Universal Algebra and Computational Complexity Lecture 2

Ross Willard

University of Waterloo, Canada

Třešť, September 2008

Summary of Lecture 1

Recall from yesterday:

$$L\subseteq P\subseteq PSPACE\subseteq EXPTIME$$
 Ψ
 $PATH$
 $SCOL$
 CLO

Topics for today:

Summary of Lecture 1

Recall from yesterday:

$$L\subseteq P\subseteq PSPACE\subseteq EXPTIME$$
 Ψ
 $PATH$
 $SCOL$
 CLO

Topics for today:

- "Nondeterministic" complexity classes
- Reductions
- Complete problems

"Nondeterministic polynomial time": an example

Recall

Graph 3-Colorability problem (3*COL*)

INPUT: a finite graph G = (V, E).

QUESTION: Does G have a 3-coloring?

Recall that we only know $3COL \in EXPTIME$ (and PSPACE).

Most complexity theorists conjecture that 3*COL* is not tractable.

"Nondeterministic polynomial time": an example

Recall

Graph 3-Colorability problem (3*COL*)

INPUT: a finite graph G = (V, E).

QUESTION: Does G have a 3-coloring?

Recall that we only know $3COL \in EXPTIME$ (and PSPACE).

Most complexity theorists conjecture that 3*COL* is not tractable.

HOWEVER, if we are GIVEN a 3-coloring of G, it is easy (tractable) to VERIFY the correctness of the 3-coloring (and thus know that G is 3-colorable).

"Nondeterministic polynomial time": an example

Recall

Graph 3-Colorability problem (3*COL*)

INPUT: a finite graph G = (V, E).

QUESTION: Does G have a 3-coloring?

Recall that we only know $3COL \in EXPTIME$ (and PSPACE).

Most complexity theorists conjecture that 3*COL* is not tractable.

HOWEVER, if we are GIVEN a 3-coloring of G, it is easy (tractable) to VERIFY the correctness of the 3-coloring (and thus know that G is 3-colorable).

Informally, 3*COL* is a projection of a problem in *P*.

3COL as a projection of a problem in P

Identify 3COL with set

 $\{G: 3COL \text{ answers "YES" on input } G\}.$

Similarly with other decision problems.

3COL as a projection of a problem in P

Identify 3COL with set

$$\{G: 3COL \text{ answers "YES" on input } G\}.$$

Similarly with other decision problems.

Define

$$3COL\text{-}TEST = \{(G, \chi) : \chi \text{ is a 3-coloring of } G\}.$$

3COL as a projection of a problem in P

Identify 3COL with set

$$\{G: 3COL \text{ answers "YES" on input } G\}.$$

Similarly with other decision problems.

Define

$$3COL\text{-}TEST = \{(G, \chi) : \chi \text{ is a 3-coloring of } G\}.$$

Clearly 3COL-TEST is tractable (in $TIME(N^2)$, hence in P).

And

$$G \in 3COL \Leftrightarrow \exists \chi [(G, \chi) \in 3COL\text{-}TEST].$$

Certificates for 3*COL*

If $(G, \chi) \in 3COL\text{-}TEST$, then we call χ a certificate for " $G \in 3COL$."

We say that:

- 3COL-TEST is a polynomial-time certifier for 3COL.
- 3COL is polynomial-time certifiable.
- 3COL is in Nondeterministic Polynomial Time (or NP).

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

More precisely,

Definition

A decision problem D is *Polynomial-time certifiable* if there exists a decision problem $E \in P$ such that

 $\bullet \ x \in D \Leftrightarrow \exists w[(x,w) \in E].$

More precisely,

Definition

A decision problem D is *Polynomial-time certifiable* if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- Technicality: \exists polynomial p(N) s.t. $(x, w) \in E \Rightarrow |w| \leq p(|x|)$.

More precisely,

Definition

A decision problem D is *Polynomial-time certifiable* if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- Technicality: \exists polynomial p(N) s.t. $(x, w) \in E \Rightarrow |w| \leq p(|x|)$.

Definition

NP is the class of polynomial-time certifiable problems.

$$L \subseteq P \subseteq PSPACE \subseteq EXPTIME$$
 Ψ
 $3COL$

More precisely,

Definition

A decision problem D is *Polynomial-time certifiable* if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- Technicality: \exists polynomial p(N) s.t. $(x, w) \in E \Rightarrow |w| \leq p(|x|)$.

