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Three themes: problems, algorithms, efficiency

A Decision Problem is . . .

A YES/NO question

parametrized by one or more inputs.
Inputs must:

range over an infinite class.
be “finitistically described”

What we seek:

An algorithm which correctly answers the question for all possible
inputs.

What we ask:

How efficient is this algorithm?

Is there a better (more efficient) algorithm?
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Directed Graph Reachability problem (PATH)

INPUT:

A finite directed graph G = (V ,E )

Two distinguished vertices vstart , vend ∈ V .

QUESTION:

Does there exist in G a directed path from vstart to vend?

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 4 / 24



An Algorithm for PATH

vstart =

vstart =vstart =

Answer: “NO”

vend =
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An Algorithm for PATH

vstart =

vstart =

vstart =

Answer: “NO”

vend =

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 5 / 24
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Efficiency of this algorithm

How long does this algorithm take?

I.e., how many steps . . .

. . . as a function of the size of the input graph.

I’ll give three answers to this.
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First answer – Heuristics

Only action is changing a vertex’s color.

Only changes possible are

white ⇒ red

red ⇒ green

green ⇒ blue.

So if n = |V |, then the algorithm requires at most 3n vertex-color
changes.
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Second answer – pseudo-code

Simplifying assumptions:

V = {0, 1, . . . , n − 1}
E is encoded by the adjacency matrix ME = [ei ,j ] where

ei ,j =

{
1 if (i , j) ∈ E ,
0 else.

Auxiliary variables:

i , j will range over {0, 1, . . . , n−1}.
For i < n let ci be a variable recording the color of vertex i .

Let GreenVar be a variable storing whether there are green-colored
vertices.
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Second answer – pseudo-code

Algorithm:

Input n, ME , start and end .

For i = 0 to n − 1 set ci := white.

Set cstart = green.

Set GreenVar := yes.

MAIN LOOP: While GreenVar = yes do:
For i = 0 to n − 1; for j = 0 to n − 1

if ei,j = 1 and ci = green and cj = white then
set cj := red .

For i = 0 to n − 1

If ci = green then set ci := blue

Set GreenVar := no
For i = 0 to n − 1

If ci = red then (set ci := green and set
GreenVar := yes)

If cend = blue then output YES; else output NO.

n loops
n2 cases

O(n3) steps
if n = |V |
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Third answer – machine implementation

Again assume V = {0, 1, . . . , n − 1}.

Assume also that vstart = 0 and vend = 1.

Assume the adjacency matrix is presented as a binary string of length n2.

Implement the algorithm on a Turing machine.
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Turing machine

. . .

. . .

. . .

. . .

. . .

. . .Input (ROM):

R/W Tape 1:

R/W Tape 2:

R/W Tape 3:

R/W Tape 4:

R/W Tape 5:

Output bit:

state
Tape
char
1st?

In 1 2 3 4 537
1 c 1 x E

X
Prof asks for statusStudents send reportsProf consults manualProf sends instructionsAction 1: 4 writes “O”.Action 2: Students move as directedAction 3: Update state, ready for next “step”

0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1

a a c e c a a e c a e e a c a e e a c c c e c e c a a e a a c

7 0 3 2 5 3 0 0 1 6 7 2 3 0 1 5 1 5 0 0 0 6 7 2 3 1 3 4 0 1 0

x o x x o o o o x x o x x o

AC HX XOO 1 P L E A S ∗ S E ND ∗HE L P ∗ A RG G HH

0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1

EOO
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Turing machine

. . .

. . .

. . .

. . .

. . .

. . .Input (ROM):

R/W Tape 1:

R/W Tape 2:

R/W Tape 3:

R/W Tape 4:

R/W Tape 5:

Output bit: state
Tape
char
1st?

In 1 2 3 4 5

37
1 c 1 x E

X
Prof asks for statusStudents send reportsProf consults manualProf sends instructionsAction 1: 4 writes “O”.Action 2: Students move as directedAction 3: Update state, ready for next “step”

0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1

a a c e c a a e c a e e a c a e e a c c c e c e c a a e a a c

7 0 3 2 5 3 0 0 1 6 7 2 3 0 1 5 1 5 0 0 0 6 7 2 3 1 3 4 0 1 0

x o x x o o o o x x o x x o

AC HX XOO 1 P L E A S ∗ S E ND ∗HE L P ∗ A RG G HH

0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1

EOO

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 11 / 24
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Turing machine

. . .

. . .

. . .

. . .

. . .

. . .Input (ROM):

R/W Tape 1:

R/W Tape 2:

R/W Tape 3:

R/W Tape 4:

R/W Tape 5:

Output bit: state
Tape
char
1st?

