Universal Algebra and Computational Complexity Lecture 1

Ross Willard

University of Waterloo, Canada
Třešt', September 2008

Outline

Outline

Lecture 1: Decision problems and Complexity Classes

Outline

Lecture 1: Decision problems and Complexity Classes

Lecture 2: Nondeterminism, Reductions and Complete problems

Outline

Lecture 1: Decision problems and Complexity Classes

Lecture 2: Nondeterminism, Reductions and Complete problems

Lecture 3: Results and problems from Universal Algebra

Three themes: problems, algorithms, efficiency

A Decision Problem is ...

- A YES/NO question
- parametrized by one or more inputs.
- Inputs must:
- range over an infinite class.
- be "finitistically described"

Three themes: problems, algorithms, efficiency

A Decision Problem is ...

- A YES/NO question
- parametrized by one or more inputs.
- Inputs must:
- range over an infinite class.
- be "finitistically described"

What we seek:

- An algorithm which correctly answers the question for all possible inputs.

Three themes: problems, algorithms, efficiency

A Decision Problem is ...

- A YES/NO question
- parametrized by one or more inputs.
- Inputs must:
- range over an infinite class.
- be "finitistically described"

What we seek:

- An algorithm which correctly answers the question for all possible inputs.

What we ask:

- How efficient is this algorithm?
- Is there a better (more efficient) algorithm?

Directed Graph Reachability problem (PATH)

INPUT:

- A finite directed graph $G=(V, E)$
- Two distinguished vertices $v_{\text {start }}, v_{\text {end }} \in V$.

QUESTION:

- Does there exist in G a directed path from $v_{\text {start }}$ to $v_{\text {end }}$?

An Algorithm for PATH

Answer: "NO"

Efficiency of this algorithm

How long does this algorithm take?

- l.e., how many steps ...

Efficiency of this algorithm

How long does this algorithm take?

- I.e., how many steps ...
- ... as a function of the size of the input graph.

Efficiency of this algorithm

How long does this algorithm take?

- I.e., how many steps ...
- ... as a function of the size of the input graph.

I'll give three answers to this.

First answer - Heuristics

Only action is changing a vertex's color.

Only changes possible are

- white \Rightarrow red
- red \Rightarrow green
- green \Rightarrow blue.

So if $n=|V|$, then the algorithm requires at most $3 n$ vertex-color changes.

Second answer - pseudo-code

Simplifying assumptions:

- $V=\{0,1, \ldots, n-1\}$
- E is encoded by the adjacency matrix $M_{E}=\left[e_{i, j}\right]$ where

$$
e_{i, j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { else }\end{cases}
$$

Second answer - pseudo-code

Simplifying assumptions:

- $V=\{0,1, \ldots, n-1\}$
- E is encoded by the adjacency matrix $M_{E}=\left[e_{i, j}\right]$ where

$$
e_{i, j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { else }\end{cases}
$$

Auxiliary variables:

- i, j will range over $\{0,1, \ldots, n-1\}$.
- For $i<n$ let c_{i} be a variable recording the color of vertex i.
- Let GreenVar be a variable storing whether there are green-colored vertices.

Second answer - pseudo-code

Algorithm:

- Input n, M_{E}, start and end.
- For $i=0$ to $n-1$ set $c_{i}:=$ white.
- Set $c_{\text {start }}=$ green.
- Set GreenVar := yes.

Second answer - pseudo-code

Algorithm:

- Input n, M_{E}, start and end.
- For $i=0$ to $n-1$ set $c_{i}:=$ white.
- Set $c_{\text {start }}=$ green.
- Set GreenVar := yes.
- MAIN LOOP: While GreenVar = yes do:
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=$ red.
- For $i=0$ to $n-1$
- If $c_{i}=$ green then set $c_{i}:=$ blue
- Set GreenVar $:=$ no
- For $i=0$ to $n-1$
- If $c_{i}=$ red then (set $c_{i}:=$ green and set GreenVar :=yes)

Second answer - pseudo-code

Algorithm:

- Input n, M_{E}, start and end.
- For $i=0$ to $n-1$ set $c_{i}:=$ white.
- Set $c_{\text {start }}=$ green.
- Set GreenVar := yes.
- MAIN LOOP: While GreenVar = yes do:
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.
- For $i=0$ to $n-1$
- If $c_{i}=$ green then set $c_{i}:=$ blue
- Set GreenVar := no
- For $i=0$ to $n-1$
- If $c_{i}=$ red then (set $c_{i}:=$ green and set GreenVar := yes)
- If $c_{\text {end }}=$ blue then output YES; else output NO.