Definition

NP is the class of polynomial-time certifiable problems.

More precisely,

Definition

A decision problem D is *Polynomial-time certifiable* if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- Technicality: \exists polynomial p(N) s.t. $(x, w) \in E \Rightarrow |w| \leq p(|x|)$.

Definition

NP is the class of polynomial-time certifiable problems.

$$L \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$$
 Ψ
 $3COL$

The following problems are all in NP (and not known to be in P).

● 4*COL*, 5*COL*, etc.

The following problems are all in NP (and not known to be in P).

- 4COL, 5COL, etc.
- SAT:
 - INPUT: a boolean formula φ .
 - QUESTION: is φ satisfiable?
 - \bullet Certificate: an assignment of values to the variables making φ true.
 - Polynomial-time certifier: given (φ, \mathbf{c}) , decide if $\varphi(\mathbf{c}) = 1$ (i.e., FVAL).

The following problems are all in NP (and not known to be in P).

- 4 4COL, 5COL, etc.
- **SAT**:
 - INPUT: a boolean formula φ .
 - QUESTION: is φ satisfiable?
 - \bullet Certificate: an assignment of values to the variables making φ true.
 - Polynomial-time certifier: given (φ, \mathbf{c}) , decide if $\varphi(\mathbf{c}) = 1$ (i.e., *FVAL*).
- ISO:
 - INPUT: two finite graphs G_1 , G_2 .
 - QUESTION: are G_1 and G_2 isomorphic?
 - Certificate: an isomorphism from G_1 to G_2 .
 - Polynomial-time certifier: given (G_1, G_2, f) , decide if $f : G_1 \cong G_2$.

The following problems are all in NP (and not known to be in P).

- 4 COL, 5 COL, etc.
- **2** *SAT*:
 - INPUT: a boolean formula φ .
 - QUESTION: is φ satisfiable?
 - ullet Certificate: an assignment of values to the variables making arphi true.
 - Polynomial-time certifier: given (φ, \mathbf{c}) , decide if $\varphi(\mathbf{c}) = 1$ (i.e., *FVAL*).
- ISO:
 - INPUT: two finite graphs G_1 , G_2 .
 - QUESTION: are G_1 and G_2 isomorphic?
 - Certificate: an isomorphism from G_1 to G_2 .
 - Polynomial-time certifier: given (G_1, G_2, f) , decide if $f : G_1 \cong G_2$.
- HAMPATH:
 - INPUT: a finite directed graph G.
 - QUESTION: does G have a Hamiltonion path?

Certifying Turing machines

In a similar way, we can "stick an N" in front of any complexity class. To define it precisely, we need the notion of a certifying Turing machine:

Certifying Turing machines

In a similar way, we can "stick an N" in front of any complexity class. To define it precisely, we need the notion of a certifying Turing machine:

- One additional input tape; holds the potential certificate.
 - Read-only
 - Grad student reader can only move RIGHT.

Certifying Turing machines

In a similar way, we can "stick an N" in front of any complexity class. To define it precisely, we need the notion of a certifying Turing machine:

- One additional input tape; holds the potential certificate.
 - Read-only
 - Grad student reader can only move RIGHT.

Roughly,

Definition

Roughly,

Definition

If \square is a complexity class, then a decision problem D is in $N\square$ iff there exists a decision problem E in two inputs (x,z), and there exists a certifying Turing machine M, such that

• $x \in D \Leftrightarrow \exists w[(x, w) \in E].$

Roughly,

Definition

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- M decides E.

Roughly,

Definition

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- M decides E.
- Moreover, $\forall (x, z)$, M decides whether $(x, z) \in E$ with resource usage as defined by \square , measured as a function of N = the length of x.

Roughly,

Definition

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- M decides E.
- Moreover, $\forall (x, z)$, M decides whether $(x, z) \in E$ with resource usage as defined by \square , measured as a function of N = the length of x.
- Exercise: this defines NP equivalently.
- *NL* ="Nondeterministic *LOGSPACE*"
- NSPACE = "Nondeterministic PSPACE"
- NEXPTIME = "Nondeterministic EXPTIME"

Theorem

PATH is in NL.

Theorem

PATH is in NL.

Proof. We show that *PATH* is a projection of a problem that can be decided by a *LOGSPACE* certifying Turing machine.

Theorem

PATH is in NI.

Proof. We show that *PATH* is a projection of a problem that can be decided by a *LOGSPACE* certifying Turing machine.

