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Let us introduce some fundamental notions.

Definition
Let G be a group. The holomorph of G is

Hol(G) = ⟨Aut(G), ρ(G)⟩ ≤ Sym(G)

where ρ(G) = {σg : x 7→ xg | g ∈ G} is the subgroup of right multiplication maps.

Thus, the holomorph of a group is a very large subset of bijective maps.

The holomorph
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Definition
The normalizing graph of a group G is a graph where

1 The vertices are the regular subgroups of Hol(G).
2 An edge represents a mutual normalization in Sym(G).

Motivation: It has several connections with the recent theory of skew braces and
the Yang-Baxter equation.

The pièce de résistance of the coding part of this work is certainly the GAP function
NEO.

What are these normalizing graphs?
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Group GGroup G
⇓⇓

NEONEO
⇓⇓

NormalizingNormalizing
graph of Ggraph of G



Can you spot the pattern?
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Can you spot the pattern?
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Can you spot the pattern?
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Problem

Find and prove the normalizing
graph of Cpn



Notation. For x ∈ G and φ ∈ Sym(G) we denote by xφ = φ(x).

Theorem (A. Caranti, 2020 [1])

Let (G, ·) be a finite group. The following data are equivalent.
1 A regular subgroup N ≤ Hol(G, ·).
2 A gamma function γ : (G, ·) → Aut(G, ·), i.e. such that

γ(xγ(y) · y) = γ(x)γ(y) ∀x, y ∈ G.

3 A group operation ◦ on G such that x ◦ y = xγ(y) for every x, y ∈ G.

Expected question(s). How is N connected with γ and ◦?
Why are we introducing gamma functions?

Different notions, same concept
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The case p = 2
"two is the oddest prime number"



After having used GAP to obtain some raw information...

In C16 we have

x 0; 8 1; 9 2; 10 3; 11 4; 12 5; 13 6; 14 7; 15

γ(x) σ1 σ3 σ5 σ7 σ9 σ11 σ13 σ15

Guess:

γ : G → Aut(G)

x 7→ σ2x+1

Guess some gamma functions...
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In the same way, we obtain the following gamma functions

Gamma function Isomorphism class

γ1(x) = σ1 C2n

γ2(x) = σx
2n−1+1 C2n

γ3(x) = σx
2n−1−1 Q2n

γ4(x) = σx
2n−1 D2n

γp(x) = σ2x+1 C2 × C2n−1

γc,u(x) = σ2ux+1 u = 2, . . . ,n C2n

... and prove their existence
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Gamma function Isomorphism class

γ5(x) =

〈 σ1 x ≡ 0 (mod 4)
σ2n−1−1 x ≡ 1 (mod 4)
σ2n−1+1 x ≡ 2 (mod 4)
σ2n−1 x ≡ 3 (mod 4)

SD2n

γ6(x) =

〈 σ1 x ≡ 0 (mod 4)
σ2n−1 x ≡ 1 (mod 4)
σ2n−1+1 x ≡ 2 (mod 4)
σ2n−1−1 x ≡ 3 (mod 4)

SD2n

γm(x) =
〈

σ2x+1 x ≡ 0 (mod 2)
σ2x+2n−2+1 x ≡ 1 (mod 2)

M2n

... and prove their existence
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Roughly speaking, to conjugate a gamma function γ by an automorphism means
simply to permute the elements of image of γ.

Notation. For a gamma function γ and σ2k+1 ∈ Aut(G) we denote by γk = γσ
−1
2k+1 .

γ γ1 γ2 γ3 γ4 γ5 γ6 γp γm γc,u∣∣γAut(G)
∣∣ 1 1 1 1 2 2 2n−2 2n−2 2n−u−1

Proposition

There are at least 3 · 2n−2 + 4 regular subgroups in Hol(G).

Expected question. Why is this procedure called conjugation?

Generate the others via conjugation
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This was the most difficult part of the entire work. Proofs are long, technical and
boring (at least, the proofs I found are so).

Uniqueness of the gamma functions
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Mutual normalization problem



Theorem
Let (G, ·) be a group such that Aut(G) is abelian, and let N,M ≤ Hol(G) be regular
subgroups. Denote by

γ : (G, ◦) → Aut(G), δ : (G, •) → Aut(G)

respectively the gamma functions associated with N and M. Then N and M mutually
normalize each other if and only if{

γ(x) = γ
(
x · (y ◦ x)−1 · (x • y)

)
δ(x) = δ

(
x · (y • x)−1 · (x ◦ y)

) ∀x, y ∈ G.

Remark. This is a general result. In particular, for cyclic groups, this is a pair of
equation in modular arithmetic, since C2n ∼= Z/2nZ.

Idea: Translate the mutual normalization
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Those conditions trivially hold for γ1, . . . , γ6 in the following sense.

Corollary

{γ1, γ2, γ3, γ4} and {γ3, γ4, γ5, γ6}

are mutually normalizing families of gamma functions.

N6

N5

N4

N3

N2

N1

Mutual normalization of γi
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For a gamma function γ and σ2k+1 ∈ Aut(G) we denote by γk = γσ
−1
2k+1 .

Proposition

γk
c,u ⇌ γh

c,v ⇐⇒

{
2u(2k + 1) ≡ 2v(2h + 1) (mod 2n−u)

2u(2k + 1) ≡ 2v(2h + 1) (mod 2n−v)

Corollary

H =
{
γk

c,u :
⌈n

2

⌉
≤ u ≤ n

}
is composed by 2n−⌈ n

2⌉ mutually normalizing gamma functions.

Mutual normalization of γc
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N6

N5

N4

N3

N2

|H| = 2n−⌈ n
2⌉

N1

Nk1
c

Nk2
c

Nk3
c

Nk4
c

. . .

. . .

Nk5
c

Nk6
c

Nk7
c

Nk8
c

The comet
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Corollary

For every 2 ≤ u <
⌈n

2

⌉
and 0 ≤ t < 2n−2u−1, the family

At
u =

{
γk

c,u : k ≡ t (mod 2n−2u−1)
}

is composed by 2u mutually normalizing gamma functions. In total, there are

1
3

(
2n−3 − 2n−2⌈ n

2⌉+1
)

distinct At
u.

Mutual normalization of γc
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Nk9
c

∣∣∣At1
2

∣∣∣ = 22

Nk10
c

Nk11
c Nk12

c

Nk13
c

∣∣∣At2
3

∣∣∣ = 23

Nk14
c

Nk15
c

Nk16
c

Nk17
c

Nk18
c

Nk19
c

Nk20
c

The asteroids
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Proposition

γk
p ⇌ γh

p ⇐⇒ k ≡ h (mod 2n−3)

γk
m ⇌ γh

m ⇐⇒ k ≡ h (mod 2n−3)

γk
p ⇌ γh

m ⇐⇒ k − h ≡ 2n−4 (mod 2n−3)

Corollary

Sk =
{
γk

p, γ
k+2n−4

m , γk+2n−3

p , γk+2n−3+2n−4

m

}
is composed by 4 mutually normalizing gamma functions. In total, there are 2n−3

distinct Sk.

Mutual normalization of γp and γm
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Nk
p

|Sk| = 4

Nk+2n−4

m

Nk−2n−4

m Nk+2n−3

p

The stars
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The local normalizing graph of C2n
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The case p odd
(A very quick look)



p = 3
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p = 5
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p = 11
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The mutually normalizing regular subgroups of Hol(Cpn) have been completely
classified. Is it really time to be satisfied?

Ambition: We know that cyclic groups are the building blocks of abelian groups...

Conclusion?
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That’s all, thanks!
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