |x|2 = |u|2 + |v|2 it is clear that PH(|u|2) = −PH(|v|2); therefore
each power of |v|2 can be replaced by a power of −|u|2 in P(Rm)/|x|2P(Rm). Hence up to some
(immaterial) minus signs:

PH(F (u, v)) =
∞∑

s,k,i=0

PH(|u|2sHk(u)Gi(v)) .

In fact, we have the following Theorem.

Theorem 4 The map

τH : P(Rp)⊗H(Rq) → H(Rm) , K ⊗G 7→ PH(K(u)G(v))

is an SO(p)× SO(q)-invariant isomorphism.

Proof.

First of all PH(W (u, v)) = 0 iff W (u, v) = |x|2Q(u, v) for some polynomial Q ∈ P(Rm). Let
{Ki(u)} be a basis of P(Rp) and let {Hj(v)} be a basis ofH(Rq). Suppose that PH(

∑
ij λijKi(u)Hj(v)) =

0, then
∑

ij λijKi(u)Hj(v) = |x|2Q(u, v) for some polynomial Q(u, v) which must be harmonic

in v. Now
∑

ij λijKi(u)Hj(v) − |u|2Q(u, v) = |v|2Q(u, v) with the left hand side harmonic in
v. This is only possible if Q = 0 and thus

∑
ij λijKi(u)Hj(v) = 0 which implies λij = 0. The

invariance follows easily from the SO(m)-invariance of PH and the fact that P(Rp)⊗H(Rq) is an
SO(p)× SO(q)-module.

We will now determine the harmonic projection or the map τH in an explicit way.

Theorem 5 Let Pk(u) ∈ Hk(R
p) and Qi(v) ∈ Hi(R

q). Then

PH(|u|2sPk(u)Qi(v)) = λ(s, k, i)|x|2sP k+ p−2
2 , i+ q−2

2
s

( |v|2 − |u|2
|v|2 + |u|2

)
Pk(u)Qi(v)

where the constant λ(s, k, i) is given by

λ(s, k, i) = (−1)s
(
2s+ k + i+ m

2 − 2
s

)−1

=
(−1)ss!

(s+ k + i+ m−2
2 )s

.

The Fischer norm is given by

||PH(|u|2sPk(u)Qi(v))||2m = c(s, k, i, p, q)||Pk(u)||2p||Qi(v)||2q
where the constant c(s, k, i, p, q) is given by

c(s, k, i, p, q) := 4ss!
(k + p

2 )s(i +
q
2 )s

(s+ k + i+ m−2
2 )s

.
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Proof.

Put Gs,k,i = |u|2sPk(u)Qi(v). The Laplace operator splits into △x = △u +△v and

△j
xGs,k,i = △j

u(|u|2sPk(u))Qi(v) .

Consider polar coordinates (ρ, ξ) ∈ R+ × Sp−1 in Rp: u = ρξ with ρ = |u|, ξ ∈ Sp−1. The Laplace
operator in Rp can be written in polar coordinates as

△u = ∂2
ρ +

p− 1

ρ
∂ρ +

1

ρ2
△LB, p,

where △LB, p denotes the Laplace-Beltrami operator on the sphere Sp−1. Spherical harmonics
Pk(u) in Rp are eigenfunctions of △LB, p of the form △LB, pPk(u) = −k(k + p− 2)Pk(u). Thus

△u|u|2sPk(u) =

(
∂2
ρ +

p− 1

ρ
∂ρ +

1

ρ2
△LB,p

)
ρ2s+kPk(ξ)

= 4s(s+ k +
p− 2

2
)ρ2(s−1)Pk(u)

and recursively

△j
u|u|2sPk(u) = 4j(−s)j(−s− k − p− 2

2
)j ρ

2(s−j) Pk(u) .

The extremal projector takes the form

PH(Gs,k,i) =

∞∑

j=0

1

4jj!