Second answer - pseudo-code

Algorithm:

- Input n, M_{E}, start and end.
- For $i=0$ to $n-1$ set $c_{i}:=$ white.
- Set $c_{\text {start }}=$ green.
- Set GreenVar := yes.
- MAIN LOOP: While GreenVar = yes do:
n loops
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.
- For $i=0$ to $n-1$
- If $c_{i}=$ green then set $c_{i}:=$ blue
- Set GreenVar $:=$ no
- For $i=0$ to $n-1$
- If $c_{i}=$ red then (set $c_{i}:=$ green and set GreenVar := yes)
- If $c_{\text {end }}=$ blue then output YES; else output NO.

Second answer - pseudo-code

Algorithm:

- Input n, M_{E}, start and end.
- For $i=0$ to $n-1$ set $c_{i}:=$ white.
- Set $c_{\text {start }}=$ green.
- Set GreenVar := yes.
- MAIN LOOP: While GreenVar = yes do:
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
n loops
n^{2} cases
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.
- For $i=0$ to $n-1$
- If $c_{i}=$ green then set $c_{i}:=$ blue
- Set GreenVar $:=$ no
- For $i=0$ to $n-1$
- If $c_{i}=$ red then (set $c_{i}:=$ green and set GreenVar := yes)
- If $c_{\text {end }}=$ blue then output YES; else output NO.

Second answer - pseudo-code

Algorithm:

- Input n, M_{E}, start and end.
- For $i=0$ to $n-1$ set $c_{i}:=$ white.
- Set $c_{\text {start }}=$ green.
- Set GreenVar := yes.
- MAIN LOOP: While GreenVar = yes do:
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
n loops
n^{2} cases
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.
- For $i=0$ to $n-1$
- If $c_{i}=$ green then set $c_{i}:=$ blue
- Set GreenVar := no
- For $i=0$ to $n-1$
- If $c_{i}=$ red then (set $c_{i}:=$ green and set

$$
\begin{aligned}
& O\left(n^{3}\right) \text { steps } \\
& \text { if } n=|V|
\end{aligned}
$$

- If $c_{\text {end }}=$ blue then output YES; else output NO.

Third answer - machine implementation

Again assume $V=\{0,1, \ldots, n-1\}$.

Assume also that $v_{\text {start }}=0$ and $v_{\text {end }}=1$.
Assume the adjacency matrix is presented as a binary string of length n^{2}.

Implement the algorithm on a Turing machine.

Turing machine

 Output bit: \square

Turing machine

Input (ROM):
 R/W Tape 1:
 R/W Tape 2:
 R/W Tape 3:
 R/W Tape 4:

 Output bit: \square

Turing machine

Input（ROM）：氏 长名 R／W Tape 1： $\square \quad$ 吹 R／W Tape 2： R／W Tape 3： oto R／W Tape 4：

 Output bit：

Tape	In	1	2	3	4	5
char						
$1^{\text {st }} ?$						

Turing machine

Input (ROM):
 R/W Tape 1: $1 \quad{ }_{0}^{\circ}$ R/W Tape 2: 哏 R/W Tape 3: oto

R/W Tape 4:

 R/W Tape 5: Output bit:

Tape	In	1	2	3	4	5
char						
$1^{\text {st }} ?$						

Turing machine

Input (ROM):傩" R/W Tape 1:

R/W Tape 2:

R/W Tape 3:
喅"
R/W Tape 4:

R/W Tape 5: Output bit:

Tape	\ln	1	2	3	4	5
char						
$1^{\text {st }} ?$						

Turing machine

Input (ROM):
 R/W Tape 1: $1 \quad{ }_{0}^{\circ}$ R/W Tape 2: 哏 R/W Tape 3: oto

R/W Tape 4:

 R/W Tape 5: Output bit:

Tape	In	1	2	3	4	5
char						
$1^{\text {st }} ?$						

Turing machine

Input (ROM):皆
 R/W Tape 2: oto
 R/W Tape 3:

 Output bit:

Tape	In	1	2	3	4	5
char						
$1^{\text {st }} ?$						

Turing machine

Output bit:

