
DESCRIPTIVE PROPERTIES OF VECTOR-VALUED AFFINE

FUNCTIONS

JIŘÍ SPURNÝ

Abstract. Let X be a compact convex set, extX stand for the set of extreme

points of X, F be a Fréchet space and f : X → F be a strongly affine mapping.
The aim of our paper is to investigate transfer of descriptive properties of

f |extX to f , generalizing thus results from [18] and [12] to the vector-valued

context. As a corollary of our results we obtain a vector-valued analogue of
a result of J. Lindenstrauss and D.E. Wulbert on L1-preduals and answer

positively Questions 10.6 and 10.7 from [7].

1. Introduction

If X is a compact convex set in a locally convex space and extX is the set of all
extreme points of X, the Krein-Milman theorem asserts that X = co extX (if A is
a subset of a locally convex space, symbol coA denotes the closed convex hull of A,
whereas acoA stands for the closed absolute convex hull of A). Hence if f : X → R
is affine and continuous, it follows that f(X) ⊂ cof(extX) and thus behaviour of f
is in a way determined by the properties of f |extX . This easy observation leads to
a natural question whether it is possible for an affine function f on X to transfer
some properties of f |extX to f . It has turned out that such a transfer is possible
in case of strongly affine functions (see Section 1.1 for the definition). In [12] we
investigated transfer of descriptive properties of real (or complex) strongly affine
functions on X. The main goal of the present paper is to generalize these results
to the case of functions with values in Fréchet spaces. As a corollary we obtain a
positive answer to Questions 10.6 and 10.7 in [7].

The paper is organized as follows. The rest of the first section is devoted to
definitions and basic facts on compact convex sets, Baire functions and vector
integration. Main results are collected in Section 2. The remaining parts provide
the proofs of the main results.

1.1. Compact convex sets. We will deal both with real and complex spaces. To
shorten the notation we will use the symbol F to denote the respective field R or
C.

If X is a compact Hausdorff space, we denote by C(X,F) the Banach space of
all F-valued continuous functions on X equipped with the sup-norm. The dual of
C(X,F) will be identified (by the Riesz representation theorem) withM(X,F), the
space of F-valued Radon measures on X equipped with the total variation norm
and the respective weak∗ topology. LetM+(X) andM1(X) stand for the set of all
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positive and probability measures, respectively. If B ⊂ X is a Borel set, we write
M1(B) for the set of all µ ∈M1(X) with µ(X \B) = 0.

Let X be a convex subset of a (real or complex) vector space E and F be another
(real or complex) vector space. Recall that a mapping f : X → F is said to be affine
if f(tx+ (1− t)y) = tf(x) + (1− t)f(y) whenever x, y ∈ X and t ∈ [0, 1]. We stress
that the notion of an affine function uses only the underlying structure of real vector
spaces.

Let X be a compact convex set in a locally convex topological vector space. We
write A(X,F) for the space of all F-valued continuous affine functions on X. This
space is a closed subspace of C(X,F) and is equipped with the inherited sup-norm.
Given a Radon probability measure µ on X, we write r(µ) for the barycenter of µ,
i.e., the unique point x ∈ X satisfying a(x) =

∫
X
adµ for each affine continuous

function on X (see [1, Proposition I.2.1] or [10, Chapter 7, § 20]; note that it does
not matter whether we consider real or complex affine functions). Conversely, for
a point x ∈ X, we denote by Mx(X) the set of all Radon probability measures on
X with barycenter x (i.e., the set of all probabilities representing x).

The usual dilation order ≺ on the set M1(X) of Radon probability measures
on X is defined as µ ≺ ν if and only if µ(f) ≤ ν(f) for any real-valued convex
continuous function f on X. (Recall that µ(f) is a shortcut for

∫
f dµ.) A measure

µ ∈ M1(X) is said to be maximal if it is maximal with respect to the dilation
order. In case X is metrizable, maximal measures are exactly the probabilities
carried by the Gδ set extX of extreme points of X (see, e.g., [1, p. 35] or [13,
Corollary 3.62]). By the Choquet representation theorem, for any x ∈ X there
exists a maximal representing measure (see [10, p. 192, Corollary] or [1, Theorem
I.4.8]). A compact convex set X is termed simplex if this maximal measure is
uniquely determined for each x ∈ X.

1.2. Vector integration. We will deal with vector-valued strongly affine map-
pings. To be able to do that we need some vector integral. We will use the Pettis
approach.

Let µ be an F-valued σ-additive measure defined on an abstract measurable
space (X,A) (i.e., X is a set and A is a σ-algebra of subsets of X) and F a locally
convex space over F. (To avoid confusion we stress that we will consider only
finite measures.) A mapping f : X → F is said to be µ-measurable if f−1(U) is
µ-measurable for any U ⊂ F open. The map f is called weakly µ-measurable if τ ◦f
is µ-measurable for each τ ∈ F ∗.

A mapping f : X → F is said to be µ-integrable over a µ-measurable set A ⊂ X
if

• τ ◦ f ∈ L1(|µ|) for each τ ∈ F ∗,
• for each B ⊂ A µ-measurable there exists an element xB ∈ F such that

τ(xB) =

∫
B

τ ◦ f dµ, τ ∈ F ∗.

It is clear that the element xB is uniquely determined, we denote it as
∫
B
f dµ. If

µ is clearly determined, we say only that f is integrable.

Lemma 1.1. Let µ be an F-valued measure defined on a measurable space (X,A)
and F be a Fréchet space over F. Suppose that f : X → F is a bounded weakly
µ-measurable mapping with (essentially) separable range. Then the following asser-
tions hold.
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(a) The mapping f is µ-integrable.
(b) If µ is a probability measure and L ⊂ F is a closed convex set such that

f(X) ⊂ L, then µ(f) ∈ L.
(c) If ‖µ‖ ≤ 1 and L ⊂ F is a closed absolutely convex set such that f(X) ⊂ L,

then µ(f) ∈ L.
(d) If ρ is any continuous seminorm on F , then ρ ◦ f is µ-integrable and

ρ
(∫
X
f dµ

)
≤
∫
X
ρ ◦ f d |µ|.

(e) Let fn, g : X → F be mappings such that
– fn are weakly µ-measurable and have separable range,
– the sequence {fn} is bounded in F (i.e.,

⋃∞
n=1 fn(X) is bounded in F ),

– fn(x)→ g(x) in F for x ∈ X.
Then g is bounded and µ-measurable. Moreover, all the involved functions
are µ-integrable and

∫
X
fn dµ→

∫
X
g dµ in F .

Proof. See [7, Lemma 3.8 and Theorem 3.10]. �

An important class of integrable functions are Baire measurable functions. We
recall that if X is a topological space, a zero set in X is the inverse image of a
closed set in R under a continuous function f : X → R. The complement of a zero
set is a cozero set. If X is normal, it follows from Tietze’s theorem that a closed set
is a zero set if and only if it is also a Gδ set, i.e., a countable intersection of open
sets. The complement of a Gδ set is called an Fσ set. We recall that Baire sets are
members of the σ-algebra generated by the family of all cozero sets in X.

Lemma 1.2. Let X be a compact space, µ ∈M(X,F) and f : X → F be a bounded
Baire measurable mapping from X to a Fréchet space F over F. Then the mapping
f is µ-integrable.

Proof. See [7, Lemma 3.9]. �

1.3. Baire mappings. Given a set K, a topological space L and a family of map-
pings F from K to L, we define the Baire classes of mappings as follows. Let
(F)0 = F . Assuming that α ∈ [1, ω1) is given and that (F)β have been already
defined for each β < α, we set

(F)α = {f : K → L; there exists a sequence (fn) in
⋃
β<α

(F)β

such that fn → f pointwise}.