1

(−2s− k − i− m
2 + 2)j

|x|2j△j
u|u|2sPk(u)Qi(v)

= |u|2s



∞∑

j=0

(−s)j(−s− k − p−2
2 )j

(−2s− k − i− m
2 + 2)j

|x|2j
|u|2j


 Pk(u)Qi(v)

= |u|2sF
(
−s,−s− k − p− 2

2
;−2s− k − i− m

2
+ 2;

|x|2
|u|2

)
Pk(u)Qi(v) .

The classical Jacobi polynomials can be expressed in terms of the (2F1-)hypergeometric functions
by means of the relation:

Pα,β
n (t) =

(
2n+ α+ β

n

)(
t− 1

2

)n

F

(
−n,−n− α;−2n− α− β;

2

1− t

)
.

Now put n = s, α = k + p−2
2 , β = i + q−2

2 and 2
1−t = |x|2

|u|2 or t = |v|2−|u|2
|v|2+|u|2 . To make the formulas

a little bit neater we will sometimes use the notation kp := k + p−2
2 , iq := i+ q−2

2 . Then

PH(|u|2sPk(u)Qi(v)) = λ(s, k, i)|x|2sP kp, iq
s

( |v|2 − |u|2
|v|2 + |u|2

)
Pk(u)Qi(v) .

Alternatively, the Jacobi polynomial can be expanded as follows:

Pα,β
n (t) =

1

2n

n∑

j=0

(
α+ n
j

)(
β + n
n− j

)
(t+ 1)j(t− 1)n−j .

If t = |v|2−|u|2
|v|2+|u|2 , then t+ 1 = 2|v|2

|v|2+|u|2 and t− 1 = −2|u|2
|v|2+|u|2 , hence

|x|2sP kp,iq
s

( |v|2 − |u|2
|v|2 + |u|2

)
=

s∑

j=0

(
kp + s

j

)(
iq + s
s− j

)
(−1)s−j |v|2j |u|2(s−j)
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and

PH(Gs,k,i) = λ(s, k, i)




s∑

j=0

(
kp + s

j

)(
iq + s
s− j

)
(−1)s−j |v|2j |u|2(s−j)


Pk(u)Qi(v) . (3)

Consider the Fischer inner product 〈 , 〉m on P(Rm). Take Fi(u) ∈ P(Rp), Gi(v) ∈ P(Rq). Then

〈F1(u)G1(v), F2(u)G2(v)〉m = 〈F1(u), F2(u)〉p〈G1(v), G2(v)〉q .

Let Pk(u) ∈ Hk(R
p) and Qi(v) ∈ Hi(R

q) have unit norm for the Fischer inner products on Rp or
Rq. Then |v|2j |u|2(s−j)Pk(u)Qi(v) and |u|2sPk(u)Qi(v) are orthogonal for j 6= 0 and

|| |u|2sPk(u)Qi(v)||2m = || |u|2sPk(u)||2p ||Qi(v)||2q
= 〈Pk(u),△s

u(|u|2sPk(u))〉p ||Qi(v)||2q
= 4ss!(k +

p

2
)s ||Pk(u)||2p ||Qi(v)||2q

= 4ss!(k +
p

2
)s .

Let us now determine ||PH(|u|2sPk(u)Qi(v))||2m. There is only term in (3) (corresponding to j = 0)
which contributes to the inner product above. Hence we have that

||PH(|u|2sPk(u)Qi(v))||2m = (−1)sλ(s, k, i)

(
iq + s
s

)
|| |u|2sPk(u)||2p ||Qi(v)||2q

=

(
iq + s

s

)

(
2s+ k + i+ m

2 − 2
s

)4ss!(k +
p

2
)s

= 4ss!
(k + p

2 )s(i+
q
2 )s

(s+ k + i+ m−2
2 )s

:= c(s, k, i, p, q) ,

which completes the proof.

In what follows O(N)(G)B means ortho(normal)(gonal) basis with respect to the relevant Fischer
inner products.

Applying Theorem 4 we get obviously the following result.

