QUANDLE PROBLEMS FOR GROUP THEORISTS

Filippo Spaggiari (spaggiari@karlin.mff.cuni.cz) Department of Algebra, Charles University Prague

1. Translation Maps	5. Hayashi's Conjecture
Definition (Left Translation)	Conjecture (Hayashi's, Original Formulation [1])
Let $X = (X, \triangleright)$ be a binary algebra, and let $a \in X$. The left translation by a is	Let X be a finite connected quandle. Then every left translation of X has a regular cycle.
the map $L_a : X \to X$ such that $L_a(x) = a \triangleright x.$	Remark. This conjecture has been proven true for several classes ([2], [3], [4]) Moreover, we can reformulate it in Group Theoretic terms (see [5]), providing a different approach.
	Conjecture (Hayashi's, Group Theoretic Reformulation [5])
2 Output dloc	Let G be a transitive permutation group over a finite set X, and let $e \in X$. If $\zeta \in Z(G_e)$ and

2. Quandles

Definition (Quandle)

Let $X = (X, \triangleright)$ be a binary algebra. X is a **quandle** if for all $a \in X$

1. L_a is an automorphism of X 2. $L_a(a) = a$.

Example. The following structures are quandles that can be constructed from a group G.

Conjugation quandle:

 $\mathsf{Conj}(G) = (G, x \triangleright y = xyx^{-1}).$

• Coset quandle: $\alpha \in Aut(G), H \leq Fix(\alpha)$

 $\mathcal{Q}(G, H, \alpha) = (G/H, xH \triangleright yH = x\alpha(x^{-1}y)H).$

• Affine quandle: $\alpha \in Aut(G)$, G abelian

 $\mathsf{Aff}(G,\alpha) = (G, x \triangleright y = \alpha(x) + (\mathsf{id} - \alpha)(y)).$

$\langle \zeta^G \rangle = G$, then ζ has a regular cycle.

6. Some Techniques

Proposition (Icm Constraint) [6]

Let X be a finite connected quandle, and let $\Lambda(X)$ be the set of cycle lengths of any left translation. If $\Lambda(X) = A \cup B$ for some $A, B \neq \emptyset$, then $\mathsf{lcm}(A)$ divides $\mathsf{lcm}(B)$, or viceversa.

Proposition [7]

Let X be a finite connected quandle such that

1. Z(Inn(X)) = 1

2. There are $x, y \in X$ such that $\langle \{L_x\} \cup Inn(X)_y \rangle = Inn(X)$.

Then X has a regular cycle.

Remark. The previous proposition seems to apply to the class of simple quandles.

Definition (Inner Group)

The **inner group** of a quandle X is

 $\mathsf{Inn}(X) = \langle \mathsf{L}_a \colon a \in X \rangle.$

3. Connectedness

Definition (Connectedness)

Let X be a quandle, and $k \in \mathbb{N}$.

1. X is k-connected if for all $x, y \in X$ there are $a_1, \ldots, a_k \in X$ such that

 $\mathsf{L}_{a_1} \dots \mathsf{L}_{a_k}(x) = y.$

2. X is **connected** if it is k-connected for some $k \in \mathbb{N}$.

7. A Conjecture on Connectedness Degree

Conjecture (Bound in Connectedness Degree)

Let X be a finite connected quandle. Then X is 3-connected.

Remark. This conjecture says that given any connected quandle X, and any pair of its elements x, y, we can go to y starting from x by means of three left translations at most. Of course, for $k \ge 4$ no examples of k-connected quandles are known.

Theorem (*k*-connectedness for Coset Quandles)

Consider a finite coset quandle $\mathcal{Q}(G, H, \alpha)$, where $\alpha \in \operatorname{Aut}(G)$ is the conjugation map by some $\zeta \in H$. Then $\mathcal{Q}(G, H, \alpha)$ is k-connected if and only if for every $x \in G$ there are $x_1, \ldots, x_k \in G$ such that

 $xH = \zeta^{x_1} \dots \zeta^{x_k} H.$

Conjecture (Group Theoretic Reformulation for Coset Quandles)

Let G be a group, $H \leq G$, and $\zeta \in H$. Then for every $x \in G$ there are at most 3 elements x_1, x_2, x_3 such that

$$xH = \zeta^{x_1} \zeta^{x_2} \zeta^{x_3} H.$$

Remark. If a quandle X is (k+1)-connected, then it is also k-connected.

4. Regular Cycles

Definition (Regular Cycle)

Let $\sigma \in S_n$ be a permutation with cycle structure $(l_1^{e_1}, \ldots, l_k^{e_k})$. Then σ has a regular cycle if

 $l_i \mid l_k \quad \text{for } i = 1, \dots, k.$

Example. (1, 2)(3, 4)(5, 6, 7)(8, 9, 10, 11, 12, 13).

Remark. Another special case where $X = \text{Conj}(\sigma^{S_n})$ and σ is an odd cycle has been intensively studied. The tests show that this quandle is even 2-connected, this means that starting from any element of σ^{S_n} we can reach any other with two conjugations.

8. References

- Chuichiro Hayashi. Canonical forms for operation tables of finiate connected quandles, 2011.
- [2] Takeshi Kajiwara and Chikara Nakayama. A large orbit in a finite affine quandle, 2016.
- [3] Antonio Lages and Pedro Lopes. On a conjecture by Hayashi on finite connected quandles, 2024.
- Taisuke Watanabe. On the structure of the profile of finite connected quandles, 2019. |4|
- Alexander Hulpke, David Stanovský, and Petr Vojtěchovský. Connected quandles and transitive groups, 2016. $\left[5\right]$
- [6] Naqeeb ur Rehman. On the cycle structure of finite racks and quandles, 2019.
- Selçuk Kayacan. On a conjecture about profiles of finite connected racks, 2021. [7]