Among other hierarchies (see Section 1.5) we will use the following ones:

• IfK and L are topological spaces, by Cα(K,L) we denote the set (C(K,L))α,
where C(K,L) is the set of all continuous functions from K to L.
• If K is a compact convex set and L is a convex subset of a locally convex

space, by Aα(K,L) we denote (A(K,L))α, where A(K,L) is the set of all
affine continuous functions defined on K with values in L.

1.4. Strongly affine mappings. If X is a compact convex set and F is a Fréchet
space, a mapping f : X → F is called strongly affine if, for any measure µ ∈M1(X),
f is µ-integrable and

∫
X
f dµ = f(r(µ)). Note that this is a strengthening of the

notion of an affine mapping. Indeed, f is affine if and only if the formula holds for
any finitely supported probability µ.
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By [7, Fact 1.2], the mapping f is strongly affine if and only if τ ◦ f is strongly
affine for each τ ∈ F ∗. It is known that any affine function f ∈ C1(X,F) is strongly
affine (see e.g., [1, Theorem I.2.6], [14, Section 14], [19] or [13, Corollary 4.22]) and,
moreover, f ∈ A1(X,F) by a result of Mokobodzki (see, e.g., [15, Théorème 80] or
[13, Theorem 4.24]).

If F is a Fréchet space and f ∈ C1(X,F ) is affine then it is strongly affine
(see [7, Theorem 2.1]). If F is a Banach space with a bounded approximation
property, any function f ∈ C1(X,F ) is in A1(X,F ). However, this does not hold in
general. Indeed, if F is a separable reflexive Banach space which fails the compact
approximation property, X = (BF ,weak) and f : X → F is the identity embedding,
then f is affine, f ∈ C1(X,F ) and f /∈

⋃
α<ω1

Aα(X,F ) (see [7, Example 2.3].)
For affine functions of higher Baire classes the situation is different even in the

scalar case. Firstly, an affine function of the second Baire class need not be strongly
affine even if X is simplex (the example is due to Choquet, see, e.g., [1, Exam-
ple I.2.10], [14, Section 14] or [13, Proposition 2.63]). Further, by [24] there is a
compact convex set X and a strongly affine function f : X → R of the second Baire
class which does not belong to

⋃
α<ω1

Aα(X,R).

1.5. Descriptive classes of sets and functions. Further we need to recall de-
scriptive classes of functions in topological spaces. We follow the notation of [20].
If X is a set and F is a family of subsets of X, F is an algebra if ∅, X ∈ F and F
is closed with respect to complements and finite unions.

If X is a topological space, we recall that Borel sets are members of the σ-algebra
generated by the family of all open subset of X. We write Bos(X) and Bas(X) for
the algebras generated by open or cozero sets in X, respectively.

A set A ⊂ X is resolvable (or an H-set) if for any nonempty B ⊂ X (equivalently,
for any nonempty closed B ⊂ X) there exists a relatively open U ⊂ B such that
either U ⊂ A or U ∩A = ∅. It is easy to see that the family Hs(X) of all resolvable
sets in X is an algebra, see e.g. [9, § 12, VI]. Let Σ2(Bas(X)), Σ2(Bos(X)) and
Σ2(Hs(X)) denote countable unions of sets from the respective algebras.

Let F be a topological space and let

Baf1(X,F ) = {f : X → F ; f−1(U) ∈ Σ2(Bas(X)), U ⊂ F open}.

Analogously we define families Bof1(X,F ) and Hf1(X,F ).
Now we use pointwise limits to create higher hierarchies of functions as in Sec-

tion 1.3. More precisely, if F is a topological space and Φ is a family of functions
from X to F , we define Φ1 = Φ and, for each countable ordinal α > 1, Φα con-
sists of all pointwise limits of sequences from

⋃
β<α Φβ . Starting the procedure

with Baf1(X,F ) and creating higher families Bafα(X,F ) as pointwise limits of
sequences contained in

⋃
1≤β<α Bafβ(X,F ), we obtain the hierarchy of Baire mea-

surable functions. Analogously we define, for α ∈ [1, ω1), families Bofα(X,F ) and
Hfα(X,F ) of Borel measurable functions and resolvably measurable functions.

The algebras Bas(X), Bos(X) and Hs(X) serve as a starting point of an inductive
definition of descriptive classes of sets. More precisely, if F is any of the families
above, Σ2(F) consists of all countable unions of sets from F and Π2(F) of all
countable intersections of sets from F . Proceeding inductively, for any α ∈ (2, ω1)
we let Σα(F) to be made of all countable unions of sets from

⋃
1≤β<α Πβ(F) and

Πα(F) is made of all countable intersections of sets from
⋃

1≤β<α Σβ(F). The
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algebra Πα(F)∩Σα(F) is denoted as ∆α(F). The union of all created additive (or
multiplicative) classes is then the σ-algebra generated by F .

In case X is metrizable, all the resulting classes coincide (see [20, Proposi-
tion 3.4]). These classes characterize in terms of measurability the classes Bafα(X,F ),
Bofα(X,F ) and Hfα(X,F ) defined above. (We recall that, given a family F of sets
in X, a mapping f : X → F is called F-measurable if f−1(U) ∈ F for every U ⊂ F
open.) Precisely, the following proposition is proved in [20, Theorem 5.2].

Proposition 1.3. Let f : X → F be a function on a Tychonoff space X with values
in a separable metrizable space F and α ∈ [1, ω1). Then the following assertions
hold.

(a) f ∈ Bafα(X) if and only if f is Σα+1(Bas(X))-measurable.
(b) f ∈ Bofα(X) if and only if f is Σα+1(Bos(X))-measurable.
(c) f ∈ Hfα(X) if and only if f is Σα+1(Hs(X))-measurable.

If we take Φ0 = C(X,F ), i.e., the family of all continuous mapping from X to F ,
and create the hierarchy of functions using pointwise limits, we have the following
result (see [26, Theorem 3.7(i)]).

Proposition 1.4. If X is a normal topological space and L is a convex subset of a
separable Fréchet space, then C1(X,L) = Baf1(X,L). Thus Cα(X,L) = Bafα(X,L)
for each α ∈ [1, ω1).

Next we need to recall a characterization of resolvable sets that asserts that a
subset H of a topological space X is resolvable if and only if there exist an ordinal
κ and an increasing sequence of open sets ∅ = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Uγ ⊂ · · · ⊂
Uκ = X and I ⊂ [0, κ) such that, for a limit ordinal γ ∈ [0, κ], we have

⋃
{Uλ; λ <

γ} = Uγ and H =
⋃
{Uγ+1 \ Uγ ; γ ∈ I} (see [4, Section 2] and references therein).

We call such a transfinite sequence of open sets regular and such a description of
a resolvable set a regular representation (this notion of regular representation is
slightly more useful for us than the one used in [4, Section 2]).

2. Main results

Now we can formulate our main results. The first one is a vector-valued gener-
alization of [12, Theorem 1.1] and [18, Corollaire 8].

Theorem 2.1. Let X be a compact convex set, F be a Fréchet space and f : X → F
be strongly affine. Then the following assertions hold.

(a) If α ∈ [1, ω1) and F is separable, then f |extX ∈ Hfα(extX,F ) impliesf ∈
Hfα(X,F ).

(b) If α ∈ [1, ω1) and F is separable, f |extX ∈ Bofα(extX,F ) implies f ∈
Bofα(X,F ).

(c) If α ∈ [0, ω1) and f |extX ∈ Cα(extX,F ), then f(X) is separable and f ∈
Cα(X,F ).

Theorem 2.2 is a vector-valued generalization of [12, Theorem 1.2]. We recall
that a topological space is Lindelöf, if its any open cover has a countable subcover.