Theorem 6 Let s, k, i, n ∈ N with 2s+ k + i = n. Let

{Sk,l(u), l = 1, . . . , dimHk(R
p)} be an ONB of Hk(R

p)

{Qi,j(v), j = 1, . . . , dimHi(R
q)} be an ONB of Hi(R

q) .

Then

PH(|u|2sSk,l(u)Qi,j(v)), l = 1, . . . , dimHk(R
p), j = 1, . . . , dimHi(R

q)

determine an OGB of Hn(R
m) and the basis elements are eigenfunctions of 3 commuting Laplace-

Beltrami (or Casimir) operators with eigenvalues

△LB, p : −k(k + p− 2)

△LB, q : −i(i+ q − 2)

△LB,m : −(2s+ k + i)(2s+ k + i+m− 2) = −n(n+m− 2)

which determine the labels (s, k, i) in a unique way.
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Corollary 7 The decomposition

Hn(R
m) =

⊕

2s+k+i=n

τH(|u|2sHk(R
p)⊗Hi(R

q))

is multiplicity free under the action of SO(p)× SO(q).

Remark

1. Consider p = 1. Take the standard ONB {e1, . . . , em} of Rm and the corresponding chain

SO(m) ⊃ SO(m− 1) ⊃ . . . ⊃ SO(2) .

By induction we thus obtain the Gel’fand-Zetlin basis for Hn(R
m).

2. Consider p = 2. Take the Cartan basis h = {L12, L34, . . . , L2N−1 2N}, N =
[
m
2

]
of so(m)

and the corresponding chain

SO(m) ⊃ SO(m− 2) ⊃ . . . ⊃ SO(2) or SO(1)

By induction we thus obtain an OGB of eigenfunctions of h for Hn(R
m).

3. The operators △LB, p, △LB, q and △LB,m correspond exactly to the traditional Casimir
operators coming from the SO(p), SO(q) and SO(m)-action.

9 ONB for spherical monogenics

Consider the Fischer decomposition

P(Rp,Cp) =

∞⊕

s=0

usM(Rp,Cp) =

∞⊕

s=0

∞⊕

k=0

usMk(R
p,Cp) .

Identify P(Rm,Cm) with P(Rp⊕Rq,Cm) ≃ P(Rp,Cp)⊗P(Rq,Cq). Let F (u, v) ∈ P(Rp⊕Rq,Cm)
and apply the monogenic Fischer decomposition in Rp and Rq, then:

F (u, v) =

∞∑

s,k=0

∞∑

r,i=0

usvrMk(u)Ni(v)

where Mk(u) ∈ Mk(R
p,Cp), Ni(v) ∈ Mi(R

q,Cq). Project this identity on the orthogonal com-
plement of xP(Rm,Cm). Using the relation x = u+ v it is clear that PM (u) = −PM (v); therefore
each power of v can be replaced by a power of −u. Hence up to some (immaterial) minus signs in
the summands:

PM (F (u, v)) =
∞∑

s,k,i=0

PM (usMk(u)Ni(v))

In fact, we have the following theorem.

Theorem 8 The map

τM : P(Rp,Cp)⊗M(Rq,Cq) → M(Rm,Cm) , K ⊗G 7→ PM (K(u)G(v))

is a Spin(p)× Spin(q)-invariant isomorphism.

16



Proof.

First of all PM (W (u, v)) = 0 iff W (u, v) = xQ(u, v) for some polynomial Q ∈ P(Rm,Cm).
Let {Ki(u)} be a basis of P(Rp,Cp) and let {Mj(v)} be a basis of M(Rq,Cq). Suppose that
PM (

∑
ij λijKi(u)Mj(v)) = 0, then

∑
ij λijKi(u)Mj(v) = xQ(u, v) for some polynomial Q(u, v)

which must be harmonic in v. Thus Q(u, v) = Q1(u, v) + vQ2(u, v) where Qi(u, v) are monogenic
in v. Now ∂v(

∑
ij λijKi(u)Mj(v)) =

∑
ij λijK

′
i(u)∂vMj(v) = 0 (′ denoting the main involution)

and ∂vxQ(u, v) = 0. This yields

0 = ∂vxQ = ∂v(u+ v)(Q1 + vQ2)

= ∂v(uQ1 + uvQ2 + vQ1 − |v|2Q2)

= u(m+ 2Ev)Q2 − (m+ 2Ev)Q1 − 2vQ2

= Q3 − 2vQ2 .

