Universal Algebra and Computational Complexity Lecture 2

Ross Willard
University of Waterloo, Canada

Třešť, September 2008

Summary of Lecture 1

Recall from yesterday:

$$
\begin{array}{cccc}
L \subseteq P \subseteq & \text { PSPACE } & \subseteq \text { EXPTIME } \\
\Psi & \Psi & \Psi \\
F V A T H & 3 C O L & C L O
\end{array}
$$

Topics for today:

Summary of Lecture 1

Recall from yesterday:

Topics for today:

- "Nondeterministic" complexity classes
- Reductions
- Complete problems

"Nondeterministic polynomial time": an example

Recall

Graph 3-Colorability problem (3COL)

INPUT: a finite graph $G=(V, E)$.
QUESTION: Does G have a 3 -coloring?

Recall that we only know $3 C O L \in E X P T I M E$ (and PSPACE).
Most complexity theorists conjecture that 3COL is not tractable.

"Nondeterministic polynomial time": an example

Recall

Graph 3-Colorability problem (3COL)

INPUT: a finite graph $G=(V, E)$.
QUESTION: Does G have a 3 -coloring?

Recall that we only know 3COL $\in \operatorname{EXPTIME}$ (and PSPACE).
Most complexity theorists conjecture that $3 C O L$ is not tractable.
HOWEVER, if we are GIVEN a 3 -coloring of G, it is easy (tractable) to VERIFY the correctness of the 3 -coloring (and thus know that G is 3-colorable).

"Nondeterministic polynomial time": an example

Recall

Graph 3-Colorability problem (3COL)

INPUT: a finite graph $G=(V, E)$.
QUESTION: Does G have a 3 -coloring?

Recall that we only know 3COL $\in \operatorname{EXPTIME}$ (and PSPACE).
Most complexity theorists conjecture that $3 C O L$ is not tractable.
HOWEVER, if we are GIVEN a 3 -coloring of G, it is easy (tractable) to VERIFY the correctness of the 3 -coloring (and thus know that G is 3-colorable).

Informally, 3COL is a projection of a problem in P.

3 COL as a projection of a problem in P

Identify 3COL with set

$$
\{G: 3 C O L \text { answers "YES" on input } G\} .
$$

Similarly with other decision problems.

3 COL as a projection of a problem in P

Identify 3COL with set

$$
\{G: 3 C O L \text { answers "YES" on input } G\} .
$$

Similarly with other decision problems.
Define

$$
3 C O L-T E S T=\{(G, \chi): \chi \text { is a 3-coloring of } G\} .
$$

3 COL as a projection of a problem in P

Identify 3COL with set

$$
\{G: 3 C O L \text { answers "YES" on input } G\} .
$$

Similarly with other decision problems.
Define

$$
3 C O L-T E S T=\{(G, \chi): \chi \text { is a 3-coloring of } G\} .
$$

Clearly 3COL-TEST is tractable (in $\operatorname{TIME}\left(N^{2}\right)$, hence in P).
And

$$
G \in 3 C O L \Leftrightarrow \exists \chi[(G, \chi) \in 3 C O L-T E S T] .
$$

Certificates for 3 COL

If $(G, \chi) \in 3 C O L-T E S T$, then we call χ a certificate for " $G \in 3 C O L$."
We say that:

- 3COL-TEST is a polynomial-time certifier for 3COL.
- 3COL is polynomial-time certifiable.
- 3COL is in Nondeterministic Polynomial Time (or NP).

Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.

Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.
- Technicality: \exists polynomial $p(N)$ s.t. $(x, w) \in E \Rightarrow|w| \leq p(|x|)$.

Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.
- Technicality: \exists polynomial $p(N)$ s.t. $(x, w) \in E \Rightarrow|w| \leq p(|x|)$.

Definition

NP is the class of polynomial-time certifiable problems.

$$
L \subseteq P \quad \subseteq \quad P S P A C E \subseteq E X P T I M E
$$

U
$3 C O L$

Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.
- Technicality: \exists polynomial $p(N)$ s.t. $(x, w) \in E \Rightarrow|w| \leq p(|x|)$.

Definition

NP is the class of polynomial-time certifiable problems.

$$
L \subseteq P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E
$$

U
$3 C O L$

Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.
- Technicality: \exists polynomial $p(N)$ s.t. $(x, w) \in E \Rightarrow|w| \leq p(|x|)$.

Definition

NP is the class of polynomial-time certifiable problems.

$$
\begin{aligned}
L \subseteq P \subseteq & N P \subseteq P S P A C E \subseteq E X P T I M E \\
& w \\
& 3 C O L
\end{aligned}
$$

More examples of NP problems

The following problems are all in NP (and not known to be in P). (1) $4 C O L, 5 C O L$, etc.

More examples of $N P$ problems

The following problems are all in NP (and not known to be in P).
(1) $4 C O L, 5 C O L$, etc.
(2) SAT:

- INPUT: a boolean formula φ.
- QUESTION: is φ satisfiable?
- Certificate: an assignment of values to the variables making φ true.
- Polynomial-time certifier: given (φ, \mathbf{c}), decide if $\varphi(\mathbf{c})=1$ (i.e., $F V A L$).

