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Definition
Fix a set X . We write O(n) for the set of n-ary operations:
O(n) = X X n

, and we let O = OX =
⋃

n=1,2,... O
(n).

A clone on X is a set C ⊆ O which contains all the projection
functions and is closed under composition.
Equivalently, a clone is the set of term functions of some
universal algebra on X .

Fact
The set of clones on X forms a complete Lattice: CLONE(X ).

Definition: For any C ⊆ O let 〈C〉 be the clone generated by C.
We write C(f ) for 〈C ∪ {f}〉.
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Size of CLONE(X )

If X is finite, then OX is countable.

I If |X | = 1, then OX is trivial.
I If |X | = 2, then CLONE(X ) is countable, and completely

understood. (“Post’s Lattice”)
I If 3 ≤ |X | < ℵ0, then |CLONE(X )| = 2ℵ0 , and not well

understood.

If X is infinite, then
I |OX | = 2|X |,
I |CLONE(X )| = 22|X |

,
I and only little is known about the structure of CLONE(X ).
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Completeness

Example
The functions ∧,∨,true,false do not generate all operations
on {true,false}.
Proof: All these functions are monotone, and ¬ is not.

Now let X be any set.

Example
Assume that ≤ is a nontrivial partial order on X, and that all
functions in C ⊆ O are monotone with respect to ≤.
Then 〈C〉 6= O.
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Polymorphisms

Let X be a set, C ⊆ OX .

I If all functions in C respect some order ≤ on X ,
I or: if all functions in C respect some nontrivial equivalence

relation θ
I or: if all functions in C respect some nontrivial fixed set

A ⊂ X
(i.e., f [Ak ] ⊆ A)

I or . . .
then 〈C〉 6= O.

We write Pol(≤), Pol(θ), Pol(A), . . . for the clone of all functions
respecting ≤, θ, A, . . .
Instead of unary (A) or binary (≤, θ) relations, we may also
consider n-ary or even infinitary relations.
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Pol( ) and precomplete clones

I Every set of the form Pol(A1) ∩ Pol(A2) ∩ Pol(θ3) ∩ · · · is a
clone.

I Conversely, every clone is the intersection of sets of the
form Pol(R) (where the R’s can be chosen of finite arity if
X is finite).

The “maximal” or “precomplete” clones are the coatoms in the
clone lattice.
C 6= O is precomplete iff C(f ) = O for all f ∈ O \ C.

I Every precomplete clone is of the form Pol(R) for some
relation R.

Question
Which relations R give rise to precomplete clones?
This is nontrivial, already for binary relations.
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Precomplete clones on finite sets

Example
Let ∅ 6= A 6= X.
Then Pol(A) is precomplete.

Example
Let X be finite. Let θ be a nontrivial equivalence relation.
Then Pol(θ) is precomplete.

Theorem (Rosenberg, 1970)
There is an explicit list (Ri : i ∈ I) of finitely many (depending on
the cardinality of X) relations such that (Pol(Ri) : i ∈ I) lists all
precomplete clones on X.
Moreover, every clone C 6= O is below some precomplete clone.
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Precomplete clones on infinite sets

Example
Let ∅ 6= A 6= X.
Then Pol(A) is precomplete.

Example
Let θ be a nontrivial equivalence relation with finitely many
classes.
Then Pol(θ) is precomplete.

I For which R is Pol(R) precomplete?
I Is every C 6= O below some precomplete clone?
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Fixpoint clones

Definition
Let A ⊆ X. fix(A) is the set of all functions f satisfying
∀x ∈ A : f (x , . . . , x) = x.

This is a clone.

Definition
Let F be a filter on X. fix((F )) is defined as

⋃
A∈F fix(A), i.e.,

fix((F )) = {g : ∃A ∈ F ∀x ∈ A : g(x , . . . , x) = x}.

I fix((F )) is a clone.
I If F is the principal filter generated by the set A, then

fix((F )) = fix(A).
I larger filter⇒ larger clone.
I maximal filter⇒ maximal clone.
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Fixpoint clones, application

Let C0 := fix(X ), i.e. the clone of all itempotent functions, i.e.,
functions f satisfying f (x , . . . , x) = x for all x ∈ X .
Let C1 := fix(∅) = O, the clone of all functions. Then the interval
[C0,C1] in the clone lattice is rather complicated, and yet we
can “explicitly” describe it.

