Mutually normalizing regular subgroups of the holomorph of $C_{p^{n}}$

Filippo Spaggiari

AAA102 - Szeged, Hungary
June 24-26, 2022

rant The holomorph

Let us introduce some fundamental notions.

Definition

Let G be a group. The holomorph of G is

$$
\operatorname{Hol}(G)=\langle\operatorname{Aut}(G), \rho(G)\rangle \leq \operatorname{Sym}(G)
$$

where $\rho(G)=\left\{\sigma_{g}: x \mapsto x g \mid g \in G\right\}$ is the subgroup of right multiplication maps.

Thus, the holomorph of a group is a very large subset of bijective maps.

What are these normalizing graphs?

Definition

The normalizing graph of a group G is a graph where
(1) The vertices are the regular subgroups of $\operatorname{Hol}(G)$.
(2) An edge represents a mutual normalization in $\operatorname{Sym}(G)$.

Motivation: It has several connections with the recent theory of skew braces and the Yang-Baxter equation.

The pièce de résistance of the coding part of this work is certainly the GAP function NEO.

NEO := function(G)

AHK Construction of the permutational holomorph
H := permutationalHolomorph(G);
\#\#\# Extraction of all rhe regular subaroups
reg := allRegularSubgroupsHolomorph(G);
\#\#\# Construction of the normalizing graph as GAp list
for A in reg do
for B in reg do
if (IsNormal(A, B) and IsNormal(B,A)) then
if not (A in verts) then
Add(verts, A);
ft;
if not (B in verts) then
Add(verts, B);
ft;
if not ([Position(verts, A), Position(verts, $B)]$) in edges then
Add(edges,[Position(verts,A), Position(ver ${ }^{+-}$B ${ }^{\prime 7}$.
ft;
if not ([Position(verts,B), Position(verts, A)
Add(edges, [Position(verts, B), Position(verts, A) $1 / ;$
ft;
od;
AHA Filtering \& colouring
for A in verts do
Append(filt,[stringToColor(IdGroup(A))]);
od;
HAK Construction of the normalizing graph as NetworkX image
vert := graph[1];
edges := graph[2];

```
#### Initialize graph and filter
verts := [];
edges := [];
edges := [];
filt := [];
```

$\begin{array}{ll}\text { 1.22 } & \text { AppendTo(file, "import pygraphviz as pgv\n\n"); } \\ \text { 1.23 } & \text { Apper-t (file, "fig, ax }=\text { plt.subplots() } \backslash n " \text {); }\end{array}$
Appernfile, "fig, ax = plt.subplots() \n");
(\sim OL
HAKH Create/Overwrite a file in the currect directory and initialize it
file := Filename(DirectoryCurrent(), "NEOgraph.py");
PrintTo(file, "");
HA\&F ρ_{r} int header in python code
AppendTo(file, "import matplotlib.pyplot as plt|n");
AppendTo(file, "import networkx as $n x \backslash n "$);
AppendTo(file, "import numpy as np $\backslash \mathrm{n} \backslash \mathrm{n} "$);
\%AKH: Print nodes code
AppendTo(file, Concatenation("G.add_nodes_from([1,",String(Length(vert)), "]) \n\
rint edges code
in [1..Length(edges)] do
in [1..Length(edges)] do
appendTo(file, Concatenation("G.add_edge(", String(edges[i][1]), ", ", String(
AppendTo(file,
len $\left.\left.=2) \backslash n^{\prime \prime}\right)\right)$;
| \#\#世filtering \& colouring
AppendTo(file, " $\backslash \mathrm{n} \backslash \mathrm{n}$ ");
AppendTo(file, " $\backslash n \backslash n ") ;$
AppendTo(file, "color_map $=[] \backslash n \backslash n$ ");

Normalizing 2]), ",", String(filt[i][3]), ")) \#", String(i), "\n"));
Add(edges, [Position(verts, B), Position(veris, A)] ノ; ft;

\#\# Print the last lines of python code
AppendTo(file, " \ncolor_map = np.roll(color_map, 1) \n");
AppendTo(file, Concatenation("\nplt.title(r'\$C_\{", String(Size(vert[1])), "\}\$') AppendTo(file, "nx.draw (G, \n pos=nx.drawing.nx_agraph.graphviz_layout(G, prog=' n
th_labels = True, in font_color = 'white', \n font_size = 10, in font_weight = 'bold',
= 200, \n node_color = color_map) $\mathbf{n}^{\prime \prime}$);
AppendTo(file, "plt.show()");
en

Can you spot the pattern?

