More clones from ideals

Martin Goldstern

Institute of Discrete Mathematics and Geometry Vienna University of Technology

Třešť, September 2008

More clones from ideals

More clones from ideals

Definition Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

The set of clones on X forms a complete Lattice: CLONE(X).

Definition: For any $C \subseteq 0$ let $\langle C \rangle$ be the clone generated by C. We write C(f) for $\langle C \cup \{f\} \rangle$.

Size of **CLONE**(*X*)

If X is finite, then O_X is countable.

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's Lattice")
- If 3 ≤ |X| < ℵ₀, then |CLONE(X)| = 2^{ℵ₀}, and not well understood.

If X is infinite, then

- ▶ $|O_X| = 2^{|X|}$,
- $|CLONE(X)| = 2^{2^{|X|}}$,
- ▶ and only little is known about the structure of **CLONE**(*X*).

Completeness

Example

The functions A, V, true, false *do not generate all operations on* {true, false}.

Proof: All these functions are monotone, and \neg is not.

Now let X be any set.

Example

Assume that \leq is a nontrivial partial order on *X*, and that all functions in $C \subseteq 0$ are monotone with respect to \leq . Then $\langle C \rangle \neq 0$.

Polymorphisms

Let X be a set, $C \subseteq \mathfrak{O}_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in C respect some nontrivial equivalence relation θ
- or: if all functions in *C* respect some nontrivial fixed set $A \subset X$

(i.e.,
$$f[A^k] \subseteq A$$
)

or . . .

then $\langle \boldsymbol{C} \rangle \neq \boldsymbol{0}$.

We write $Pol(\leq)$, $Pol(\theta)$, Pol(A), ... for the clone of all functions respecting \leq , θ , A, ...

Instead of unary (*A*) or binary (\leq , θ) relations, we may also consider *n*-ary or even infinitary relations.

More clones from ideals

Pol() and precomplete clones

- Every set of the form Pol(A₁) ∩ Pol(A₂) ∩ Pol(θ₃) ∩ · · · is a clone.
- Conversely, every clone is the intersection of sets of the form Pol(R) (where the R's can be chosen of finite arity if X is finite).

The "maximal" or "precomplete" clones are the coatoms in the clone lattice.

- $C \neq 0$ is precomplete iff C(f) = 0 for all $f \in 0 \setminus C$.
 - Every precomplete clone is of the form Pol(R) for some relation R.

Question

Which relations R give rise to precomplete clones?

This is nontrivial, already for binary relations.

More clones from ideals

Precomplete clones on finite sets

Example Let $\emptyset \neq A \neq X$. Then Pol(A) is precomplete.

Example

Let X be finite. Let θ be a nontrivial equivalence relation. Then Pol(θ) is precomplete.

Theorem (Rosenberg, 1970)

There is an explicit list $(R_i : i \in I)$ of finitely many (depending on the cardinality of X) relations such that $(Pol(R_i) : i \in I)$ lists all precomplete clones on X.

Moreover, every clone $C \neq 0$ is below some precomplete clone.

Precomplete clones on infinite sets

Example Let $\emptyset \neq A \neq X$. Then Pol(A) is precomplete.

Example

Let θ be a nontrivial equivalence relation with finitely many classes.

Then $Pol(\theta)$ is precomplete.

- ► For which *R* is Pol(*R*) precomplete?
- Is every C ≠ 0 below some precomplete clone?

More clones from ideals

Fixpoint clones

Definition Let $A \subseteq X$. fix(A) is the set of all functions f satisfying $\forall x \in A : f(x, ..., x) = x$. This is a clone.

Definition

Let F be a filter on X. fix((F)) is defined as $\bigcup_{A \in F}$ fix(A), i.e., fix((F)) = { $g : \exists A \in F \forall x \in A : g(x, ..., x) = x$ }.

- fix((F)) is a clone.
- If F is the principal filter generated by the set A, then fix((F)) = fix(A).
- larger filter \Rightarrow larger clone.
- maximal filter \Rightarrow maximal clone.

Fixpoint clones, application

Let $C_0 := \operatorname{fix}(X)$, i.e. the clone of all itempotent functions, i.e., functions *f* satisfying $f(x, \ldots, x) = x$ for all $x \in X$. Let $C_1 := \operatorname{fix}(\emptyset) = 0$, the clone of all functions. Then the interval $[C_0, C_1]$ in the clone lattice is rather complicated, and yet we can "explicitly" describe it.

Theorem (Goldstern-Shelah, 2004)

The clones in the interval $[C_0, C_1]$ are exactly the clones fix((F)), for all possible filters (including the trivial filter $\mathfrak{P}(X)$). (Maximal=precomplete clones correspond to ultrafilters.) So this interval is order isomorphic to the lattice of closed

subsets of βX (with reverse inclusion).