Theorem 2.2. Let X be a compact convex set with extX being Lindelöf and let F
be a Fréchet space. Let f : X → F be a strongly affine function satisfying f |extX ∈
Cα(extX,F ) for some α ∈ [0, ω1). Then f ∈ C1+α(X,F ).
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The following Corollary 2.3 answers [7, Question 10.6] for the case (R) and (C);
the case (S) was solved in [21]. It can be regarded as a vector analogue of [11,
Theorem 1] and the result from [5].

We recall that a Banach space E is an L1-predual if its dual is isometric to
the space L1(Z,S, µ) for some measure space (Z,S, µ). The families Aodd,α(X,F )
and Ahom,α(X,F ), where X = (BE∗ , w

∗), are created from the set Aodd(X,F ) of
all continuous odd affine mappings from X to F in case E is real or from the set
Ahom(X,F ) of all continuous homogeneous affine mappings from X to F in case E
and F are complex; see [7, Section 1.2].

Corollary 2.3. Let X be a compact convex set with extX being Lindelöf and let
F be a Fréchet space. Let f : extX → F be a bounded continuous mapping.

(R) If X = (BE∗ , w
∗), where E is a real L1-predual and f is odd, then f can

be extended to a mapping from Aodd,1(X,F ).
(C) If X = (BE∗ , w

∗), where E is a complex L1-predual, F is complex and f is
homogeneous, then f can be extended to a mapping from Ahom,1(X,F ).

The next result further improves the transfer of the class in Theorem 2.2 in the
case when extX is moreover a resolvable set.

Theorem 2.4. Let X be a compact convex set with extX being a Lindelöf resolvable
set and let F be a Fréchet space. Let f : X → F be a strongly affine function
satisfying f |extX ∈ Cα(extX,F ) for some α ∈ [1, ω1). Then f ∈ Cα(X,F ).

Using Theorem 2.4 we can answer [7, Question 10.7] affirmatively.

Corollary 2.5. Let X be a compact convex set with extX being Lindelöf, α ≥ 1,
F a Fréchet space and f : extX → F a bounded mapping from Cα(extX,F ).

(S) If X is a simplex, then f can be extended to a mapping in Aα(X,F ).
(R) If X = (BE∗ , w

∗), where E is a real L1-predual and f is odd, then f can
be extended to a mapping from Aodd,α(X,F ).

(C) If X = (BE∗ , w
∗), where E is a complex L1-predual, F is complex and f is

homogeneous, then f can be extended to a mapping from Ahom,α(X,F ).

3. Auxiliary results on compact convex sets with extX being
Lindelöf

The aim of this section is to provide auxiliary results on compact convex sets
that are needed throughout the paper.

Lemma 3.1. Let K be a compact topological space, F be a Fréchet space and
f : K → F be a bounded function in Cα(K,F ) for some α ∈ [0, ω1). Then the

function f̃ : M1(K)→ F defined as f̃(µ) = µ(f), µ ∈ M1(K), is well defined and
contained in Cα(M1(K), F ).

Proof. Since f ∈ Cα(K,F ), its range is separable. Hence we may assume that F

itself is separable. Lemma 1.1(a) now implies that f̃ is well defined.
We consider first the case α = 0, i.e., the case when f is continuous. We want to

show that f̃ is continuous. Since L = cof(K) is a compact convex subset of F and

f̃(µ) ∈ L for each µ ∈M1(K) (see Lemma 1.1(b)), the original topology coincides
with the weak topology on L. For any τ ∈ F ∗, the function τ ◦ f is continuous on
K, and thus the mapping

µ 7→ µ(τ ◦ f) = τ(µ(f)), µ ∈M1(K),



DESCRIPTIVE PROPERTIES OF VECTOR-VALUED AFFINE FUNCTIONS 7

is continuous. Hence f̃ : M1(K) → (L,weak) is continuous, and thus continuous
with respect to the original topology.

If α > 0, we can finish the proof by transfinite induction using Lemma 1.1(e)
and Proposition 1.4. �

Lemma 3.2. Let X be a compact convex set, F be a Fréchet space and f : X → F
be a Baire measurable mapping. Then the following assertions hold.

(a) f(X) is separable and there exists α ∈ [0, ω1) such that f ∈ Cα(X,F ).
(b) There exist a metrizable compact convex set Y , a continuous affine surjec-

tion ϕ : X → Y and a unique mapping h ∈ Cα(Y, F ) such that f = h ◦ ϕ.
(c) If f is strongly affine, h is strongly affine as well.

Proof. (a) See [7, Lemma 3.3].
(b) Let E = A(X,F) and κ : X → E∗ be the canonical evaluation embedding.

Using [7, Lemma 6.2] there exists a separable space E1 ⊂ E and h ∈ Cα(π(κ(X)), F )
such that f ◦ κ−1 = h ◦ π (here π : E∗ → E∗1 is the restriction mapping). By
setting Y = π(κ(X)) we obtain the desired metrizable compact convex set, whereas
ϕ = π ◦ κ.

(c) See [7, Lemma 6.4]. �

Lemma 3.3. Let X be a compact convex set with extX being Lindelöf, F be a
Fréchet space and let f : extX → F be a bounded mapping in Cα(extX,F ) for
some α ∈ [1, ω1). Let L = cof(extX). Then there exists a Baire set B ⊃ extX
and a bounded mapping g ∈ Cα(B,L) such that

• g = f on extX ,
• the function g̃ : M1(B) → F defined g̃(µ) = µ(g), µ ∈ M1(B), is in
Cα(M1(B), L).

Proof. We will prove the result by transfinite induction on α. Suppose first that
α = 1, i.e., that f ∈ C1(extX,F ). Since L is separable and completely metrizable,
by [6, Theorem 30 and Proposition 28] there is an extension g : X → L which is
Σ2(Bas(X))-measurable. Proposition 1.4 now implies that g ∈ C1(X,L). By setting
B = X we obtain from Lemma 3.1 that g̃ ∈ C1(M1(B), L).

Assume now that α > 1 and the assertion is valid for all β ∈ [1, α). Suppose
that f ∈ Cα(extX,F ) is a bounded mapping and let L = cof(extX). Then f ∈
Cα(extX,L) by Proposition 1.4 (note that extX is normal, being Lindelöf and
regular), and thus there exist mappings fn ∈

⋃
β<α Cβ(extX,L), n ∈ N, converging

pointwise to f on extX. For each n ∈ N, let Bn ⊃ extX be a Baire set and

gn ∈ Cβn
(Bn, cofn(extX)) ⊂ Cβn

(Bn, L)

for some βn < α be such that

• gn = fn on extX,
• the function g̃n : M1(Bn) → F defined by g̃n(µ) = µ(gn), µ ∈ M1(Bn), is

in Cβn
(M1(Bn), L).

Let

B = {x ∈
∞⋂
n=1

Bn; (gn(x)) converges}.



8 JIŘÍ SPURNÝ

Let ρ be a compatible complete metric on F . Then

B = {x ∈
∞⋂
n=1

Bn; ∀k ∈ N ∃l ∈ N ∀m1,m2 ≥ l : ρ(gm1(x), gm2(x)) <
1

k
},

which gives that B is a Baire subset of X. Obviously, B ⊃ extX and the function
g(x) = lim gn(x), x ∈ B, satisfies g = f on extX. Let µ ∈ M1(B) be arbitrary.
Since gn → g on B, from Lemma 1.1(e) we obtain g̃(µ) = lim g̃n(µ). By the
inductive assumption, g̃n ∈ Cβn(M1(Bn), L). Thus g̃ ∈ Cα(M1(B), L). �

Lemma 3.4. Let X be a compact convex set with extX being Lindelöf, F be a
Fréchet space and f be a bounded function in Cα(extX,F ) for some α ∈ [1, ω1).
Let L = cof(extX). Then there exist a Baire set B ⊃ extX and a mapping
g : B → L such that

• g ∈ Cα(B,L),
• g = f on extX,
• for each µ ∈M1(B) with r(µ) ∈ B holds g(r(µ)) = µ(g),
• the function g̃ : M1(B) → F defined as g̃(µ) = µ(g), µ ∈ M1(B), is in
Cα(M1(B), L).