Now Q2 and Q3 := u(m + 2Ev)Q2 − (m + 2Ev)Q1 are monogenic in v, hence by the direct
sum property of the (monogenic) Fischer decomposition in v: Q2 = Q3 = 0 and also Q1 = 0.
Thus Q = 0 or

∑
ij λijKi(u)Mj(v) = 0 which implies λij = 0. The invariance follows from the

Spin(m)-invariance of PM and the fact that P(Rp,Cp)⊗H(Rq,Cq) is a Spin(p)×Spin(q)-module.

We will now determine the monogenic projection or the map τM explicitly; the formulas will be
expressed in terms of the harmonic projections which were computed explicitly in Theorem 5.

Theorem 9 Let Pk(u) ∈ Mk(R
p,Cp), Qi(v) ∈ Mi(R

q,Cq). Then

PM (|u|2sPk(u)Qi(v)) =
1

2(2s+ k + i) +m− 2

(
(2(s+ k + i) +m− 2)PH(|u|2sPk(u)Qi(v))

−2sPH(|u|2s−2uP ′
k(u)vQi(v))

)
,

PM (u|u|2sPk(u)Qi(v)) =
1

2(2s+ 1 + k + i) +m− 2

(
(2s+m− p+ 2i)PH(|u|2suPk(u)Qi(v))

−(p+ 2s+ 2k)PH(|u|2sP ′
k(u)vQi(v))

)
.

The Fischer inner products are given by

||PM (|u|2s Pk(u)Qi(v))||2m =
2(s+ k + i) +m− 2

2(2s+ k + i) +m− 2
c(s, k, i, p, q)||Pk(u)||2p||Qi(u)||2q ,

||PM (u|u|2s Pk(u)Qi(v))||2m =
c(s+ 1, k, i, p, q)

2(s+ 1)
||Pk(u)||2p||Qi(u)||2q .

Proof.

The monogenic projection PM is given by

PM = PH
x∂x + 2Ex +m− 2

2Ex +m− 2
.

In the (u, v)-coordinate system we then have

PM = PH
(u+ v)(∂u + ∂v) + 2(Eu + Ev) +m− 2

2(Eu + Ev) +m− 2
.

Let Pk(u) ∈ Mk(R
p,Cp), Qi(v) ∈ Mi(R

q,Cq). Then

∂v(|u|2sPk(u)Qi(v)) = |u|2sP ′
k(u)∂vQi(v)) = 0

∂u(|u|2sPk(u)Qi(v)) = 2su|u|2s−2Pk(u)Qi(v))

∂v(u|u|2sPk(u)Qi(v)) = −u|u|2sP ′
k(u)∂vQi(v) = 0

∂u(u|u|2sPk(u)Qi(v)) = −(p+ 2Eu − u∂u)|u|2sPk(u)Qi(v))

= −(p+ 2s+ 2k)|u|2sPk(u)Qi(v)) .

17



Hence

x∂x + 2Ex +m− 2

2Ex +m− 2
(|u|2sPk(u)Qi(v))

=
1

2(2s+ k + i) +m− 2

(
(2(s+ k + i) +m− 2)|u|2sPk(u)Qi(v)

−2s|u|2s−2uP ′
k(u)vQi(v)

)

and

x∂x + 2Ex +m− 2

2Ex +m− 2
(u|u|2sPk(u)Qi(v))

=
1

2(2s+ 1 + k + i) +m− 2

(
(2s+m− p+ 2i)u|u|2sPk(u)Qi(v)

−(p+ 2s+ 2k)|u|2sP ′
k(u)vQi(v))

)
.