Can you spot the pattern?

Can you spot the pattern?

Problem

Find and prove the normalizing graph of $C_{p n}$

엔 Different notions, same concept

Notation. For $x \in G$ and $\varphi \in \operatorname{Sym}(G)$ we denote by $x^{\varphi}=\varphi(x)$.

Theorem (A. Caranti, 2020 [1])

Let (G, \cdot) be a finite group. The following data are equivalent.
(1) A regular subgroup $N \leq \operatorname{Hol}(G, \cdot)$.
(2) A gamma function $\gamma:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$, i.e. such that

$$
\gamma\left(x^{\gamma(y)} \cdot y\right)=\gamma(x) \gamma(y) \quad \forall x, y \in G
$$

(3) A group operation \circ on G such that $x \circ y=x^{\gamma(y)}$ for every $x, y \in G$.

Expected question(s). How is N connected with γ and \circ ?
Why are we introducing gamma functions?
$\underset{\text { "two is the oddest } p \text { prime number" }}{\text { The }}$

After having used GAP to obtain some raw information...

$$
\text { In } \mathrm{C}_{16} \text { we have }
$$

x	$0 ; 8$	$1 ; 9$	$2 ; 10$	$3 ; 11$	$4 ; 12$	$5 ; 13$	$6 ; 14$	$7 ; 15$
$\gamma(x)$	σ_{1}	σ_{3}	σ_{5}	σ_{7}	σ_{9}	σ_{11}	σ_{13}	σ_{15}

Guess:

$$
\begin{aligned}
\gamma: G & \rightarrow \operatorname{Aut}(G) \\
x & \mapsto \sigma_{2 x+1}
\end{aligned}
$$

... and prove their existence

In the same way, we obtain the following gamma functions

Gamma function	Isomorphism class
$\gamma_{1}(x)=\sigma_{1}$	$\mathrm{C}_{2^{n}}$
$\gamma_{2}(x)=\sigma_{2^{n-1}+1}^{x}$	$\mathrm{C}_{2^{n}}$
$\gamma_{3}(x)=\sigma_{2^{n-1}-1}^{x}$	$\mathrm{Q}_{2^{n}}$
$\gamma_{4}(x)=\sigma_{2^{n}-1}^{x}$	$\mathrm{D}_{2^{n}}$
$\gamma_{\mathrm{p}}(x)=\sigma_{2 x+1}$	$\mathrm{C}_{2} \times \mathrm{C}_{2^{n-1}}$
$\gamma_{\mathrm{c}, u}(x)=\sigma_{2^{u} x+1}$	$u=2, \ldots, n$

Gamma function
$\gamma_{5}(x)=\left\langle\begin{array}{ll}\sigma_{1} & x \equiv 0(\bmod 4) \\ \sigma_{2^{n-1}-1} & x \equiv 1(\bmod 4) \\ \sigma_{2^{n-1}+1} & x \equiv 2(\bmod 4) \\ \sigma_{2^{n}-1} & x \equiv 3(\bmod 4)\end{array}\right.$
$\gamma_{6}(x)=\left\langle\begin{array}{ll}\sigma_{1} & x \equiv 0(\bmod 4) \\ \sigma_{2^{n}-1} & x \equiv 1(\bmod 4) \\ \sigma_{2^{n-1}+1} & x \equiv 2(\bmod 4) \\ \sigma_{2^{n-1}-1} & x \equiv 3(\bmod 4) \\ \mathrm{SD}_{2^{n}} \\ \gamma_{\mathrm{m}}(x)=\left\langle\begin{array}{ll}\sigma_{2 x+1} & x \equiv 0(\bmod 2) \\ \sigma_{2 x+2^{n-2}+1} & x \equiv 1(\bmod 2)\end{array}\right. & \mathrm{SD}_{2^{n}}\end{array}\right.$

Roughly speaking, to conjugate a gamma function γ by an automorphism means simply to permute the elements of image of γ.