Define

PATH-TEST =
$$\{(G,\pi): G \text{ is a directed graph with } V=\{0,\ldots,n-1\},$$
 and $\pi=(v_0,v_1,\ldots,v_k) \text{ is a path from 0 to 1 in } G\}$

Theorem

PATH is in NI.

Proof. We show that *PATH* is a projection of a problem that can be decided by a *LOGSPACE* certifying Turing machine.

Define

PATH-TEST =
$$\{(G,\pi): G \text{ is a directed graph with } V=\{0,\ldots,n-1\},$$
 and $\pi=(v_0,v_1,\ldots,v_k) \text{ is a path from 0 to 1 in } G\}$

Clearly PATH is a projection of PATH-TEST.

Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST . . .

Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

While the certifying student traverses π , the R/W Tape 1 student copies and remembers the last two vertices traversed, and checks the input tape to see if they form an edge.

Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

While the certifying student traverses π , the R/W Tape 1 student copies and remembers the last two vertices traversed, and checks the input tape to see if they form an edge.

Only LOGSPACE (as a function of the length of the input G) is needed.

Comparing deterministic and nondeterministic classes

Let $f : \mathbb{N} \to \mathbb{N}$ be "nice" and such that $f(N) \ge \log N$.

Theorem

• TIME $(f(N)) \subseteq NTIME(f(N))$ and similarly for SPACE.

Let $f : \mathbb{N} \to \mathbb{N}$ be "nice" and such that $f(N) \ge \log N$.

Theorem

- **1** TIME $(f(N)) \subseteq NTIME(f(N))$ and similarly for SPACE.
- **2** $NTIME(f(N)) \subseteq SPACE(f(N)).$

Let $f : \mathbb{N} \to \mathbb{N}$ be "nice" and such that $f(N) \ge \log N$.

Theorem

- **1** TIME $(f(N)) \subseteq NTIME(f(N))$ and similarly for SPACE.
- **③** $NSPACE(f(N)) ⊆ TIME(2^{O(f(N))}).$

Let $f : \mathbb{N} \to \mathbb{N}$ be "nice" and such that $f(N) \ge \log N$.

Theorem

- **1** TIME $(f(N)) \subseteq NTIME(f(N))$ and similarly for SPACE.
- $NTIME(f(N)) \subseteq SPACE(f(N)).$
- **3** *NSPACE*(f(N)) ⊆ *TIME*($2^{O(f(N))}$).
- **③** (Savitch's Theorem): $NSPACE(f(N)) \subseteq SPACE(f(N)^2)$.

Let $f : \mathbb{N} \to \mathbb{N}$ be "nice" and such that $f(N) \ge \log N$.

Theorem

- **1** TIME $(f(N)) \subseteq NTIME(f(N))$ and similarly for SPACE.
- ② $NTIME(f(N)) \subseteq SPACE(f(N))$.
- **3** *NSPACE*(f(N)) ⊆ *TIME*($2^{O(f(N))}$).
- **3** (Savitch's Theorem): $NSPACE(f(N)) \subseteq SPACE(f(N)^2)$.

Since $PATH \in NL$, Savitch's theorem shows $PATH \in SPACE((\log N)^2)$.

(Our algorithm showed only that $PATH \in SPACE(\sqrt{N})$.)

```
NPSPACE \\ L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \\ \psi \quad \psi \qquad \qquad \psi \qquad \qquad \psi \\ PATH \qquad 3COL, \qquad CLO \\ FVAL, \qquad 4COL, \text{ etc.} \\ 2COL \qquad SAT, \\ ISO, \\ HAMPATH
```


10⁶ USD prize (Clay Mathematics Institute) for answering $P \stackrel{?}{=} NP$.

Reductions

Suppose C, D are decision problems.

Suppose $f: C_{inp} \rightarrow D_{inp}$ is a function.

We say that

f reduces C to D,

and write

$$C \leq_f D$$
,

if for all $x \in C_{inp}$,

$$x \in C \Leftrightarrow f(x) \in D$$
.

Picture of $C \leq_f D$

Intuition: if $C \leq_f D$, then

Picture of $C \leq_f D$

Intuition: if $C \leq_f D$, then

- Algorithms for *D* and *f* can be used to solve *C*.
- Hence D is at least as hard as C (modulo the cost of computing f).

15 / 29

Example

Recall the problems 3*COL* and *SAT*:

3COL

INPUT: a finite graph G = (V, E).