Tape	In	1	2	3	4	5
char						
$1^{\text {st }} ?$						

Prof asks for status

Turing machine

Output bit:

Tape	In	1	2	3	4	5
char	1	c	1	x	E	
$1^{\text {st }} ?$						

Students send reports

Turing machine

Input (ROM):

 R/W Tape 2: oto
 R/W Tape 3:

R/W Tape 5: $001110|1| 11001100|101101110| 0$

Output bit:

Tape	In	1	2	3	4	5
char	1	c	1	x	E	
$1^{\text {st }} ?$						

Prof consults manual

Turing machine

Output bit:

Tape	In	1	2	3	4	5
char	1	c	1	x	E	
$1^{\text {st }} ?$						

Prof sends instructions

Turing machine

Input (ROM):

 R/W Tape 2: oto

 R/W Tape 5: $\quad 0011101111100100110101110011 \mid$ Output bit:

Tape	In	1	2	3	4	5
char	1	c	1	x	E	
$1^{\text {st }} ?$						

Action 1: 4 writes " O ".

Turing machine

 Output bit:

Tape	In	1	2	3	4	5
char	1	c	1	x	E	
$1^{\text {st }} ?$						

Action 2: Students move as directed

Turing machine

Output bit:

Tape	In	1	2	3	4	5
char						
$1^{\text {st }} ?$						

Action 3: Update state, ready for next "step"

Implementing the algorithm for PATH

Input:

Tape 2:

Tape 3:

Tape 4:

Tape 5:

Implementing the algorithm for PATH

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:

Implementing the algorithm for PATH

Tape 1:

Tape 2:

Tape 4:

Tape 5:
8
0
0
0

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:

Implementing the algorithm for PATH

 Tape 1: 手知
Tape 2:

Tape 3:

Tape 4:

Tape 5:

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:
隼

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:
然
0
0

Implementing the algorithm for PATH

Tape 2:

Soss
Tape 3:
Tape 4:
Tape 5:
Output:

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:
隼

Implementing the algorithm for PATH

Tape 2:

Tape 3:

Tape 4:

Tape 5:
St
0
0
0

Implementing the algorithm for PATH

Tape 2:

Tape 3:

Tape 4:

Tape 5:
0
0
0

Implementing the algorithm for PATH

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:
然
0
0

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:
然
0
0

Implementing the algorithm for PATH

Tape 2:

Tape 4:

Tape 5:
然
0
0

Implementing the algorithm for PATH

Implementing the algorithm for PATH

Input: 年
Tape 1:

Tape 2:

Tape 3:

Tape 4:

Tape 5:
然
0
0

Implementing the algorithm for PATH

Tape 2:

Tape 3:

Tape 4:

Tape 5:
ito
oto
\square

Implementing the algorithm for PATH

Input:

Tape 2:

Tape 3:

Tape 4:

Tape 5:
0
0
0

Implementing the algorithm for PATH

Input：$\underbrace{\text { 龙 }}$

Tape 2：

Tape 4： ギ

Tape 5：
Bto
0
0
\square

Implementing the algorithm for PATH

Implementing the algorithm for PATH

Implementing the algorithm for PATH

Tape 2:

Tape 4:
Tape 5:
然
0
0

Implementing the algorithm for PATH

Many steps later ...

Implementing the algorithm for PATH

Implementing the algorithm for PATH

Many more steps later ...

Implementing the algorithm for PATH

Input: $\xrightarrow{\circ}$
Tape 1:

Tape 4: $\boldsymbol{\text { 4 }}$

Implementing the algorithm for PATH

Input:

Tape 1:

Tape 4: $\boldsymbol{\text { 4 }}$

Set up variables ...

Implementing the algorithm for PATH

Input:

$\left\langle c_{i}\right\rangle$

Tape 3: $\underbrace{\text { ण0000 }}_{i}$ (1)
Tape 4: $\underbrace{\text { 01000 }}_{j}$:
 Greenvar

Set up variables ...