Proof. Without loss of generality we may assume that F is real because otherwise
we would consider on F only multiplication by real numbers.

Since f ∈ Cα(extX,F ) and extX is Lindelöf, f(extX) is separable. Thus we
may assume that F itself is separable. Let (τn) in F ∗ be a sequence separating
points of F (see [17, Chapter 3, Exercise 28]).

By [12, Lemma 4.6], for each n ∈ N there exist a Baire set Bn ⊃ extX and a
bounded Baire function fn : Bn → R such that

• fn = τn ◦ f on extX,
• for each µ ∈M1(Bn) with r(µ) ∈ Bn it holds fn(r(µ)) = µ(fn).

By Lemma 3.3 there exist a Baire set C ⊃ extX and a Baire function h ∈ Cα(C,L)

extending f such that the function h̃ : M1(C) → F defined by h̃(µ) = µ(h), µ ∈
M1(C), is in Cα(M1(C), L).

Set

B = {x ∈ C ∩
∞⋂
n=1

Bn; τn(h(x)) = fn(x), n ∈ N} and g = h|B .

Then B is a Baire set containing extX. Let µ ∈ M1(B) with r(µ) ∈ B be given.
Then for each n ∈ N we have

τn(µ(g)) =

∫
B

τn(h(x)) dµ(x) =

∫
B

fn(x) dµ(x) = fn(r(µ))

= τn(h(r(µ))) = τn(g(r(µ))).

Thus µ(g) = g(r(µ)). Since g̃(µ) = h̃(µ) for µ ∈ M1(B), we obtain that g̃ ∈
Cα(M1(B), L). This finishes the proof. �

Before the proof of the following lemma we recall that a topological space is K-
analytic if it is an image of a Polish space under an upper semicontinuous compact
valued mapping (see [16, Section 2.1]).
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Lemma 3.5. Let X be a compact convex set with extX being Lindelöf, F be a
Fréchet space and f : X → F be strongly affine such that f |extX ∈ Cα(extX,F ) for
some α ∈ [1, ω1). Then f is a Baire measurable mapping.

Proof. Let L = cof(X). Let B ⊃ extX, g : B → L and g̃ : M1(B) → L be as in
Lemma 3.4. We claim that g = f on B. To this end, let x ∈ B be fixed. We choose
a maximal measure µ ∈ Mx(X). Then µ is supported by B and f = g µ-almost
everywhere.

(Indeed, the set {y ∈ B; f(y) = g(y)} is µ-measurable and contains extX. Since
extX is Lindelöf, the assertion follows from [12, Lemma 4.4].)

Thus
g(x) = µ(g) = µ(f) = f(x).

Now we consider the barycentric mapping r : M1(B) → X. Then r is a con-
tinuous surjection. We want to show that f is Baire measurable. To this end, let
U ⊂ F be an open set. By strong affinity and the fact that f = g on B, g̃ = f ◦ r.
Hence

f−1(U) = r(g̃−1(U)) and f−1(F \ U) = r(g̃−1(F \ U)).

Since g̃ is Baire and M1(B) = {µ ∈ M1(K); µ(B) = 1}, as a Baire subset of a
K-analytic space, is a K-analytic space, both the sets g̃−1(U) and g̃−1(F \ U) are
K-analytic as well. Since r is continuous, both the sets f−1(U) and f−1(F \U) are
K-analytic and thus, being disjoint, they are Baire (see [16, Theorem 3.3.1]). �

4. Proof of Theorem 2.1

We start the proof of Theorem 2.1 by the following simple approximation lemma.
If A is a family of sets in a set X, we recall that Σ2(A) stands for the family of all
countable unions of elements from A.

Lemma 4.1. Let X be a set with an algebra A and let (F, ρ) be a separable pseudo-
metric space. Let f : X → F be a Σ2(A)-measurable mapping. Then for each ε > 0
there exists a disjoint partition {An; n ∈ N} of X containing sets from Σ2(A) and
elements {yn; n ∈ N} in F such that the function

g(x) = yn, x ∈ An, n ∈ N,
satisfies supx∈X ρ(f(x), g(x)) < ε.

Proof. If {yn; n ∈ N} is a dense set in F , we consider the family {Bρ(yn, ε); n ∈ N}
(here Bρ(y, ε) denotes the open ball centered at y with radius ε). Then it covers
F and thus {f−1(Bρ(yn, ε)); n ∈ N} is a cover of X consisting of sets from Σ2(A).
Now it is enough to use the standard reduction lemma to find sets An ∈ Σ2(A),
n ∈ N, such that they form a disjoint partition of X and An ⊂ f−1(Bρ(yn, ε)),
n ∈ N (see e.g. [20, Proposition 2.3(f)]). This finishes the proof. �

Lemma 4.2. Let X be a set with an algebra A and let F be a separable Fréchet
space over F. Then the following assertions hold.

(a) The family of all Σ2(A)-measurable functions is a vector space.
(b) Let ρ be a continuous seminorm on F and let fn, f : X → F be such that

ρ ◦ fn is Σ2(A) measurable and supx∈X ρ(fn(x)− f(x))→ 0. Then ρ ◦ f is
Σ2(A)-measurable.

(c) If f : X → F is Σ2(A)-measurable and y ∈ F , then the function g : X → F
defined as g(x) = f(x)y, x ∈ X, is Σ2(A)-measurable.



10 JIŘÍ SPURNÝ

Proof. (a) Let f, g be Σ2(A)-measurable functions from X to F . Since any open set
in F × F is a countable union of open rectangles, the mapping f × g : X → F × F
defined as (f × g)(x) = (f(x), g(x)), x ∈ X, is Σ2(A)-measurable. From the
continuity of the operation +: F × F → F we infer the Σ2(A)-measurability of
f + g.

If f is Σ2(A)-measurable and λ ∈ F \ {0}, for an open set U ⊂ F we have

(λf)−1(U) = f−1(λ−1U) ∈ Σ2(A).

If λ = 0, λf is clearly Σ2(A)-measurable.
(b) Let ρ be a continuous seminorm on F and let fn, f : X → F be a sin the

premise. Without loss of generality we may assume that supx∈X ρ(fn(x)− f(x)) <
1

2n , n ∈ N.
Let U ⊂ R be open and let

Uk = {λ ∈ R; dist(λ,R \ U) >
1

2k
}, k ∈ N.

Then

(ρ ◦ f)−1(U) =

∞⋃
k=1

∞⋃
n=k+1

(ρ ◦ fn)−1(Uk) ∈ Σ2(A)

and ρ ◦ f is Σ2(A)-measurable.
(c) Consider the mapping m : F → F defined as m(λ) = λy, λ ∈ F. Then m is

continuous and g = m ◦ f . Hence g is Σ2(A)-measurable. �

The key Lemma 4.3 uses the following notation. If A is a class of sets in topo-
logical spaces and K is a topological space, the symbol A(K) stands for the family
of all subsets in K that belong to A.

Lemma 4.3. Let A be an algebra of sets in topological spaces and let K be a
compact space. Assume that the following properties are satisfied.

(1) Any element of A(K) is µ-measurable for each µ ∈M1(K).
(2) If f : K → R is a bounded Σ2(A(K))-measurable function, then the function

f̃ : M1(K)→ R defined as

f̃(µ) = µ(f), µ ∈M1(K),

is Σ2(A(M1(K)))-measurable.