Notation. For a gamma function γ and $\sigma_{2 k+1} \in \operatorname{Aut}(G)$ we denote by $\gamma^{k}=\gamma^{\sigma_{2 k+1}^{-1}}$.

γ	γ_{1}	γ_{2}	γ_{3}	γ_{4}	γ_{5}	γ_{6}	γ_{p}	γ_{m}	$\gamma_{\mathrm{c}, u}$
$\left\|\gamma^{\operatorname{Aut}(G)}\right\|$	1	1	1	1	2	2	2^{n-2}	2^{n-2}	2^{n-u-1}

Proposition

There are at least $3 \cdot 2^{n-2}+4$ regular subgroups in $\mathrm{Hol}(G)$.

Expected question. Why is this procedure called conjugation?

Uniqueness of the gamma functions

This was the most difficult part of the entire work. Proofs are long, technical and boring (at least, the proofs I found are so).

Mutual normalization problem

Theorem

Let (G, \cdot) be a group such that $\operatorname{Aut}(G)$ is abelian, and let $N, M \leq \operatorname{Hol}(G)$ be regular subgroups. Denote by

$$
\gamma:(G, \circ) \rightarrow \operatorname{Aut}(G), \quad \delta:(G, \bullet) \rightarrow \operatorname{Aut}(G)
$$

respectively the gamma functions associated with N and M. Then N and M mutually normalize each other if and only if

$$
\left\{\begin{array}{l}
\gamma(x)=\gamma\left(x \cdot(y \circ x)^{-1} \cdot(x \bullet y)\right) \\
\delta(x)=\delta\left(x \cdot(y \bullet x)^{-1} \cdot(x \circ y)\right)
\end{array} \quad \forall x, y \in G\right.
$$

Remark. This is a general result. In particular, for cyclic groups, this is a pair of equation in modular arithmetic, since $C_{2^{n}} \cong \mathbb{Z} / 2^{n} \mathbb{Z}$.

Mutual normalization of γ_{i}

Those conditions trivially hold for $\gamma_{1}, \ldots, \gamma_{6}$ in the following sense.

Corollary

$$
\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\} \quad \text { and } \quad\left\{\gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{6}\right\}
$$

are mutually normalizing families of gamma functions.

Mutual normalization of γ_{c}

For a gamma function γ and $\sigma_{2 k+1} \in \operatorname{Aut}(G)$ we denote by $\gamma^{k}=\gamma^{\sigma_{2 k+1}^{-1}}$.

Proposition

$$
\gamma_{\mathrm{c}, u}^{k} \rightleftharpoons \gamma_{\mathrm{c}, v}^{h} \Longleftrightarrow \begin{cases}2^{u}(2 k+1) \equiv 2^{v}(2 h+1) & \left(\bmod 2^{n-u}\right) \\ 2^{u}(2 k+1) \equiv 2^{v}(2 h+1) & \left(\bmod 2^{n-v}\right)\end{cases}
$$

Corollary

$$
H=\left\{\gamma_{\mathrm{c}, u}^{k}:\left\lceil\frac{n}{2}\right\rceil \leq u \leq n\right\}
$$

is composed by $2^{n-\left\lceil\frac{n}{2}\right\rceil}$ mutually normalizing gamma functions.

Corollary

For every $2 \leq u<\left\lceil\frac{n}{2}\right\rceil$ and $0 \leq t<2^{n-2 u-1}$, the family

$$
A_{u}^{t}=\left\{\gamma_{\mathrm{c}, u}^{k}: k \equiv t \quad\left(\bmod 2^{n-2 u-1}\right)\right\}
$$

is composed by 2^{u} mutually normalizing gamma functions. In total, there are

$$
\frac{1}{3}\left(2^{n-3}-2^{n-2\left\lceil\frac{n}{2}\right\rceil+1}\right)
$$

distinct A_{u}^{t}.