Implementing the algorithm for PATH

Input:

$\left\langle c_{i}\right\rangle$

Tape 4: $\underbrace{\text { 00000 }}_{j}$ (1)
 Green Var

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Tape 1:

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Input:

Tape 1:

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Input: $\underbrace{\text { Ol01100001010 }}$
Tape 1:
 $\left[e_{i, j}\right]$
 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

Tape 3: $\underbrace{\text { ण0000 }}_{i}$ (1)
Tape 4: $\underbrace{\text { 000110 }}_{j}$:
 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Tape 1:

$\left\langle c_{i}\right\rangle$

Tape 3: $\underbrace{\text { ण0000 }}_{i}$ (1)

 Green Var

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Tape 1:

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Tape 1: \quad 长 $\quad\left[e_{i, j}\right]$ $\left\langle c_{i}\right\rangle$

Tape 3: $\underbrace{\text { ण0000 }}_{i}$ (1)

 Green Var

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Tape 1: $\quad \stackrel{0_{0}}{\left[e_{i, j}\right]}$ $\left\langle c_{i}\right\rangle$

Tape 3: $\underbrace{\text { ण0000 }}_{i}$ (1)

 Green Var

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Input: 0
 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Input: 0 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Tape 1:
 $\left[e_{i, j}\right]$

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

Tape 1:

$\left\langle c_{i}\right\rangle$

 GreenVar

Main loop: For $i, j=0$ to $n-1 \ldots$

Implementing the algorithm for PATH

 $\left\langle c_{i}\right\rangle$

Tape 4: $\underbrace{\text { 111000\# }}_{j}$
 GreenVar

Main loop: and so on...

Pseudo-code revisited

Point: overhead needed to keep track of i, j, c_{i}, c_{j}.
Thus:

- While GreenVar = yes do:
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
n loops
n^{2} cases
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.

Pseudo-code revisited

Point: overhead needed to keep track of i, j, c_{i}, c_{j}.
Thus:

- While GreenVar = yes do:
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.
n loops
n^{2} cases
$O(n \log n)$ steps

Pseudo-code revisited

Point: overhead needed to keep track of i, j, c_{i}, c_{j}.
Thus:

- While GreenVar = yes do:
n loops
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.

SUMMARY: on an input graph $G=(V, E)$ with $|V|=n$, our algorithm decides the answer to PATH using:

Heuristics	$3 n$ color changes
Pseudo-code	$O\left(n^{3}\right)$ operations
Turing machine	$O\left(n^{4} \log n\right)$ steps (Time)

Pseudo-code revisited

Point: overhead needed to keep track of i, j, c_{i}, c_{j}.
Thus:

- While GreenVar = yes do:
n loops
- For $i=0$ to $n-1$; for $j=0$ to $n-1$
- if $e_{i, j}=1$ and $c_{i}=$ green and $c_{j}=$ white then set $c_{j}:=r e d$.

SUMMARY: on an input graph $G=(V, E)$ with $|V|=n$, our algorithm decides the answer to PATH using:

Heuristics	$3 n$ color changes
Pseudo-code	$O\left(n^{3}\right)$ operations
Turing machine	$O\left(n^{4} \log n\right)$ steps (Time)
	$O(n)$ memory cells (Space)

Turing machine complexity

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be given.

Definition

A decision problem D (with a specified encoding of its inputs) is:
(1) in $\operatorname{TIME}(f(N))$ if there exists a Turing machine solving D in at most $O(f(N))$ steps on inputs of length N.

Turing machine complexity

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be given.

Definition

A decision problem D (with a specified encoding of its inputs) is:
(1) in $\operatorname{TIME}(f(N))$ if there exists a Turing machine solving D in at most $O(f(N))$ steps on inputs of length N.
(2) in $\operatorname{SPACE}(f(N))$ if there exists a Turing machine solving D requiring at most $O(f(N))$ memory cells (not including the input tape) on inputs of length N.

Complexity of PATH

Recall that our Turing machine solves PATH on graphs with n vertices in

- Time: $O\left(n^{4} \log n\right)$ steps
- Space: $O(n)$ memory cells.

Since "length N of input" $=n^{2}$ (when $\left.n=|V|\right)$, this at least proves

Complexity of PATH

Recall that our Turing machine solves PATH on graphs with n vertices in

- Time: $O\left(n^{4} \log n\right)$ steps
- Space: $O(n)$ memory cells.

Since "length N of input" $=n^{2}$ (when $\left.n=|V|\right)$, this at least proves

Theorem

$$
\begin{aligned}
& \text { PATH } \in \operatorname{TIME}\left(N^{2+\epsilon}\right) \\
& \text { PATH } \in \operatorname{SPACE}(\sqrt{N})
\end{aligned}
$$

Complexity of PATH

Recall that our Turing machine solves PATH on graphs with n vertices in

- Time: $O\left(n^{4} \log n\right)$ steps
- Space: $O(n)$ memory cells.