Applying PH to these expressions leads to the result.

Theorem 10 Let s, k, i, n ∈ N with s+ k + i = n. Let

{Pk,l(u), l = 1, . . . , dimMk(R
p,Cp)} be an ONB of Mk(R

p,Cp)

{Qi,j(v), j = 1, . . . , dimMi(R
q,Cq)} be an ONB of Mi(R

q,Cq) .

Then

PM (usPk,l(u)Qi,j(v)), l = 1, . . . , dimMk(R
p,Cp), j = 1, . . . , dimMi(R

q,Cq)

determine an OGB of Mn(R
m,Rm).

The results of Theorem 9 and 10 were also obtained in [8]. The construction of their basis relies on
solving a certain Vekua-type system. The solution of this system of partial differential equations
yields precisely the same type of Jacobi polynomials as obtained in our approach.

10 Γ-operators and Scasimirs

In this section we define the analogues of the Laplace-Beltrami (or Casimir) operators of Theorem
6. Define the Γ-operators in Rm, Rp and Rq:

Γx =
1

2
([∂x, x] +m) , Γu =

1

2
([∂u, u] + p) , Γv =

1

2
([∂v, v] + q) .

The Γx-operator does not behave as nicely as the Dirac operator ∂x does with respect to the direct
sum Rm = Rp ⊕ Rq because there is a third mixed term appearing:

Γx = Γu + Γv − (u ∧ ∂v + v ∧ ∂u) .

Define the pseudoscalars eP = e1 . . . ep, eM = e1 . . . em, then e2P = (−1)
p(p+1)

2 . Put c = (−i)
p(p+1)

2 ,
then ceP is (Fischer)-self adjoint and (ceP )

2 = 1. The projection operators

P+ =
1 + ceP

2
and P− =

1− ceP
2

project on the ±-eigenspaces of ceP . The translated Γ-operator given by

Γx − m− 1

2
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plays a crucial role in Clifford analysis of one vector variable. This operator anti-commutes with
x and ∂x and thus anti-commutes with the odd part of U(osp(1|2)) and commutes with the even
part of U(osp(1|2)). The operator in U(osp(1|2)) with this properties is up to a multiple unique
and is in the literature also known as the Scasimir (operator) and denoted by −Sc1 (see e.g. [1]).
Define now the modified Γ-operators or Scasimirs:

Su = ceP (Γu − p− 1

2
) , Sv = ceP (Γv −

q − 1

2
) .

The extra factor ceP ensures that Su, Sv ∈ End(M(Rm)). Remark that our definition is not
symmetric because for Sv one would rather expect to have the extra factor eQ instead of eP .
However, it seems that this definition is exactly what we need for our purposes.

Theorem 11 The operators Su, Sv belong to End(M(Rm)) and have the following properties:

• Su, Sv are commuting (Fischer)-self-adjoint operators and their (anti-) commutation rela-

tions with respect to osp(1|2) follow from

Sux = (−1)pxSu , Su∂x = (−1)p∂xSu

Svx = (−1)p−1xSv , Sv∂x = (−1)p−1∂xSv

• Su, Sv commute with the total Gamma-operator Γx and the monogenic projection PM .

Proof.

First of all: e∗P = (−ep) . . . (−e1) = (−1)
p(p+1)

2 eP , hence (ceP )
∗ = i

p(p+1)
2 (−1)

p(p+1)
2 eP = ceP and

Su is self-adjoint because it is the product of two commuting self-adjoint operators. Clearly Γu,
Γv and eP commute, thus Su, Sv commute. The (anti-)commutation relations between Su, Sv and
u, v, ∂u, ∂v follow from

{Γu − p− 1

2
, u} = [Γu − p− 1

2
, v] = 0

{Γu − p− 1

2
, ∂u} = [Γu − p− 1

2
, ∂v] = 0

and the (anti-)commutation relations of ceP with respect to u, ∂u, v, ∂v:

{ceP , u} = {ceP , ∂u} = [ceP , v] = [ceP , ∂v] = 0 , (p even)

{ceP , v} = {ceP , ∂v} = [ceP , u] = [ceP , ∂u] = 0 , (p odd) .