In 1 2 3 4 53

7
1 c 1 x E

X

Prof asks for status

Students send reportsProf consults manualProf sends instructionsAction 1: 4 writes “O”.Action 2: Students move as directedAction 3: Update state, ready for next “step”

0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1

a a c e c a a e c a e e a c a e e a c c c e c e c a a e a a c

7 0 3 2 5 3 0 0 1 6 7 2 3 0 1 5 1 5 0 0 0 6 7 2 3 1 3 4 0 1 0

x o x x o o o o x x o x x o

AC HX XOO 1 P L E A S ∗ S E ND ∗HE L P ∗ A RG G HH

0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1

E

OO

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 11 / 24
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Implementing the algorithm for PATH

. . .

. . .

. . .

. . .

. . .

. . .Input:

Tape 1:

Tape 2:

Tape 3:

Tape 4:

Tape 5:

Output:

︸ ︷︷ ︸
[ei,j ]

0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 #

0

1 #01 #01 #1 #

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 12 / 24
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Implementing the algorithm for PATH

. . .

. . .

. . .

. . .

. . .

. . .Input:

Tape 1:

Tape 2:

Tape 3:

Tape 4:

Tape 5:

Output:

︸ ︷︷ ︸
[ei,j ]

0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 #

0

1

#0

1 #

01 #1 #

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 12 / 24
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Implementing the algorithm for PATH

. . .

. . .

. . .

. . .

. . .

. . .Input:

Tape 1:

Tape 2:

Tape 3:

Tape 4:

Tape 5:

Many steps later . . .

︸ ︷︷ ︸
[ei,j ]

︸ ︷︷ ︸
n2

Many more steps later . . .

︸ ︷︷ ︸
n

Set up variables . . .

Main loop:

and so on . . .

For i , j = 0 to n − 1 . . .

︸ ︷︷ ︸
i︸ ︷︷ ︸
j

︸ ︷︷ ︸
〈ci 〉

=

GreenVar

0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 #

0 0 0 0 1 0 0 1 #

#

0 0 1 1 #

0

1

0 0 0 #

0

0 0

0

1

1 1

1 #

s c r a t c h w o r k

1

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 13 / 24
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Pseudo-code revisited

Point: overhead needed to keep track of i , j , ci , cj .

Thus:

While GreenVar = yes do:
For i = 0 to n − 1; for j = 0 to n − 1

if ei,j = 1 and ci = green and cj = white
then set cj := red .

n loops
n2 cases

O(n log n) steps

SUMMARY: on an input graph G = (V ,E ) with |V | = n, our algorithm
decides the answer to PATH using:

Heuristics 3n color changes

Pseudo-code O(n3) operations

Turing machine O(n4 log n) steps (Time)

O(n) memory cells (Space)
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Turing machine complexity

Let f : N → N be given.

Definition

A decision problem D (with a specified encoding of its inputs) is:

1 in TIME (f (N)) if there exists a Turing machine solving D in at most
O(f (N)) steps on inputs of length N.

2 in SPACE (f (N)) if there exists a Turing machine solving D requiring
at most O(f (N)) memory cells (not including the input tape) on
inputs of length N.
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Complexity of PATH

Recall that our Turing machine solves PATH on graphs with n vertices in

Time: O(n4 log n) steps

Space: O(n) memory cells.

Since “length N of input” = n2 (when n = |V |), this at least proves

Theorem

PATH ∈ TIME (N2+ε)

PATH ∈ SPACE (
√

N)

(Question: can we do better?. . . )
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Another problem: Boolean Formula Value (FVAL)

INPUT:

A boolean formula ϕ in propositional variables x1, . . . , xn.

A sequence c = (c1, . . . , cn) ∈ {0, 1}n.

QUESTION:

Is ϕ(c) = 1?

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 17 / 24



An algorithm for FVAL

ϕ = ((((x2∨x4)∨(¬(x3)))∧((x1∧x4)→(x3∨x2)))→(¬(x3∧(x1∨x3)))), c = (1,0,1,1).

→

∧ ¬

∨ → ∧

∨ ¬ ∧ ∨ x3 ∨

x2 x4 x3 x1 x4 x3 x2 x1 x3

0 1 1 1 1 1 0

1

1 1

1 0 1 1 1

1 1 1

1 0

0

Seems to use TIME (N) and SPACE (N).
But space can be re-used. In this example, 3 memory bits suffice.
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An algorithm for FVAL

ϕ = ((((x2∨x4)∨(¬(x3)))∧((x1∧x4)→(x3∨x2)))→(¬(x3∧(x1∨x3)))), c = (1,0,1,1).

→

∧ ¬

∨ → ∧

∨ ¬ ∧ ∨ x3 ∨

x2 x4 x3 x1 x4 x3 x2 x1 x30 1 1 1 1 1 0

1

1 1

1 0 1 1 1

1 1 1

1 0

0

Seems to use TIME (N) and SPACE (N).
But space can be re-used. In this example, 3 memory bits suffice.