Since "length N of input" $=n^{2}$ (when $\left.n=|V|\right)$, this at least proves

Theorem

$$
\begin{aligned}
& \text { PATH } \in \operatorname{TIME}\left(N^{2+\epsilon}\right) \\
& \text { PATH } \in \operatorname{SPACE}(\sqrt{N})
\end{aligned}
$$

(Question: can we do better?...)

Another problem: Boolean Formula Value (FVAL)

INPUT:

- A boolean formula φ in propositional variables x_{1}, \ldots, x_{n}.
- A sequence $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in\{0,1\}^{n}$.

QUESTION:

- Is $\varphi(\mathbf{c})=1$?

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

Seems to use $\operatorname{TIME}(N)$ and $\operatorname{SPACE}(N)$.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

Seems to use $\operatorname{TIME}(N)$ and $\operatorname{SPACE}(N)$.
But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

An algorithm for FVAL

$$
\varphi=\left(\left(\left(\left(x_{2} \vee x_{4}\right) \vee\left(\neg\left(x_{3}\right)\right)\right) \wedge\left(\left(x_{1} \wedge x_{4}\right) \rightarrow\left(x_{3} \vee x_{2}\right)\right)\right) \rightarrow\left(\neg\left(x_{3} \wedge\left(x_{1} \vee x_{3}\right)\right)\right)\right), \quad \mathbf{c}=(1,0,1,1) .
$$

But space can be re-used. In this example, 3 memory bits suffice.

Complexity of FVAL

In general, a bottom-up computation, always computing a larger subtree first, can be organized to need only $O(\log |\varphi|)$ intermediate values.

A careful implementation on a Turing machine yields:

Complexity of FVAL

In general, a bottom-up computation, always computing a larger subtree first, can be organized to need only $O(\log |\varphi|)$ intermediate values.

A careful implementation on a Turing machine yields:

Theorem (Nancy Lynch, 1977)

$$
\begin{aligned}
& F V A L \in \operatorname{TIME}\left(N^{2+\epsilon}\right) \\
& F V A L \in \operatorname{SPACE}(\log N) .
\end{aligned}
$$

A third problem: Graph 3-Colorability (3COL)

INPUT: a finite graph $G=(V, E)$.
QUESTION: Is it possible to color the vertices red, green or blue, so that no two adjacent vertices have the same color?

G

A third problem: Graph 3-Colorability (3COL)

INPUT: a finite graph $G=(V, E)$.
QUESTION: Is it possible to color the vertices red, green or blue, so that no two adjacent vertices have the same color?

Yes

G

A third problem: Graph 3-Colorability (3COL)

INPUT: a finite graph $G=(V, E)$.
QUESTION: Is it possible to color the vertices red, green or blue, so that no two adjacent vertices have the same color?

Equivalently: does there exist a homomorphism

An algorithm for 3 COL

Brute force search algorithm:

- For each function
$\chi: V \rightarrow K_{3}:$
- Test if χ works.

An algorithm for 3 COL

Brute force search algorithm:

- For each function
$\chi: V \rightarrow K_{3}:$

$$
3^{|V|}=2^{O(\sqrt{N})} \text { loops }
$$

- Test if χ works.

An algorithm for 3 COL

Brute force search algorithm:

- For each function
$\chi: V \rightarrow K_{3}:$

$$
3^{|V|}=2^{O(\sqrt{N})} \text { loops }
$$

- Test if χ works.

$$
\begin{aligned}
& O\left(N^{2}\right) \text { time, } \\
& O(\sqrt{N}) \text { space }
\end{aligned}
$$

An algorithm for 3 COL

Brute force search algorithm:

- For each function
$\chi: V \rightarrow K_{3}:$
$3^{|V|}=2^{O(\sqrt{N})}$ loops
- Test if χ works.
$O\left(N^{2}\right)$ time,
$O(\sqrt{N})$ space

Theorem

This at least proves:

$$
\begin{aligned}
& 3 C O L \in \operatorname{TIME}\left(2^{O(\sqrt{N})}\right) \\
& 3 C O L \in \operatorname{SPACE}(\sqrt{N})
\end{aligned}
$$

An algorithm for 3 COL

Brute force search algorithm:

- For each function
$\chi: V \rightarrow K_{3}:$

$$
3^{|V|}=2^{O(\sqrt{N})} \text { loops }
$$

- Test if χ works.
$O\left(N^{2}\right)$ time,
$O(\sqrt{N})$ space

Theorem

This at least proves:

$$
\begin{aligned}
& 3 C O L \in \operatorname{TIME}\left(2^{O(\sqrt{N})}\right) \\
& 3 C O L \in \operatorname{SPACE}(\sqrt{N})
\end{aligned}
$$

(Question: can we do better?...)