By means of the projection operators P± one can decompose the space of spherical monogenics
in Rp as follows:

M(Rp,Cp) = P+M(Rp,Cp)⊕ P−M(Rp,Cp)

= M+(Rp,Cp)⊕M−(Rp,Cp) ,

where M±(Rp,Cp) are the ±-eigenspaces of ceP ∈ End(M(Rp,Cp)).

Theorem 12 The Spin(p)× Spin(q)-invariant building blocks of M(Rm,Cm) are eigenfunctions

of the 3 commuting Scasimir operators Su, Sv, and Γx − m−1
2 ; the eigenvalues are given by

building block Su Sv Γx − m−1
2

PM (|u|2sP+
k (u)Qi(v)) −(k + p−1

2 ) −(i+ q−1
2 ) −(k + i+ 2s+ m−1

2 )

PM (|u|2sP−
k (u)Qi(v)) (k + p−1

2 ) (i+ q−1
2 ) −(k + i+ 2s+ m−1

2 )

PM (u|u|2sP+
k (u)Qi(v)) −(−1)p(k + p−1

2 ) (−1)p(i+ q−1
2 ) −(k + i+ 2s+ 1 + m−1

2 )

PM (u|u|2sP−
k (u)Qi(v)) (−1)p(k + p−1

2 ) −(−1)p(i+ q−1
2 ) −(k + i+ 2s+ 1 + m−1

2 )
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and determine the labels (s, k, i) in a unique way. Here Pk(u) ∈ Mk(R
p,Cp) and Qi(v) ∈

Mi(R
q,Cq). As a result, all summands in

M(Rm,Cm) =
⊕

s,k,i∈N

τM (usM±
k (R

p,Cp)⊗Mi(R
q,Cq))

are necessarily Fischer orthogonal.

Proof.

Let Pk(u) ∈ Mk(R
p,Cp), Qi(v) ∈ Mi(R

q,Cq). Since Su commutes with |u|2s and anti-commutes
with u|u|2s, it is sufficient to compute

Su(P
±
k (u)Qi(v)) =

(
ceP (Γu − p− 1

2
)P±

k (u)

)
Qi(v)

= −(k +
p− 1

2
)cePP

±
k (u)Qi(v) = ∓(k +

p− 1

2
)P±

k (u)Qi(v) .

Now Sv commutes with |u|2s and Svu = (−1)p−1uSv; moreover Γv − q−1
2 commutes with each

Cp-valued polynomial Vk(u). Thus it is sufficient to determine

Sv(P
±
k (u)Qi(v)) = cePP

±
k (u)(Γv −

q − 1

2
)Qi(v)

= −(i+
q − 1

2
)cePP

±
k (u)Qi(v) = ∓(i+

q − 1

2
)P±

k (u)Qi(v) .

The orthogonality follows from the fact that each summand is uniquely determined by a triple of
eigenvalues of the 3 commuting Scasimirs (which are self-adjoint).

Corollary 13 (Spin(p)× Spin(q)-invariant decomposition of spherical monogenics)
We have that

Mn(R
m,Cm) =

⊕

s+k+i=n

τM (usMk(R
p,Cp)⊗Mi(R

q,Cq)) . (4)

Remark

1. Let us note that the summands in (4) are not irreducible Spin(p)×Spin(q)-modules because
the spaces of spherical monogenics under consideration are Clifford algebra-valued and the
Clifford algebra Cm is not irreducible as a Spin(m)-module; it decomposes into the direct
sum of (irreducible) spinor representations. It is possible to consider spinor-valued polyno-
mials instead of Clifford algebra-valued polynomials. In this case, however, the isomorphism
between the spinor space in dimension m and the tensor product of spinor spaces in di-
mensions p resp. q is more complicated and we would need to consider cases depending on
various parities separately.