Mutual normalization of γ_{p} and γ_{m}

Proposition

$$
\begin{aligned}
& \gamma_{\mathrm{p}}^{k} \rightleftharpoons \gamma_{\mathrm{p}}^{h} \Longleftrightarrow \quad k \equiv h \quad\left(\bmod 2^{n-3}\right) \\
& \gamma_{\mathrm{m}}^{k} \rightleftharpoons \gamma_{\mathrm{m}}^{h} \Longleftrightarrow \quad k \equiv h \quad\left(\bmod 2^{n-3}\right) \\
& \gamma_{\mathrm{p}}^{k} \rightleftharpoons \gamma_{\mathrm{m}}^{h} \quad \Longleftrightarrow \quad k-h \equiv 2^{n-4} \quad\left(\bmod 2^{n-3}\right)
\end{aligned}
$$

Corollary

$$
S_{k}=\left\{\gamma_{\mathrm{p}}^{k}, \gamma_{\mathrm{m}}^{k+2^{n-4}}, \gamma_{\mathrm{p}}^{k+2^{n-3}}, \gamma_{\mathrm{m}}^{k+2^{n-3}+2^{n-4}}\right\}
$$

is composed by 4 mutually normalizing gamma functions. In total, there are 2^{n-3} distinct S_{k}.

mane local normalizing graph of $\mathrm{C}_{2 n}$

路

The case p odd

(A very quick look)

$p=5$

$p=11$

Conclusion?

The mutually normalizing regular subgroups of $\mathrm{Hol}\left(\mathrm{C}_{p^{n}}\right)$ have been completely classified. Is it really time to be satisfied?

Ambition: We know that cyclic groups are the building blocks of abelian groups...

That's all, thanks!

Bibliography I

[1] A. Caranti, Journal of Algebra 2020, 562, 647-665.
[2] D. S. Dummit, R. M. Foote, Abstract algebra, Vol. 3, Wiley Hoboken, 2004.
[3] A. Caranti, F. Dalla Volta, Journal of Algebra 2018, 507, 81-102.
[4] E. Campedel, A. Caranti, I. Del Corso, Journal of Algebra 2020, 556, 1165-1210.
[5] J. D. Dixon, B. Mortimer, Permutation groups, Vol. 163, Springer Science \& Business Media, 1996.
[6] C. E. Praeger, C. Schneider, Permutation groups and cartesian decompositions, Vol. 449, London Mathematical Society Lecture Note Series, 2018.
[7] M. Hall, The theory of groups, Macmillan New York, 1959.
[8] D. Gorenstein, Finite groups, Vol. 301, American Mathematical Soc., 2007.
[9] N. Byott, Communications in Algebra 1996, 24, 3217-3228.
[10] C. Greither, B. Pareigis, Journal of Algebra 1987, 106, 239-258.
[11] N. Byott, Journal of Algebra 2007, 318, 351-371.

mativz Bibliography II

[12] T. Kohl, Journal of Algebra 1998, 207, 525-546.
[13] A. Machì, Groups: An Introduction to Ideas and Methods of the Theory of Groups, Springer Science \& Business Media, 2012.
[14] GAP, GAP - Groups, Algorithms, and Programming, Version 4.11.1, The GAP Group, 2021.
[15] L. N. Childs in 2012.
[16] A. Koch, Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures, 2020.
[17] A. Caranti, L. Stefanello, From endomorphisms to bi-skew braces, regular subgroups, normalising graphs, the Yang-Baxter equation, and Hopf Galois structures, 2021.
[18] L. N. Childs, Bi-skew braces and Hopf Galois structures, 2019.
[19] A. Koch, Abelian maps, brace blocks, and solutions to the Yang-Baxter equation, 2021.