A fourth problem: Clone membership (CLO)

INPUT:

- A finite algebra \mathbf{A}.
- An operation $g: A^{k} \rightarrow A$.

QUESTION: Is g a term operation of \mathbf{A} ?

A fourth problem: Clone membership (CLO)

INPUT:

- A finite algebra \mathbf{A}.
- An operation $g: A^{k} \rightarrow A$.

QUESTION: Is g a term operation of \mathbf{A} ?
All known algorithms essentially generate the full k-generated free algebra in $\mathbf{V}(\mathbf{A})$,

$$
\mathbf{F}_{k} \leq \mathbf{A}^{\left(A^{k}\right)}
$$

and test whether $g \in F_{k}$.

A fourth problem: Clone membership (CLO)

INPUT:

- A finite algebra \mathbf{A}.
- An operation $g: A^{k} \rightarrow A$.

QUESTION: Is g a term operation of \mathbf{A} ?
All known algorithms essentially generate the full k-generated free algebra in $\mathbf{V}(\mathbf{A})$,

$$
\mathbf{F}_{k} \leq \mathbf{A}^{\left(A^{k}\right)}
$$

and test whether $g \in F_{k}$.
In the worst case this could require as much as $O\left(\left|A^{\left(A^{k}\right)}\right|\right)=2^{\left(|A|^{k}\right)^{1+\epsilon}}$ time and space.
I.e., exponential in the size of the input. (More on this in Lecture 3.)

Some important complexity classes

Definition

(1) $P=P T I M E=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(N^{k}\right)=\operatorname{TIME}\left(N^{O(1)}\right)$.
(2) $\operatorname{PSPACE}=\bigcup_{k=1}^{\infty} \operatorname{SPACE}\left(N^{k}\right)=\operatorname{SPACE}\left(N^{O(1)}\right)$.

Problems known to be in P are said to be feasible or tractable.

Some important complexity classes

Definition

(1) $P=P T I M E=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(N^{k}\right)=\operatorname{TIME}\left(N^{O(1)}\right)$.
(2) $P S P A C E=\bigcup_{k=1}^{\infty} \operatorname{SPACE}\left(N^{k}\right)=\operatorname{SPACE}\left(N^{O(1)}\right)$.

Problems known to be in P are said to be feasible or tractable.

Definition

(3 EXPTIME $=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(2^{N^{k}}\right)=\operatorname{TIME}\left(2^{N^{O(1)}}\right)$.

PATH
FVAL
3COL

Some important complexity classes

Definition

(1) $P=P T I M E=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(N^{k}\right)=\operatorname{TIME}\left(N^{O(1)}\right)$.
(2) $\operatorname{PSPACE}=\bigcup_{k=1}^{\infty} \operatorname{SPACE}\left(N^{k}\right)=\operatorname{SPACE}\left(N^{O(1)}\right)$.

Problems known to be in P are said to be feasible or tractable.

Definition

(3 EXPTIME $=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(2^{N^{k}}\right)=\operatorname{TIME}\left(2^{N^{O(1)}}\right)$.
(1) $L=\angle O G S P A C E=\operatorname{SPACE}(\log (N))$.

$$
\begin{array}{cccc}
L \subseteq P & P & \text { PSPACE } \subseteq & \text { EXPTIME } \\
\Psi & \Psi & \Psi \\
F V A L & P A T H & 3 C O L & C L O
\end{array}
$$

Tomorrow

$L \subseteq \underset{\psi}{P} \subseteq \underset{\psi}{P}$ PSPACE \subseteq EXPTIME
 PATH 3COL
 CLO

In tomorrow's lecture I will:

- Introduce "nondeterministic" versions of these 4 classes.
- Introduce problems which are "hardest" for each class.