Let F be a separable Fréchet space and f : K → F be a bounded Σ2(A(K))-

measurable mapping. Then the function f̃ : M1(K)→ F defined as

f̃(µ) = µ(f), µ ∈M1(K),

is well defined and Σ2(A(M1(K)))-measurable.

Proof. Without loss of generality we may assume that F is a real vector space. Let
L = cof(K). Then L is a bounded set. For each µ ∈M1(K), the mapping f is by

(1) weakly µ-measurable, and thus by Lemma 1.1(a) it is µ-integrable. Hence f̃ is

a well defined mapping with f̃(M1(K)) ⊂ L (see Lemma 1.1(b)).

By the separability of F it is enough to prove that ρ ◦ f̃ is Σ2(A(M1(K)))-
measurable for any continuous seminorm ρ on F . Let ρ be a continuous seminorm.
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Let ε > 0 be arbitrary. By Lemma 4.1 there exist a partition {An; n ∈ N} of
X consisting of elements of Σ2(A(K)) and vectors {yn; n ∈ N} ⊂ L such that the
mapping

(4.1) g(x) =

∞∑
n=1

ynχAn
(x), x ∈ K,

satisfies supx∈K ρ(f(x)− g(x)) < ε. Let g̃ : M1(K)→ Y be defined as

g̃(µ) = µ(g) =

∞∑
n=1

ynµ(An), µ ∈M1(K).

By Lemma 1.1(d), we have for µ ∈M1(K) estimate

ρ
(
f̃(µ)− g̃(µ)

)
≤
∫
K

ρ(f(x)− g(x)) dµ(x) ≤ ε.

By choosing εn = 1
n we construct a sequence {gn} of mappings of type (4.1)

such that g̃n converges ρ-uniformly to f̃ . By Lemma 4.2(b), the Σ2(A(M1(K)))-

measurability of ρ ◦ f̃ will be thus ensured by the Σ2(A(M1(K)))-measurability of
mappings ρ ◦ g̃n.

Let g be a mapping of the form (4.1). To check the Σ2(A(M1(K)))-measurability
of ρ ◦ g̃, it is enough to verify the Σ2(A(M1(K)))-measurability of the mapping
g̃ : M1(K)→ (F, τρ), where τρ is the topology generated by the seminorm ρ.

Let {Uk; k ∈ N} be an open basis of the topology τρ. (Such a basis exists because
F , and thus also (F, τρ), is separable.) For each m ∈ N set

g̃m(µ) =

m∑
n=1

ynµ(An) and hm(µ) = µ(A1 ∪ · · · ∪Am), µ ∈M1(K).

For each k,m, j ∈ N we consider the set

Ak,m,j = g̃−1
m (Uk) ∩ h−1

m

(
(1− 1

j
,∞)

)
.

Any τρ-open set is originally open, and thus by Lemma 4.2(a),(c) and assumption
(2), each set Ak,m,j ∈ Σ2(A(M1(K))).

Let now U ⊂ F be a τρ-open set. We set

A =

∞⋃
k,m,j=1

{
Ak,m,j ; Ak,m,j ⊂ g̃−1(U)

}
.

Then A is in Σ2(A(M1(K))). We need to show that A = g̃−1(U).
Clearly, A ⊂ g̃−1(U). To check the converse inclusion, let M > 0 satisfy ρ(y) ≤

M for y ∈ L and let µ ∈ g̃−1(U) be given. Choose δ > 0 such that

Bρ(g̃(µ), 4δ) = {y ∈ F ; ρ(g̃(µ)− y) < 4δ} ⊂ U

and let k ∈ N be such that

µ ∈ Uk ⊂ Bρ(g̃(µ), δ).

Let j ∈ N be chosen such that L
j < δ and let m ∈ N satisfy µ(A1∪· · ·∪Am) > 1− 1

j .

Since

g̃m(µ)→ g̃(µ)
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by Lemma 1.1(e), we can further enlarge m in such a way that g̃m(µ) ∈ Uk. Then

µ ∈ Ak,m,j .

We need to verify that Ak,m,j ⊂ g̃−1(U). To this end, let ν ∈ Ak,m,j be given.
Then we have due to Lemma 1.1(d)

ρ

( ∞∑
n=m+1

anν(An)

)
≤
∫
⋃∞

n=m+1 An

Ldν <
L

j
< δ,

and analogously

ρ

( ∞∑
n=m+1

anµ(An)

)
< δ.

Since g̃m(µ), g̃m(ν) ∈ Uk and diamρ Uk < 2δ, we obtain

ρ (g̃(µ)− g̃(ν)) =

= ρ

(
m∑
n=1

anµ(An)−
m∑
n=1

anν(An) +

∞∑
n=m+1

anµ(An)−
∞∑

n=m+1

ν(An)

)

≤ ρ

(
m∑
n=1

anµ(An)−
m∑
n=1

anν(An)

)
+ 2δ < 4δ,

which implies

g̃(ν) ∈ B(g̃(µ), 4δ) ⊂ U.
Hence Ak,m,j ⊂ g̃−1(U).

ThusA is a set in Σ2(A(M1(K))) and equals g̃−1(U). Hence ρ◦g̃ is Σ2(A(M1(K)))-
measurable and the proof is finished. �

Lemma 4.4. Let K be a compact topological space, F be a separable Fréchet space
and f : K → F be bounded.

(a) If α ∈ [1, ω1) and f ∈ Hfα(K,F ), then the function f̃ : M1(K) → F

defined as f̃(µ) = µ(f), µ ∈ M1(K), is well defined and belongs to the
family Hfα(M1(K), F ).

(b) If α ∈ [1, ω1) and f ∈ Bofα(K,F ), then the function f̃ : M1(K) → F

defined as f̃(µ) = µ(f), µ ∈ M1(K), is well defined and belongs to the
family Bofα(M1(K), F ).

Proof. (a) Let f : K → F be a bounded function with values in a separable Fréchet
space F such that f ∈ Hfα(K,F ) for some α ∈ [1, ω1). Then τ ◦ f is µ-measurable
for each µ ∈M1(K) and τ ∈ F ∗ (see [8, Lemma 4.4]), i.e., f is weakly µ-measurable

for each µ ∈M1(K). Since F is separable, f̃ is well defined by Lemma 1.1(a).
By [20, Theorem 5.2], f is Σα+1(Hs(K))-measurable. Let A denote the alge-

bra ∆α+1(Hs). By [20, Proposition 2.3(e)], f is Σ2(A(K))-measurable. It follows
from [12, Lemma 3.3(a)] that assumption (2) of Proposition 4.3 is satisfied for

A. Hence the function f̃ : M1(K) → F defined as f̃(µ) = µ(f), µ ∈ M1(K), is

Σ2(A(M1(K)))-measurable. Thus f̃ ∈ Hfα(M1(K), F ), again by [20, Theorem
5.2].

(b) The proof is analogous to the proof of (a), the only difference is that we use
the algebra ∆α+1(Bos) and [12, Lemma 3.3(b)]. �
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Proof of Theorem 2.1. (a) Let f : X → F be a strongly affine function such that
f |extX ∈ Hfα(extX,F ) for some α ∈ [1, ω1). By Lemma 4.4(a), the function

f̃ : M1(extX) → F defined as f̃(µ) = µ(f), µ ∈ M1(extX), is in the family
Hfα(M1(extX), F ).

Consider now the barycentric mapping r : M1(extX) → X. By the strong

affinity of f , we have f̃ = f ◦ r on M1(extX). By [4, Theorem 4], f ∈ Hfα(X,F ).
(b) The proof is analogous to the proof of (a), we just use Lemma 4.4(b) and [4,

Theorem 10].