QUESTION: is G 3-colorable?

SAT

INPUT: a boolean formula φ . QUESTION: is φ satisfiable?

Let's find a function f which reduces 3COL to SAT.

Given a finite graph G=(V,E), we want a boolean formula φ_G such that G is 3-colorable $\Leftrightarrow \varphi_G$ is satisfiable.

Given a finite graph G=(V,E), we want a boolean formula φ_G such that G is 3-colorable $\Leftrightarrow \varphi_G$ is satisfiable.

- The variables of φ_G will be all x_v^c $(v \in V, c \in \{r, g, b\})$.
 - Think of x_v^c as representing the assertion "v is colored c."

Given a finite graph G=(V,E), we want a boolean formula φ_G such that G is 3-colorable $\Leftrightarrow \varphi_G$ is satisfiable.

- The variables of φ_G will be all x_v^c $(v \in V, c \in \{r, g, b\})$.
 - Think of x_{ν}^{c} as representing the assertion " ν is colored c."
- For each $v \in V$ let α_v be the formula "v has exactly one color," i.e.,

$$(x_{\nu}^{\mathbf{r}} \vee x_{\nu}^{\mathbf{g}} \vee x_{\nu}^{\mathbf{b}}) \wedge \neg (x_{\nu}^{\mathbf{r}} \wedge x_{\nu}^{\mathbf{g}}) \wedge \neg (x_{\nu}^{\mathbf{r}} \wedge x_{\nu}^{\mathbf{b}}) \wedge \neg (x_{\nu}^{\mathbf{b}} \wedge x_{\nu}^{\mathbf{b}}).$$

Given a finite graph G=(V,E), we want a boolean formula φ_G such that G is 3-colorable $\Leftrightarrow \varphi_G$ is satisfiable.

- The variables of φ_G will be all x_v^c $(v \in V, c \in \{r, g, b\})$.
 - Think of $x_{\nu}^{\mathbf{c}}$ as representing the assertion " ν is colored \mathbf{c} ."
- For each $v \in V$ let α_v be the formula "v has exactly one color," i.e.,

$$(x_{v}^{\mathbf{r}} \vee x_{v}^{\mathbf{g}} \vee x_{v}^{\mathbf{b}}) \wedge \neg (x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{g}}) \wedge \neg (x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{b}}) \wedge \neg (x_{v}^{\mathbf{b}} \wedge x_{v}^{\mathbf{b}}).$$

• For $v, w \in V$ let $\beta_{v,w}$ be the formula "v and w have different colors," i.e.,

$$\neg(x_{v}^{\mathbf{r}} \wedge x_{w}^{\mathbf{r}}) \wedge \neg(x_{v}^{\mathbf{g}} \wedge x_{w}^{\mathbf{g}}) \wedge \neg(x_{v}^{\mathbf{b}} \wedge x_{w}^{\mathbf{b}}).$$

Given a finite graph G=(V,E), we want a boolean formula φ_G such that G is 3-colorable $\Leftrightarrow \varphi_G$ is satisfiable.

- The variables of φ_G will be all x_v^c $(v \in V, c \in \{r, g, b\})$.
 - Think of x_v^c as representing the assertion "v is colored c."
- For each $v \in V$ let α_v be the formula "v has exactly one color," i.e.,

$$(x_{\nu}^{\mathbf{r}} \vee x_{\nu}^{\mathbf{g}} \vee x_{\nu}^{\mathbf{b}}) \wedge \neg (x_{\nu}^{\mathbf{r}} \wedge x_{\nu}^{\mathbf{g}}) \wedge \neg (x_{\nu}^{\mathbf{r}} \wedge x_{\nu}^{\mathbf{b}}) \wedge \neg (x_{\nu}^{\mathbf{b}} \wedge x_{\nu}^{\mathbf{b}}).$$

• For $v, w \in V$ let $\beta_{v,w}$ be the formula "v and w have different colors," i.e.,

$$\neg(x_{v}^{\mathbf{r}} \wedge x_{w}^{\mathbf{r}}) \wedge \neg(x_{v}^{\mathbf{g}} \wedge x_{w}^{\mathbf{g}}) \wedge \neg(x_{v}^{\mathbf{b}} \wedge x_{w}^{\mathbf{b}}).$$

Let

$$\varphi_{G} = \left(\bigwedge_{v \in V} \alpha_{v}\right) \wedge \left(\bigwedge_{(v,w) \in E} \beta_{v,w}\right).$$

This clearly works.