We illustrate it, for example, in the simple case where both p and q are odd. In this case,
the irreducible Spin(m)-module S±m (any of the half-spinor representations) is isomorphic
(as a Spin(p) × Spin(q)-module) to the tensor product Sp ⊗ Sq, where Sp, resp. Sq are the
irreducible spinor representations of the corresponding Spin groups. Then the decomposition
in the Corollary above can be regarded as an explicit form of the branching rules under the
reduction of the symmetry from Spin(m) to Spin(p)× Spin(q). It can be compared with the
general results presented in [17].

Nevertheless, if one considers Clifford algebra-valued polynomials, the Spin(p) × Spin(q)-
invariant label (k, i) can appear at most once in this decomposition. In this sense, the above
decomposition can be regarded as being “multiplicity free ”.
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2. Consider p = 1. Let Rm = Re1 ⊕ Rm−1. Then Mk(R,C1) is non-trivial if k = 0 and
M0(R,C1) ≃ C1 ≃ a + be1, a, b ∈ C. Take the standard ONB (e1, . . . , em) of Rm and the
corresponding chain of subgroups

Spin(m) ⊃ Spin(m− 1) ⊃ . . . ⊃ Spin(2)

where Spin(m−j) is the subgroup of Spin(m) fixing the unit vectors e1, . . . , ej . By induction
we thus obtain the Gel’fand-Zetlin basis for Mn(R

m,Cm). For m = 3, this has also been
discussed in [19].

3. Consider p = 2. Let R2 = span{e1, e2} ≃ e⊥12. Then Rm = R2 ⊕ Rm−2. Take the Cartan
basis h = {M12,M34, . . . ,M2M−1 2M} of spin(m) and the corresponding chain

Spin(m) ⊃ Spin(2)× Spin(m− 2) ⊃ Spin(2)× Spin(2)× Spin(m− 4) . . .

By induction we thus obtain an OGB of eigenfunctions of h for Mn(R
m,Cm). We will

explain this in more detail.

11 Step two branching for Mn(R
m
,Cm)

Let C2 be the complex Clifford algebra generated by e1 and e2. Define the following basis for C2

(see also [27]):

T± :=
1

2
(e1 ± ie2), I+ := −T+T− =

1

2
(1 + ie12) = P+, I− := −T−T+ =

1

2
(1− ie12) = P− .

The elements T± are null vectors and define the so-called Witt-basis. The elements I± are idem-
potents and they coincide for p = 2 with the previously defined projections: I± = P±. Consider
the vector variable u = u1e1 + u2e2 ∈ R

2. An element Pk(u) ∈ Mk(R
2,C2) is of the form

(u1 − e12u2)
k(a+ be12 + ce1 + de2), a, b, c, d ∈ C .

This follows immediately from the Cauchy-Kovalevska extension principle for the Dirac operator
on R2. Instead of the standard basis of C2 one can also consider the null-basis. They are related
as follows:

a+ be12 + ce1 + de2 = (a− ib)I+ + (a+ ib)I− + (c− id)T+ + (c+ id)T− .

Moreover ie12I+ = I+, ie12T+ = T+, ie12I− = −I− and ie12I− = −I−. Introduce complex
variables in the plane (u1, u2) = R2:

z := u1 + iu2 , z̄ := u1 − iu2 , ∂z :=
1

2
(∂u1 − i∂u2) , ∂z̄ :=

1

2
(∂u1 + i∂u2) .

We thus obtain the following basis for Mk(R
2,C2):

(u1 − e12u2)
k T+ = (u1 + iu2)

k T+ = zk T+

(u1 − e12u2)
k I+ = (u1 + iu2)

k P+ = zk I+

(u1 − e12u2)
k T− = (u1 − iu2)

k T− = z̄k T−

(u1 − e12u2)
k I− = (u1 − iu2)

k P− = z̄k I− .