(c) We first notice that f(extX) is separable by Lemma 3.2(a). Thus f̃ is well
defined by Lemma 1.1(a). Now we use [16, Theorem 5.9.13] to finish the proof as
in the cases (a) and (b)

�

5. Proof of Theorem 2.2 and Corollary 2.3

The first step in the proof of Theorem 2.2 is the following result on metrizable
reduction. Its analogue appeared e.g. in [3], [16, Theorem 5.9.13], [25, Theorem 1],
[2] or [13, Theorem 9.12]. The argument is modelled along the lines of the proofs
of [21, Lemma 3.1] and [12, Lemma 5.1].

Lemma 5.1. Let X be a compact convex set, F be a Fréchet space and f : X → F be
a Baire measurable mapping such that f |extX ∈ Cα(extX,F ) for some α ∈ [0, ω1).
Then there exist a metrizable compact convex set Y , an affine continuous surjection
ϕ : X → Y and a Baire measurable mapping h : Y → F such that f = h ◦ ϕ and
h|extY ∈ Cα(extY, F ).

Proof. Since f is Baire measurable, L = acof(X) is separable by Lemma 3.2(a).
Hence we may assume that F itself is separable. Let β ∈ [0, ω1) be such that
f ∈ Cβ(X,F ) (see Lemma 3.2(a)). By Lemma 3.2(b), there exist a metrizable
compact convex set X1, a continuous surjection ϕ1 : X → X1 and h1 ∈ Cβ(X1, F )
such that f = h1 ◦ ϕ1.

Let {Un; n ∈ N} be a countable basis of the topology of F . For each n ∈ N
we select a continuous function gn : F → [0, 1] such that Un = g−1

n ((0, 1]). Let
G ⊂ C(extX,L) be a countable family satisfying f |extX ∈ Gα, see the definition of
Φα in Section 1.5.

For each g ∈ G and n ∈ N we choose using [12, Lemma 4.5] finite families
Ukg,n,Lkg,n ⊂ A(X,R), k ∈ N, such that we have for functions ukg,n = inf Ukg,n and

lkg,n = supLkg,n properties

• 0 ≤ ukg,n ≤ 1, 0 ≤ lkg,n ≤ 1,

• limk→∞ ukg,n(x) = limk→∞ lkg,n(x) = gn(g(x)) for each x ∈ extX,

• (lkg,n)∞k=1 is increasing and (ukg,n)∞k=1 is decreasing.

Let

F =
⋃

g∈G,n,k∈N
Ukg,n ∪ Lkg,n.

Consider the compact convex set∏
g∈F

g(X)

×X1
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and the projection ψ on the second coordinate. Let

ϕ(x) = ((g(x))g∈F , ϕ1(x)) , x ∈ X,
and Y = ϕ(X).

For each function g ∈ F there exists a unique function g̃ ∈ A(Y,R) such that

g = g̃ ◦ ϕ. For each g ∈ G, n, k ∈ N, let Ũkg,n ⊂ A(Y,R) be such that

Ukg,n = {ũ ◦ ϕ; ũ ∈ Ũkg,n}.

Analogously we pick L̃kg,n. Then for ũkg,n = inf Ũkg,n and l̃kg,n = sup L̃kg,n hold

ukg,n = ũkg,n ◦ ϕ and lkg,n = l̃kg,n ◦ ϕ.

Given y ∈ extY , we pick x ∈ extX ∩ ϕ−1(y). Then

lim
k→∞

ũkg,n(y) = lim
k→∞

ũkg,n(ϕ(x)) = lim
k→∞

ukg,n(x) = gn(g(x)) and

lim
k→∞

l̃kg,n(y) = lim
k→∞

l̃kg,n(ϕ(x)) = lim
k→∞

lkg,n(x) = gn(g(x)).

Thus (ũkg,n)∞k=1 is a decreasing sequence on extY , (l̃kg,n)∞k=1 is increasing on extY
and both converge to a common limit g̃g,n : extY → R given by

g̃g,n(y) = lim
k→∞

ũkg,n(y), y ∈ extY.

Then g̃g,n is a continuous function on extY with values in [0, 1] that satisfies

(5.1) g̃g,n(y) = gn(g(x)), x ∈ extX ∩ ϕ−1(y).

For each g ∈ G we now define a function g̃ : extY → L by the formula

g̃(y) = g(x), x ∈ extX ∩ ϕ−1(y), y ∈ extY.

Firstly we check that the definition is correct. Indeed, if y = ϕ(x1) = ϕ(x2) for
some y ∈ extY , x1, x2 ∈ extX and g(x1) 6= g(x2), there exists n ∈ N such that
gn(g(x1)) 6= gn(g(x2)). But then we have by (5.1) a contradiction since

gn(g(x1)) = g̃g,n(y) = gn(g(x2)).

Secondly, g̃ is continuous. To see this, fix n ∈ N. Then the equalities

g̃−1(Un) = {y ∈ extY ; g̃(y) ∈ Un} = {y ∈ extY ; gn(g̃(y)) > 0}
= {y ∈ extY ; ∃x ∈ extX ∩ ϕ−1(y) : gn(g(x)) > 0}
= {y ∈ extY ; g̃g,n(y) > 0} = g̃−1

g,n(Un)

implies that g̃−1(Un) is open. Hence g̃ is continuous.

Denote G̃ = {g̃; g ∈ G}.
Claim. Now we claim that for each γ ∈ [0, α] and h ∈ Gγ there is a function

h̃ ∈ G̃γ such that h = h̃ ◦ ϕ on extX ∩ ϕ−1(extY ). To verify this we proceed by
transfinite induction.

Assume that it holds for all γ′ < γ for some γ ≤ α and that we are given h ∈ Gγ .
Let γn < γ and hn ∈ Gγn , n ∈ N, be such that h = limhn. By the inductive

assumption, there exist h̃n ∈ G̃γn satisfying hn = h̃n ◦ ϕ on extX ∩ ϕ−1(extY ).

Then the sequence (h̃n(y)) converges for every point y ∈ extY . Hence we may

define a function h̃ ∈ G̃γ by

h̃(y) = lim
n→∞

h̃n(y), y ∈ extY,



DESCRIPTIVE PROPERTIES OF VECTOR-VALUED AFFINE FUNCTIONS 15

and then, for every y ∈ extY and x ∈ ϕ−1(y) ∩ extX,

h̃(y) = lim
n→∞

h̃n(y) = lim
n→∞

hn(x) = h(x).

This proves the claim.
Consider now the function h = h1 ◦ ψ. Then h is a Baire measurable mapping

on Y . We want to prove that h|extY ∈ G̃α. By the claim there exists g̃ ∈ G̃α such
that

f(x) = g̃(ϕ(x)), x ∈ extX ∩ ϕ−1(extY ).

For y ∈ extY we select x ∈ extX ∩ ϕ−1(y). Then have

g̃(y) = g̃(ϕ(x)) = f(x) = h1(ϕ1(x)) = h1(ψ(ϕ(x))) = h(ϕ(x)) = h(y).

Hence h = g̃ ∈ G̃α as required.
�

The following lemma is a variant of [7, Lemma 6.1].

Lemma 5.2. Let X be a compact space, F a Fréchet space over F and U : X →
M1(X). If U ∈ Cα(X,M1(X)) and f ∈ Cβ(X,F ) is bounded, then Uf : X → F
defined by

Uf(x) =

∫
X

f dU(x), x ∈ X,

satisfies Uf ∈ Cα+β(X, acof(X)).