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 18 / 24
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An algorithm for FVAL

ϕ = ((((x2∨x4)∨(¬(x3)))∧((x1∧x4)→(x3∨x2)))→(¬(x3∧(x1∨x3)))), c = (1,0,1,1).

→

∧ ¬

∨ → ∧

∨ ¬ ∧ ∨ x3 ∨

x2 x4 x3 x1 x4 x3 x2 x1 x3

0 1 1 1 1 1 0

1

1 1

1 0 1 1 1

1 1 1

1 0

0

Seems to use TIME (N) and SPACE (N).

But space can be re-used. In this example, 3 memory bits suffice.

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 18 / 24
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An algorithm for FVAL

ϕ = ((((x2∨x4)∨(¬(x3)))∧((x1∧x4)→(x3∨x2)))→(¬(x3∧(x1∨x3)))), c = (1,0,1,1).

→

∧ ¬

∨ → ∧

∨ ¬ ∧ ∨ x3 ∨

x2 x4 x3 x1 x4 x3 x2 x1 x3

0 1 1 1 1 1 0

1

1 1

1 0 1 1 1

1 1

1

1 0

0

Seems to use TIME (N) and SPACE (N).

But space can be re-used. In this example, 3 memory bits suffice.

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 18 / 24
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An algorithm for FVAL

ϕ = ((((x2∨x4)∨(¬(x3)))∧((x1∧x4)→(x3∨x2)))→(¬(x3∧(x1∨x3)))), c = (1,0,1,1).

→

∧ ¬

∨ → ∧

∨ ¬ ∧ ∨ x3 ∨

x2 x4 x3 x1 x4 x3 x2 x1 x3

0 1 1 1 1 1 0

1

1 1

1 0 1 1 1

1 1 1

1 0

0

Seems to use TIME (N) and SPACE (N).

But space can be re-used. In this example, 3 memory bits suffice.

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 18 / 24



Complexity of FVAL

In general, a bottom-up computation, always computing a larger subtree
first, can be organized to need only O(log |ϕ|) intermediate values.

A careful implementation on a Turing machine yields:

Theorem (Nancy Lynch, 1977)

FVAL ∈ TIME (N2+ε)

FVAL ∈ SPACE (log N).
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A third problem: Graph 3-Colorability (3COL)

INPUT: a finite graph G = (V ,E ).

QUESTION: Is it possible to color the vertices red, green or blue, so that
no two adjacent vertices have the same color?

Equivalently: does there exist a homomorphism

χ :
?

K3

G

Yes
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An algorithm for 3COL

Brute force search algorithm:

For each function
χ : V → K3:

Test if χ works.

3|V | = 2O(
√

N) loops

O(N2) time,
O(
√

N) space

Theorem

This at least proves:

3COL ∈ TIME (2O(
√

N))

3COL ∈ SPACE (
√

N)

(Question: can we do better?. . . )
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An algorithm for 3COL

Brute force search algorithm:

For each function
χ : V → K3:

Test if χ works.

3|V | = 2O(
√

N) loops

O(N2) time,
O(
√

N) space

Theorem

This at least proves:

3COL ∈ TIME (2O(
√

N))

3COL ∈ SPACE (
√

N)

(Question: can we do better?. . . )

Ross Willard (Waterloo) Algebra and Complexity Třešt’, September 2008 21 / 24



A fourth problem: Clone membership (CLO)

INPUT:

A finite algebra A.

An operation g : Ak → A.

QUESTION: Is g a term operation of A?

All known algorithms essentially generate the full k-generated free algebra
in V(A),

Fk ≤ A(Ak )

and test whether g ∈ Fk .

In the worst case this could require as much as O(|A(Ak )|) = 2(|A|k )1+ε
time

and space.

I.e., exponential in the size of the input. (More on this in Lecture 3.)
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Some important complexity classes

Definition

1 P = PTIME =
⋃∞

k=1 TIME (Nk) = TIME (NO(1)).

2 PSPACE =
⋃∞

k=1 SPACE (Nk) = SPACE (NO(1)).

Problems known to be in P are said to be feasible or tractable.

Definition

3 EXPTIME =
⋃∞

k=1 TIME (2Nk
) = TIME (2NO(1)

).

4 L = LOGSPACE = SPACE (log(N)).

P ⊆ PSPACE

L ⊆ ⊆ EXPTIME

∈

∈ ∈

∈

PATH
FVAL

3COL

CLO
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Tomorrow

L ⊆ P ⊆ PSPACE ⊆ EXPTIME

∈ ∈ ∈ ∈

PATH
FVAL

3COL CLO

In tomorrow’s lecture I will:

Introduce “nondeterministic” versions of these 4 classes.

Introduce problems which are “hardest” for each class.
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