It is clear that our choice of Witt-basis is compatible with the standard complex structure in the
plane spanned by e1 and e2. The powers z

k and z̄k are the basic holomorphic and anti-holomorphic
polynomials on R2. Expressing the summands from Theorem 12 in terms of complex coordinates
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induced by the Witt-basis leads to the following isomorphisms:

|u|2sM+
k (R

2,C2) ≃ span z̄szk+s

{
I+
T+

}

|u|2sM−
k (R

2,C2) ≃ span zsz̄k+s

{
I−
T−

}

u|u|2sM+
k (R

2,C2) ≃ span z̄szk+s+1

{
T−
I−

}

u|u|2sM−
k (R

2,C2) ≃ span zsz̄k+s+1

{
T+

I+

}
.

For p = 2, Su = ie12(−e12L12 − 1
2 ) = iM12, thus Su is up to the imaginary unit i the first element

of the Cartan basis of spin(m) and Sv = ie12(Γv − m−3
2 ). In complex coordinates

Su = iM12 = i

(
u1∂u2 − u2∂u1 −

1

2
e12

)
= Ez̄ − Ez −

i

2
e12 ,

where Ez and Ez̄ are the Euler operators which determine the degree of homogeneity in z and z̄.
The eigenfunctions of Su on H(R2,C2) are easily found to be of the form (k ∈ N):

Suz
k

{
I+
T+

}
= −(k +

1

2
) zk

{
I+
T+

}

Suz̄
k

{
I−
T−

}
= (k +

1

2
) z̄k

{
I−
T−

}

Suz
k+1

{
I−
T−

}
= −(k +

1

2
) zk+1

{
I−
T−

}

Suz̄
k+1

{
I+
T+

}
= (k +

1

2
) z̄k+1

{
I+
T+

}
.

Consider the direct sum Rm = R2 ⊕ Rm−2, x = u + v and let Qi(v) ∈ Mi(R
m−2,Cm−2). Then

ΓvQi(v) = −iQi(v) and

Sv

{
I+
T+

}
Qi(v) = ie12

{
I+
T+

}
(Γv −

m− 3

2
)Qi(v) = −(i+

m− 3

2
)

{
I+
T+

}
Qi(v)

Sv

{
I−
T−

}
Qi(v) = ie12

{
I−
T−

}
(Γv −

m− 3

2
)Qi(v) = (i+

m− 3

2
)

{
I−
T−

}
Qi(v) .

Summarizing, we have the following characterization:

Theorem 14 (Step two branching)
The space M(Rm,Cm) is the direct sum of the Spin(2) × Spin(m − 2)-invariant summands as

listed below. Each of these building blocks occurs exactly once and they are eigenspaces of the 3
commuting Scasimir operators Su = iM12, Sv = ie12(Γv − m−3

2 ) and Γx − m−1
2 . The eigenvalues

are given by

summand (p = 2) Su Sv Γx − m−1
2

PM (z̄szk+s

{
I+
T+

}
Qi(v)) −(k + 1

2 ) −(i+ m−3
2 ) −(k + i + 2s+ m−1

2 )

PM (zsz̄k+s

{
I−
T−

}
Qi(v)) (k + 1

2 ) (i+ m−3
2 ) −(k + i + 2s+ m−1

2 )

PM (z̄szk+s+1

{
T−
I−

}
Qi(v)) −(k + 1

2 ) (i+ m−3
2 ) −(k + i+ 2s+ 1 + m−1

2 )

PM (zsz̄k+s+1

{
T+

I+

}
Qi(v)) (k + 1

2 ) −(i+ m−3
2 ) −(k + i+ 2s+ 1 + m−1

2 )

Here s, k, i ∈ N and Qi(v) ∈ Mi(R
m−2,Cm−2).
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Applying this construction for p = 2 inductively, we thus obtain an orthogonal basis of weight
vectors for Mn(R

m,Cm).
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