Proof. We proceed by transfinite induction along β. Let β = 0, i.e., f is continuous.
If α = 0, then f(X) is a compact subset of F and thus L = acof(X) is an absolutely
convex compact set in F . By Lemma 1.1(c), Uf(X) ⊂ L. We want to check the
continuity of Uf . To this end, let τ ∈ F ∗ be arbitrary. Then

τ(Uf(x)) =

∫
X

(τ ◦ f) dU(x) = U(x)(τ ◦ f), x ∈ X.

Since U is continuous and τ◦f ∈ C(X,F), the mapping x 7→ U(x)(τ◦f) is continuous
on X. Hence Uf : X → (L,weak) is continuous. Since L is compact, the original
topology of F coincides on L with the weak topology . Hence Uf ∈ C(X,L).

Assume now that the assertion is true for each α < γ, where γ > 0. Let U ∈
Cγ(X,M1(X)) be given. Then there exists a sequence (Un) in

⋃
α<γ Cα(X,M1(X))

such that Un(x)→ U(x) in M1(X) for each x ∈ X. Then for any τ ∈ F ∗ we have

τ(Unf(x)) = Un(x)(τ ◦ f)→ U(x)(τ ◦ f) = τ(U(f(x)).

Thus Unf(x)→ Uf(x) weakly in F . Since the sequence is contained in the compact
set L, Unf(x)→ Uf(x) in F . Hence Uf ∈ Cγ+0(X,F ).

Let now the assertion hold true for all β < γ, where γ > 0. Let U ∈ Cα(X,M1(X))
and let f ∈ Cγ(X,F ) be bounded. Then L = acof(X) is bounded and f ∈ Cγ(X,L)
due to Proposition 1.4. Thus there exists a sequence (fn) ∈

⋃
β<γ Cβ(X,L) point-

wise converging to f . Then Ufn ∈
⋃
β<γ Cα+β(X,F ) by the induction hypothesis

and Ufn → Uf by Lemma 1.1(e). Hence Uf ∈ Cα+γ(X,L). �

Proof of Theorem 2.2. Let f be as in the premise. By Lemma 3.5 and Lemma 3.2(a),
f ∈ Cβ(X,F ) for some β < ω1. Hence we may use Lemma 5.1 to obtain relevant Y ,
h and ϕ. By [23, Théorème 1] (see also [13, Theorem 11.41]) there exists a mapping
U : y 7→ Uy, y ∈ Y , such that

(a) Uy is a maximal measure in My(Y ),
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(b) the function y 7→ Uy(h) is Baire-one on Y for every h ∈ C(Y,R).

Case α = 0. Consider the space

M1(extY ) = {µ ∈M1(Y ); µ(Y \ extY ) = 0}

endowed with the topology τw∗ inherited from M1(Y ). The property (b) says
that U : Y → (M1(extY ), τw∗) is Fσ-measurable and thus by Proposition 1.4, U ∈
C1(Y, (M1(extY ), τw∗)). Hence there is a sequence (Un) in C(Y, (M1(extY ), τw∗))
converging pointwise to U .

Assume now that f |extX ∈ C0(X,F ), i.e., f is continuous on extX. Then h is
continuous on extY . For n ∈ N, consider the function

Unh(y) =

∫
extY

h(x) d(Un)y(x), y ∈ Y.

Let

Uh(y) =

∫
extY

h(x) dUy(x), y ∈ Y.

By [21, Lemma 3.4], (Unh) is a sequence of continuous functions with values in

acoh(extY ) ⊂ L

which by [21, Lemma 3.3] converges to Uh. Since h is strongly affine by [7, Lemma
6.4], Uh = h. Thus h ∈ C1(Y,L). Since f = h ◦ ϕ, f ∈ C1(X,L).

Case α > 0. Let now f |extX ∈ Cα(extX,F ) for some α > 0. Let L = acof(X).
Then h|extY ∈ Cα(extY, F ). Since extY is a Gδ set, by [9, §31, VI, Théorème] there

exists a function h̃ ∈ Cα(Y,L) extending h|extY . By Lemma 5.2, Uh̃ ∈ C1+α(Y,L).
Since Uy is carried by extY and h is strongly affine,

Uh̃ = Uh = h.

Since f = h ◦ ϕ, f ∈ C1+α(X,L). �

Proof of Corollary 2.3. (R) Let f : extX → F be a bounded continuous mapping.
By [7, Theorem 2.7(R)], f can be extended to a function h from Aodd,2(X,F ). By
Theorem 2.2, h ∈ C1(X,F ). Corollary 3.5 in [7] yields h ∈ A1(X,F ). By [7, Lemma
3.12] we obtain h ∈ Aodd,1(X,F ).

The proof of (C) is completely analogous, we just use [7, Theorem 2.7(C) and
Lemma 3.14(c)] instead.

�

5.1. Proof of Theorem 2.4 and Corollary 2.5. The proof of Theorem 2.4 is an
adaptation of the proof of [12, Theorem 6.4]. We start it by the following selection
lemma.

Lemma 5.3. Let ϕ : X → Y be a continuous surjective mapping of a compact space
X onto a compact space Y , F be a separable metrizable space and let f : X → F
be a Σα(Bos(X))-measurable function for some α ∈ [2, ω1). Then there exists a
mapping φ : Y → X such that

• ϕ(φ(y)) = y, y ∈ Y ,
• f ◦ φ is a Σα(Bos(Y ))-measurable function.



DESCRIPTIVE PROPERTIES OF VECTOR-VALUED AFFINE FUNCTIONS 17

Proof. Let ρ be a compatible metric on F . Given a Σα(Bos(X))-measurable func-
tion f on X, using a standard approximation technique and [20, Proposition 2.3(f)]
we construct a sequence (fn) of Σα(Bos(X))-measurable simple functions ρ-uniformly
converging to f (see Lemma 4.1). More precisely, each fn is of the form

fn(x) = yn,k, x ∈ An,k,
where yn,k ∈ F and {An,k; k ∈ N} is a partition of X formed by sets in ∆α(Bos(X)).
For every n, l ∈ N we consider a countable family An,k ⊂ Bos(X) satisfying An,k ∈
Σα(An,k). We include all these families in a single family A.

By [4, Lemma 8], there exists a mapping φ : Y → X such that ϕ(φ(y)) = y for
every y ∈ Y and φ−1(A) ∈ Bos(Y ) for every A ∈ A. Then both φ−1(An,k) and
φ−1(X \ An,k) are in Σα(Bos(Y )) for every set An,k. Thus the functions fn ◦ φ
are Σα(Bos(Y ))-measurable and consequently, since they converge ρ-uniformly to
f ◦ φ, the function f ◦ φ is Σα(Bos(Y ))-measurable as well. �

Lemma 5.4. Let X be a compact convex set with extX being a resolvable Lindelöf
set, F be a Fréchet space and f : X → F be a strongly affine function such that
f |extX ∈ Cα(extX) for some α ∈ [1, ω0). Let (ρn) be an increasing sequence of
seminorms generating topology on F and let σ(y1, y2) =

∑∞
n=1 2−n min{ρn(y1 −

y2), 1}, y1, y2 ∈ F .
Let K ⊂ X be a nonempty compact set and ε > 0. Then there exists a nonempty

open set U in K and a Σα+1(Hs(U))-measurable function g : U → F such that
σ(f, g) < ε on U .

Proof. By Theorem 2.2, f ∈ C1+α(X,F ), and thus we may assume that F is sepa-
rable.

Let K be a compact set in X and ε ∈ (0, 1). By Lemma 3.3, there exists a Baire
set C ⊃ extX and a bounded mapping g ∈ Cα(C,F ) extending f . Let

B = {x ∈ X; g(x) = f(x)}.
Then B is a Baire set containing extX and f |B ∈ Cα(B,F ).

We claim that there exists a Gδ set G with

(5.2) X \B ⊂ G ⊂ X \ extX.