Theorem (Goldstern-Shelah, 2004)
The clones in the interval [C0,C1] are exactly the clones
fix((F )), for all possible filters (including the trivial filter P(X )).
(Maximal=precomplete clones correspond to ultrafilters.)
So this interval is order isomorphic to the lattice of closed
subsets of βX (with reverse inclusion).
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Clones from ideals

Definition
Let I be a nontrivial ideal on the set X containing all small sets.
f : X k → X preserves I if ∀A ∈ I : f [Ak ] ∈ I.
We write Pol((I )) for the set of all functions preserving I.

I Pol((I )) is a clone.
I If I is the principal ideal generated by the set A, then

Pol((I )) = Pol(A).
I larger ideal 6⇒ larger clone.
I maximal ideal⇒ maximal clone.
I However, many other ideals also yield maximal clones.

I−◦ := {A ⊆ X : ∀B ∈ [A]ω : [B]ω ∩ I 6= ∅}.
If I = I−◦, then Pol((I )) is maximal.
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Ideal clones, application

For every subset A ⊆ 2ω we can find (explicitly) an ideal IA,
such that IA = I−◦A , and that the ideals IA are all different.

Theorem (Beiglböck-Goldstern-Heindorf-Pinsker, 2007)
While the ideals IA are not maximal, the clones Pol((IA )) are (for
nontrivial A).
This gives an explicit example of 2c many precomplete clones
on a countable set. (Even without AC.)

Question
Find such examples on uncountable sets.
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Equivalence relations

Example
Let θ be a nontrivial equivalence relation on a finite set.
Then Pol(θ) is a precomplete clone.

Example
Let θ be a nontrivial equivalence relation on any set, with finitely
many classes. Then Pol(θ) is a precomplete clone.
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Definition
Let E be a directed family of equivalence relations (coarser and
coarser).
Define Pol((E )) as the set of all functions f : X k → X with:
for all E ∈ E there is E ′ ∈ E such that: whenever ~x E ~y, then
f (~x)E ′f (~y).
When is Pol((E )) precomplete? Difficult. Because. . .

Fact
For every ideal I there is a family E as above such that
Pol((I )) = Pol((E )).
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Growth clones

Definition
Let X = N = {0,1,2, . . .} for simplicity. For every infinite
A = {a0 < a1 < · · · } ⊆ X we define bound(A) as the set of
functions which do not jump to far in A:

bound(A) := {f : ∃k∀i : ~x < ai ⇒ f (~x) < ai+k}

(This is a clone.)
A similar construction is possible for uncountable sets.

More clones from ideals Institute of Discrete Mathematics and Geometry Vienna University of Technology



Growth clones, continued

Definition
Let X = N again. For every filter F of subsets of X we define
bound((F )) :=

⋃
A∈F bound(A).

bound((F )) := {f : ∃A ∈ F ∃k ∀i : ~x < aA
i ⇒ f (~x) < aA

i+k}

(where aA
0 < aA

1 < · · · is the increasing enumeration of A).

I bound((F )) is a clone.
I If F is the principal filter generated by the set A, then

bound((F )) = bound(A).
I larger filter⇒ larger clone.
I maximal filter 6⇒ maximal clone.
I (In fact, bound((F )) is never a maximal clone.)
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Growth clones, application

Theorem (G*-Shelah, 2002)
Assume CH. Then on there is a filter F on N = {0,1,2, . . . }
such that, letting C := bound((F )), we know the interval [C,O)
quite well: it is (more or less) a quite saturated linear order L
with no last element.
(In particular: not every clone is below a precomplete clone.)

We can choose bound((F )) in such a way that the relation
f ≤ g ⇔ f ∈ C(g) is a linear quasiorder. The clones above C
will then be the Dedekind cuts in this order.
This relation f ≤ g means that on a large set (i.e., a set in the
filter F ), g grows at least as fast as f .
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Growth clones, new application

Theorem? (Aug-Sep 2008)
Let N = N1 ∪̇ N2, with two infinite disjoint sets N1, N2, say odd
and even numbers.
Assume CH. Then there are filters F1, F2 on N1 and N2,
respectively, such that, letting C := bound((F1))∩ bound((F2)), we
know the interval [C,O) quite well: it is (more or less) L× L,
with L the quite saturated linear order from the previous slide.

Theorem? (2009?)
Let (Fi : i ∈ I) be a family of many (almost?) disjoint sets.
Assume CH. Then there filters Fi , i ∈ I, such that, letting
C :=

⋂
i∈I bound((Fi)), the interval [C,O) is (more or less) LI.
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