More clones from ideals

Clones from ideals

Definition

Let I be a nontrivial ideal on the set X containing all small sets. $f: X^k \to X$ preserves I if $\forall A \in I : f[A^k] \in I$. We write Pol((I)) for the set of all functions preserving I.

- Pol((1)) is a clone.
- If *I* is the principal ideal generated by the set *A*, then Pol((*I*)) = Pol(*A*).
- ▶ larger ideal \Rightarrow larger clone.
- maximal ideal \Rightarrow maximal clone.
- However, many other ideals also yield maximal clones.

 $I^{-\circ} := \{ A \subseteq X : \forall B \in [A]^{\omega} : [B]^{\omega} \cap I \neq \emptyset \}.$

If $I = I^{-\circ}$, then Pol((1)) is maximal.

Ideal clones, application

For every subset $A \subseteq 2^{\omega}$ we can find (explicitly) an ideal I_A , such that $I_A = I_A^{-\circ}$, and that the ideals I_A are all different.

Theorem (Beiglböck-Goldstern-Heindorf-Pinsker, 2007) While the ideals I_A are not maximal, the clones Pol((I_A)) are (for nontrivial A).

This gives an explicit example of 2^c many precomplete clones on a countable set. (Even without AC.)

Question

Find such examples on uncountable sets.

Equivalence relations

Example

Let θ be a nontrivial equivalence relation on a finite set. Then $Pol(\theta)$ is a precomplete clone.

Example

Let θ be a nontrivial equivalence relation on any set, with finitely many classes. Then Pol(θ) is a precomplete clone.

Definition

Let *E* be a directed family of equivalence relations (coarser and coarser).

Define $Pol((\mathcal{E}))$ as the set of all functions $f : X^k \to X$ with:

for all $E \in \mathcal{E}$ there is $E' \in \mathcal{E}$ such that: whenever $\vec{x} \in \vec{y}$, then $f(\vec{x})E'f(\vec{y})$.

When is $Pol((\mathcal{E}))$ precomplete? Difficult. Because...

Fact

For every ideal I there is a family \mathcal{E} as above such that $Pol((I)) = Pol((\mathcal{E}))$.

More clones from ideals

Growth clones

Definition

Let $X = \mathbb{N} = \{0, 1, 2, ...\}$ for simplicity. For every infinite $A = \{a_0 < a_1 < \cdots\} \subseteq X$ we define bound(A) as the set of functions which do not jump to far in A:

$$bound(\mathbf{A}) := \{f : \exists \mathbf{k} \forall i : \vec{x} < a_i \Rightarrow f(\vec{x}) < a_{i+\mathbf{k}}\}$$

(This is a clone.)

A similar construction is possible for uncountable sets.

Growth clones, continued

Definition

Let $X = \mathbb{N}$ again. For every filter F of subsets of X we define bound((F)) := $\bigcup_{A \in F}$ bound(A).

$$\operatorname{bound}((F)) := \{f : \exists A \in F \exists k \forall i : \vec{x} < a_i^A \Rightarrow f(\vec{x}) < a_{i+k}^A\}$$

(where $a_0^A < a_1^A < \cdots$ is the increasing enumeration of A).

- bound((F)) is a clone.
- If F is the principal filter generated by the set A, then bound((F)) = bound(A).
- larger filter \Rightarrow larger clone.
- maximal filter \neq maximal clone.
- (In fact, bound((F))) is never a maximal clone.)

Growth clones, application

Theorem (G*-Shelah, 2002)

Assume CH. Then on there is a filter F on $\mathbb{N} = \{0, 1, 2, ...\}$ such that, letting C := bound((F)), we know the interval [C, 0)quite well: it is (more or less) a quite saturated linear order **L** with no last element.

(In particular: not every clone is below a precomplete clone.)

We can choose bound ((*F*)) in such a way that the relation $f \leq g \Leftrightarrow f \in C(g)$ is a linear quasiorder. The clones above *C* will then be the Dedekind cuts in this order.

This relation $f \le g$ means that on a large set (i.e., a set in the filter *F*), *g* grows at least as fast as *f*.

Growth clones, new application

Theorem? (Aug-Sep 2008)

Let $\mathbb{N} = N_1 \cup N_2$, with two infinite disjoint sets N_1 , N_2 , say odd and even numbers.

Assume CH. Then there are filters F_1 , F_2 on N_1 and N_2 , respectively, such that, letting $C := \text{bound}((F_1)) \cap \text{bound}((F_2))$, we know the interval [C, 0) quite well: it is (more or less) $L \times L$, with L the quite saturated linear order from the previous slide.

Theorem? (2009?)

Let $(F_i : i \in I)$ be a family of many (almost?) disjoint sets. Assume CH. Then there filters F_i , $i \in I$, such that, letting $C := \bigcap_{i \in I} \text{bound}((F_i))$, the interval [C, 0) is (more or less) L^1 .