Picture of $3COL \leq_f SAT$

Define $f: G \mapsto \varphi_G$. Then $3COL \leq_f SAT$.

Picture of $3COL \leq_f SAT$

Define $f: G \mapsto \varphi_G$. Then $3COL \leq_f SAT$.

Thus SAT is at least as hard as 3COL, modulo the cost of computing φ_G .

What is the cost of computing φ_G ?

Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

```
Input (ROM):
           input G
R/W Tape 1:
                        s#|0|f|f|#|t|0#|w|0|
           R/W Tape 2:
Output tape:
                       \varphi_{G}
          At the end.
```

Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

```
0|0|1|0|0|0|0|1|0|0|0|0|1|0|0|0|1|0|0|0|0|0|0|0|1
Input (ROM):
                                                                               input G
 R/W Tape 1:
                                    h \mid i \not\parallel \mid h \mid o \not\parallel \mid h \mid i \not\parallel \mid h \mid o \not\parallel \mid i \mid t \mid \mid s \not\parallel \mid o \mid f \mid f \mid \mid t \mid o \not\parallel \mid w \mid o \mid \downarrow
                                       GRIRIR#I I #HIAITE#MY#PRIOFIEISISIOR#ISI$
 R/W Tape 2:
                                                                                   (|x|1|\mathbf{r}|\lor|x|1|\mathbf{g}|\lor|x|1|\mathbf{b}|
 Output tape:
```

Exercise: Can compute φ_G from G in $TIME(N^2)$ and $SPACE(\log N)$.

Complexity of computing f

In general:

Definition

- a functional Turing machine is a Turing machine whose output bit is replaced by an output tape (write-only).
 - Output tape grad student can only move RIGHT.

Let C, D be decision problems with appropriately encoded input sets C_{inp}, D_{inp} respectively.

Definition

A function $f: C_{inp} \to D_{inp}$ is computed by a functional Turing Machine M if whenever M is started with input $x \in C_{inp}$, it eventually halts with f(x) written on its output tape.

X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function $f: C_{inp} \to D_{inp}$ is computable in X if there exists a functional Turing Machine which computes f and on input x requires no more resources than those permitted by the definition of X.

X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function $f: C_{inp} \to D_{inp}$ is computable in X if there exists a functional Turing Machine which computes f and on input x requires no more resources than those permitted by the definition of X.

Example: the function $f: G \mapsto \varphi_G$ in our example showing $3COL \leq_f SAT$ is P-computable.

• (In fact, it is L-computable.)

X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function $f: C_{inp} \to D_{inp}$ is computable in X if there exists a functional Turing Machine which computes f and on input x requires no more resources than those permitted by the definition of X.

Example: the function $f: G \mapsto \varphi_G$ in our example showing $3COL \leq_f SAT$ is P-computable.

(In fact, it is L-computable.)

Lemma

For any decent complexity class X, if $C \leq_f D \in X$ and f is X-computable, then $C \in X$.

X-reductions

Suppose X, Y are complexity classes with $X \subseteq Y$. Let C, D be decision problems with C, $D \in Y$.

Definition

• We say that C reduces to D (mod X) and write

$$C \leq_X D$$

if there exists an X-computable function $f: C_{inp} \rightarrow D_{inp}$ which reduces C to D.

X-reductions

Suppose X, Y are complexity classes with $X \subseteq Y$. Let C, D be decision problems with C, $D \in Y$.

Definition

• We say that C reduces to D (mod X) and write

$$C \leq_X D$$

if there exists an X-computable function $f: C_{inp} \rightarrow D_{inp}$ which reduces C to D.

② We write $C \equiv_X D$ if both $C \leq_X D$ and $D \leq_X C$.

X-reductions

Suppose X, Y are complexity classes with $X \subseteq Y$. Let C, D be decision problems with C, $D \in Y$.

Definition

We say that C reduces to D (mod X) and write

$$C \leq_X D$$

if there exists an X-computable function $f: C_{inp} \rightarrow D_{inp}$ which reduces C to D.

② We write $C \equiv_X D$ if both $C \leq_X D$ and $D \leq_X C$.

This turns the \equiv_X -classes of Y into a poset.

Most widely used when X = P.

The picture of $NP \pmod{P}$

Theorem

The poset $(NP/\equiv_P, \leq_P)$ has . . .