Indeed, if there were no such set, [22, Proposition 11] applied to X1 = X \ B
and X2 = extX (observe that X \ B is Lindelöf since it is a Baire set; see
[16, Theorem 2.7.1]) would provide a nonempty closed set H ⊂ X satisfying

H ∩ (X \B) = H ∩ extX = H. But this would contradict the fact that extX
is a resolvable set.

We pick a Gδ set G satisfying (5.2) and write F = X \G =
⋃∞
n=1 Fn, where the

sets F1 ⊂ F2 ⊂ · · · are closed in X. Then extX ⊂
⋃
Fn ⊂ B.

Let L = acof(X). Let n0 ∈ N be such that
∑∞
n=n0+1 2−n < ε

2 and let M > 0
satisfy ρn0

≤M on L. For each n ∈ N, we set

Mn = {µ ∈M1(X); µ(Fn) ≥ 1− ε

6M
} and

Xn = {x ∈ X; there exists µ ∈Mn such that r(µ) = x} (= r(Mn)).

Then each Xn is a closed set by the upper semicontinuity of the function µ 7→ µ(Fn)
onM1(X) and X =

⋃∞
n=1Xn. Indeed, for any x ∈ X there exists a maximal mea-

sure µ ∈Mx(X), which is carried by F (see [1, Corollary I.4.12 and the subsequent
remark] or [13, Theorem 3.79]), and thus µ(Fn) ≥ 1− ε

6M for n ∈ N large enough.
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Since K ⊂
⋃
Xn, by the Baire category theorem there exists m ∈ N such that

Xm ∩K has nonempty interior in K. Let U denote this interior.
Since f |Fm ∈ Cα(Fm, F ), we can extend f |Fm to a function h ∈ Cα(X,F ) satis-

fying h(X) ⊂ cof(Fm) (see [7, Theorem 2.8]). Let the functions h̃, f̃ : M1(X)→ F
be defined as

h̃(µ) = µ(h), f̃(µ) = µ(f), µ ∈M1(X).

Then

(5.3) σ(f̃(µ), h̃(µ)) < ε, µ ∈Mm.

Indeed, for µ ∈Mm and n ∈ {1, . . . , n0} we have

ρn(µ(f)− µ(h)) = ρn

(∫
Fm

(f − h) dµ+

∫
X\Fm

(f − h) dµ

)

≤
∫
X\Fm

ρn ◦ (h− f) dµ ≤
∫
X\Fm

ρn0
◦ (h− f) dµ

≤ 2Mµ(X \ Fm) ≤ 2M
ε

6M
<
ε

2
.

Hence

σ(f̃(µ), h̃(µ)) ≤
n0∑
n=1

2−nρn(µ(f)− µ(h)) +

∞∑
n=n0+1

2−n < ε.

By Lemma 3.1, h̃ ∈ Cα(M1(X), F ), and thus it is a Σα+1(Bos(M1(X)))-measur-
able function on M1(X).

We consider the mapping r : Mm → r(Mm) and use Lemma 5.3 to find a selection
φ : r(Mm)→Mm such that

• r(φ(x)) = x, x ∈ r(Mm),

• h̃ ◦ φ is Σα+1(Bos(r(Mm)))-measurable on r(Mm).

By setting g = h̃ ◦ φ we obtain the desired function. Indeed, for a given point
x ∈ r(Mm), the measure φ(x) is contained in Mx(X) ∩Mm, and hence by (5.3)
and the strong affinity of f , we have

σ(g(x), f(x)) = σ(h̃(φ(x)), f̃(φ(x))) < ε.

Thus the function g|U is the required one because Σα+1(Bos)-measurability implies
Σα+1(Hs)-measurability. �

Proof of Theorem 2.4. Let X,F, f be as in the premise. We may assume that
α ∈ [1, ω0) since other cases are covered by Theorem 2.2. We claim that f is
Σα+1(Hs(X))-measurable.

Let (ρn) be an increasing sequence of seminorms generating topology on F and
let σ(y1, y2) =

∑∞
n=1 2−n min{ρn(y1 − y2), 1}, y1, y2 ∈ F .

Let ε > 0 be arbitrary. We construct a regular sequence ∅ = U0 ⊂ U1 ⊂ · · · ⊂
Uκ = X and functions

gγ ∈ Σα+1(Hs(Uγ+1 \ Uγ)), γ < κ,

satisfying σ(g, f) < ε on Uγ+1 \ Uγ as follows.
Let U0 = ∅. Using Lemma 5.4 we select a nonempty open set U of X along

with a Σα+1(Hs(U))-measurable function g : U → F with σ(g, f) < ε on U . We set
U1 = U and g0 = g.
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Assume now that Uδ and gδ are chosen for all δ less then some γ. If γ is limit,
we set Uγ =

⋃
δ<γ Uδ.

Let γ = λ+ 1. If Uλ = X, we set κ = λ and stop the procedure. Otherwise we
apply Lemma 5.4 to K = X\Uλ and obtain an open set U ⊂ X intersecting K along
with a Σα+1(Hs(U ∩K))-measurable function g on U ∩K satisfying σ(g, f) < ε on
U ∩K. We set Uγ = Uλ ∪ U and gλ = g. This finishes the construction.

Let g : X → F be defined as g = gγ on Uγ+1 \ Uγ , γ < κ. By [12, Proposition
2.2], g is a Σα+1(Hs(X))-measurable function.

By the procedure above we can approximate uniformly f by Σα+1(Hs(X))-
measurable functions which yields that f itself is Σα+1(Hs(X))-measurable (see
Proposition 4.2(b)). But f is a Baire function. Thus Theorem 5.2 and Corol-
lary 5.5 in [20] imply f ∈ Cα(X). This finishes the proof. �

Proof of Corollary 2.5. (S) Let X,F and f be as in the premise. We proceed by
induction. If α = 1, by [7, Theorem 2.7], f can be extended to mapping h from
A2(X,F ). By Theorem 2.4, h ∈ C1(X,F ), which in turn by virtue of [7, Corollary
3.5] gives h ∈ A1(X,F ). Thus h is the sought extension.

Assume now that the assertion holds for each β < α for some α ∈ (1, ω1). Let
f : extX → F be a bounded mapping in Cα(X,F ) and let L = acof(extX). By
Proposition 1.4, there exists a sequence (fn) in Cαn

(extX,L) converging pointwise
to f , where αn < α, n ∈ N. Let hn ∈ Aαn

(X,F ) be the extension of fn, n ∈ N.
Since hn is strongly affine, hn(X) ⊂ L by Lemma 1.1(c). (Indeed, let

B = {x ∈ X; hn(x) ∈ L}.
Then B is a Baire subset containing extX and thus carries all maximal measures.
For a fixed x ∈ X, let µ ∈Mx(X) be maximal. Then by Lemma 1.1(b),

hn(x) = µ(hn) =

∫
B

hn dµ ∈ L.)

Let h ∈ A1+α(X,F ) be the extension of f provided by [7, Theorem 2.7(S)]. Set

B = {x ∈ X; hn(x)→ h(x)}
Then B is a Baire set containing extX. For a fixed x ∈ X, let µ ∈ Mx(X) be
maximal. Using Lemma 1.1(e) we infer

h(x) = µ(h) =

∫
B

hdµ = lim
n→∞

∫
B

hn dµ = hn(x).

Thus hn → h on X, which means that the extension h is in Aα(X,F ).
The cases (R) and (C) are now complete analogues of the case (S), one just uses

[7, Theorem 2.7(R),(C)] along with [7, Lemma 3.12(d) and Lemma 3.14(c)].
�
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[6] O. F. K. Kalenda and J. Spurný, Extending Baire-one functions on topological spaces,
Topology Appl., 149 (2005), pp. 195–216.
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