- **1** a least element (consisting of all the elements of P), and
- **2** (S. Cook, '71; L. Levin, '73) a greatest element, namely, the \equiv_P -class containing SAT.

Jargon: *SAT* is *NP*-complete (for \leq_P reductions).

Definition

A decision problem *D* is *NP*-complete if:

- $D \in NP$, and
- $C <_P D$ for all $C \in NP$.

Equivalently (by Cook-Levin), D is NP-complete iff $D \equiv_P SAT$.

Karp's Theorem

Theorem (R. Karp, '72)

Many problems are NP-complete.

Karp's Theorem

Theorem (R. Karp, '72)

Many problems are NP-complete.

Examples:

- 3COL, 4COL, etc.
- HAMPATH
- 3SAT (the restriction of SAT to formulas in CNF, each conjunct being a disjunction of at most 3 literals)

(Exercise: check that our proof we gave for $3COL \leq_P SAT$ also shows $3COL \leq_P 3SAT$.)

Remark: the picture below of *NP* is accurate only if $P \neq NP$:

Remark: the picture below of NP is accurate only if $P \neq NP$:

The picture if
$$P = NP$$

The picture if
$$P = NP$$
: $\bigcirc P = NP = NP$ -complete

Remark: the picture below of NP is accurate only if $P \neq NP$:

The picture if P = NP: $\triangle P = NP = NP$ -complete

$$\bigcirc P = NP = NP$$
-complete

Theorem (R. Ladner, '75)

If
$$P \neq NP$$
, then $|NP/\equiv_P| \geq 3$.

Remark: the picture below of NP is accurate only if $P \neq NP$:

The picture if
$$P = NP$$
: $\bigcirc P = NP = NP$ -complete

$$\bigcirc P = NP = NP$$
-complete

Theorem (R. Ladner, '75)

If
$$P \neq NP$$
, then $|NP| \equiv_P | \geq 3$.

In fact, if $P \neq NP$, then NP/\equiv_P is order dense.

(H. Friedman '82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, '99)
 CLO is EXPTIME-complete (for ≤_P reductions).

• (H. Friedman '82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, '99) CLO is EXPTIME-complete (for ≤_P reductions).

- (H. Friedman '82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, '99) CLO is EXPTIME-complete (for ≤_P reductions).
- (D. Kozen, '77) 1-*CLO* is *PSPACE*-complete (for \leq_P reductions).

• *SAT*, 3*SAT* and 3*COL* are *NP*-complete (for \leq_L reductions).

- SAT, 3SAT and 3COL are NP-complete (for \leq_L reductions).
- (W. Savitch, '70) *PATH*, 2*SAT* are *NL*-complete (for \leq_L reductions).

- *SAT*, 3*SAT* and 3*COL* are *NP*-complete (for \leq_L reductions).
- (W. Savitch, '70) *PATH*, 2*SAT* are *NL*-complete (for \leq_L reductions).
- (R. Ladner, '75) CVAL is ...

- *SAT*, 3*SAT* and 3*COL* are *NP*-complete (for \leq_L reductions).
- (W. Savitch, '70) *PATH*, 2*SAT* are *NL*-complete (for \leq_L reductions).
- (R. Ladner, '75) *CVAL* is ... *P*-complete (for \leq_L reductions).

SAT restricted to CNF φ each of whose clauses has at most one positive literal

- *SAT*, 3*SAT* and 3*COL* are *NP*-complete (for \leq_L reductions).
- (W. Savitch, '70) *PATH*, 2*SAT* are *NL*-complete (for \leq_L reductions).
- (R. Ladner, '75) *CVAL* is ... *P*-complete (for \leq_L reductions).

SAT restricted to CNF φ each of whose clauses has at most one positive literal

- SAT, 3SAT and 3COL are NP-complete (for \leq_L reductions).
- (W. Savitch, '70) *PATH*, 2*SAT* are *NL*-complete (for \leq_L reductions).
- (R. Ladner, '75) *CVAL* is ... *P*-complete (for \leq_L reductions).
- (???) HORN-SAT and HORN-3SAT are also P-complete.

Summary

Moreover, each problem listed above is "hardest in its class," i.e., is complete with respect to either \leq_P or \leq_L reductions.

Summary

Moreover, each problem listed above is "hardest in its class," i.e., is complete with respect to either \leq_P or \leq_L reductions.

In Thursday's lecture: some problems from universal algebra.