More examples of $N P$ problems

The following problems are all in NP (and not known to be in P).
(1) $4 C O L, 5 C O L$, etc.
(2) $S A T$:

- INPUT: a boolean formula φ.
- QUESTION: is φ satisfiable?
- Certificate: an assignment of values to the variables making φ true.
- Polynomial-time certifier: given (φ, \mathbf{c}), decide if $\varphi(\mathbf{c})=1$ (i.e., FVAL).
(3) ISO:
- INPUT: two finite graphs G_{1}, G_{2}.
- QUESTION: are G_{1} and G_{2} isomorphic?
- Certificate: an isomorphism from G_{1} to G_{2}.
- Polynomial-time certifier: given $\left(G_{1}, G_{2}, f\right)$, decide if $f: G_{1} \cong G_{2}$.

More examples of NP problems

The following problems are all in NP (and not known to be in P).
(1) $4 C O L, 5 C O L$, etc.
(2) $S A T$:

- INPUT: a boolean formula φ.
- QUESTION: is φ satisfiable?
- Certificate: an assignment of values to the variables making φ true.
- Polynomial-time certifier: given (φ, \mathbf{c}), decide if $\varphi(\mathbf{c})=1$ (i.e., FVAL).
(3) ISO:
- INPUT: two finite graphs G_{1}, G_{2}.
- QUESTION: are G_{1} and G_{2} isomorphic?
- Certificate: an isomorphism from G_{1} to G_{2}.
- Polynomial-time certifier: given $\left(G_{1}, G_{2}, f\right)$, decide if $f: G_{1} \cong G_{2}$.
(c) HAMPATH:
- INPUT: a finite directed graph G.
- QUESTION: does G have a Hamiltonion path?

Certifying Turing machines

In a similar way, we can "stick an N " in front of any complexity class. To define it precisely, we need the notion of a certifying Turing machine:

Certifying Turing machines

In a similar way, we can "stick an N " in front of any complexity class. To define it precisely, we need the notion of a certifying Turing machine:

- One additional input tape; holds the potential certificate.
- Read-only
- Grad student reader can only move RIGHT.

Certifying Turing machines

In a similar way, we can "stick an N " in front of any complexity class.
To define it precisely, we need the notion of a certifying Turing machine:

- One additional input tape; holds the potential certificate.
- Read-only
- Grad student reader can only move RIGHT.

Nondeterministic complexity classes

Roughly,

Definition

If \square is a complexity class, then a decision problem D is in $N \square$ iff there exists a decision problem E in two inputs (x, z), and there exists a certifying Turing machine M, such that

Nondeterministic complexity classes

Roughly,

Definition

If \square is a complexity class, then a decision problem D is in $N \square$ iff there exists a decision problem E in two inputs (x, z), and there exists a certifying Turing machine M, such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.

Nondeterministic complexity classes

Roughly,

Definition

If \square is a complexity class, then a decision problem D is in $N \square$ iff there exists a decision problem E in two inputs (x, z), and there exists a certifying Turing machine M, such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.
- M decides E.

Nondeterministic complexity classes

Roughly,

Definition

If \square is a complexity class, then a decision problem D is in $N \square$ iff there exists a decision problem E in two inputs (x, z), and there exists a certifying Turing machine M, such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.
- M decides E.
- Moreover, $\forall(x, z), M$ decides whether $(x, z) \in E$ with resource usage as defined by \square, measured as a function of $N=$ the length of x.

Nondeterministic complexity classes

Roughly,

Definition

If \square is a complexity class, then a decision problem D is in $N \square$ iff there exists a decision problem E in two inputs (x, z), and there exists a certifying Turing machine M, such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E]$.
- M decides E.
- Moreover, $\forall(x, z), M$ decides whether $(x, z) \in E$ with resource usage as defined by \square, measured as a function of $N=$ the length of x.
- Exercise: this defines NP equivalently.
- $N L=$ "Nondeterministic LOGSPACE"
- NSPACE = "Nondeterministic PSPACE"
- NEXPTIME = "Nondeterministic EXPTIME"

Example

Theorem PATH is in NL.

Example

Theorem
 PATH is in NL.

Proof. We show that PATH is a projection of a problem that can be decided by a LOGSPACE certifying Turing machine.

Example

Theorem

PATH is in NL.

Proof. We show that PATH is a projection of a problem that can be decided by a LOGSPACE certifying Turing machine.

Define
PATH-TEST $=\{(G, \pi): G$ is a directed graph with $V=\{0, \ldots, n-1\}$, and $\pi=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is a path from 0 to 1 in $\left.G\right\}$

Example

Theorem

PATH is in NL.

Proof. We show that PATH is a projection of a problem that can be decided by a LOGSPACE certifying Turing machine.

Define
PATH-TEST $=\{(G, \pi): G$ is a directed graph with $V=\{0, \ldots, n-1\}$, and $\pi=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is a path from 0 to 1 in $\left.G\right\}$

Clearly PATH is a projection of PATH-TEST.

Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

While the certifying student traverses π, the R/W Tape 1 student copies and remembers the last two vertices traversed, and checks the input tape to see if they form an edge.

Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...
Input (ROM):

Certif. (ROM) R/W Tape 1:

While the certifying student traverses π, the R/W Tape 1 student copies and remembers the last two vertices traversed, and checks the input tape to see if they form an edge.

Only LOGSPACE (as a function of the length of the input G) is needed.

Comparing deterministic and nondeterministic classes

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be "nice" and such that $f(N) \geq \log N$.

Theorem
(1) $\operatorname{TIME}(f(N)) \subseteq \operatorname{NTIME}(f(N))$ and similarly for SPACE.

Comparing deterministic and nondeterministic classes

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be "nice" and such that $f(N) \geq \log N$.

Theorem

(1) $\operatorname{TIME}(f(N)) \subseteq \operatorname{NTIME}(f(N))$ and similarly for SPACE.
(2) $\operatorname{NTIME}(f(N)) \subseteq \operatorname{SPACE}(f(N))$.

Comparing deterministic and nondeterministic classes

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be "nice" and such that $f(N) \geq \log N$.

Theorem

(1) $\operatorname{TIME}(f(N)) \subseteq \operatorname{NTIME}(f(N))$ and similarly for SPACE.
(2) $\operatorname{NTIME}(f(N)) \subseteq \operatorname{SPACE}(f(N))$.
(3) $\operatorname{NSPACE}(f(N)) \subseteq \operatorname{TIME}\left(2^{O(f(N))}\right)$.

Comparing deterministic and nondeterministic classes

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be "nice" and such that $f(N) \geq \log N$.

Theorem

(1) $\operatorname{TIME}(f(N)) \subseteq \operatorname{NTIME}(f(N))$ and similarly for SPACE.
(2) $\operatorname{NTIME}(f(N)) \subseteq \operatorname{SPACE}(f(N))$.
(3) $\operatorname{NSPACE}(f(N)) \subseteq \operatorname{TIME}\left(2^{O(f(N))}\right)$.
(3) (Savitch's Theorem): $\operatorname{NSPACE}(f(N)) \subseteq \operatorname{SPACE}\left(f(N)^{2}\right)$.

Comparing deterministic and nondeterministic classes

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be "nice" and such that $f(N) \geq \log N$.

Theorem

(1) $\operatorname{TIME}(f(N)) \subseteq N T I M E(f(N))$ and similarly for SPACE.
(2) $\operatorname{NTIME}(f(N)) \subseteq \operatorname{SPACE}(f(N))$.
(3) $\operatorname{NSPACE}(f(N)) \subseteq \operatorname{TIME}\left(2^{O(f(N))}\right)$.
(3) (Savitch's Theorem): $\operatorname{NSPACE}(f(N)) \subseteq \operatorname{SPACE}\left(f(N)^{2}\right)$.

Since PATH $\in N L$, Savitch's theorem shows PATH $\in \operatorname{SPACE}\left((\log N)^{2}\right)$.
(Our algorithm showed only that $\operatorname{PATH} \in \operatorname{SPACE}(\sqrt{N})$.)

Summary of complexity classes

$L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E \subseteq \text { NEXPTIME }$		
$\begin{aligned} & \quad P A T H \\ & \text { FVAL, } \\ & 2 C O L \end{aligned}$	3 COL ,	CLO
	4COL, etc.	
	SAT,	
	ISO,	
	HAMPATH	

Summary of complexity classes

Summary of complexity classes

10^{6} USD prize (Clay Mathematics Institute) for answering $P \stackrel{?}{=} N P$.

Reductions

Suppose C, D are decision problems.
Suppose $f: C_{i n p} \rightarrow D_{\text {inp }}$ is a function.
We say that

$$
f \text { reduces } C \text { to } D,
$$

and write

$$
C \leq_{f} D,
$$

if for all $x \in C_{i n p}$,

$$
x \in C \Leftrightarrow f(x) \in D .
$$

Picture of $C \leq_{f} D$

Intuition: if $C \leq_{f} D$, then

Picture of $C \leq_{f} D$

Intuition: if $C \leq_{f} D$, then

- Algorithms for D and f can be used to solve C.
- Hence D is at least as hard as C (modulo the cost of computing f).

Example

Recall the problems $3 C O L$ and $S A T$:
3COL
INPUT: a finite graph $G=(V, E)$.
QUESTION: is G 3-colorable?

SAT

INPUT: a boolean formula φ. QUESTION: is φ satisfiable?

Let's find a function f which reduces $3 C O L$ to $S A T$.

A reduction of $3 C O L$ to $S A T$

Given a finite graph $G=(V, E)$, we want a boolean formula φ_{G} such that G is 3 -colorable $\Leftrightarrow \varphi_{G}$ is satisfiable.

A reduction of $3 C O L$ to $S A T$

Given a finite graph $G=(V, E)$, we want a boolean formula φ_{G} such that G is 3-colorable $\Leftrightarrow \varphi_{G}$ is satisfiable.

- The variables of φ_{G} will be all $x_{V}^{\mathbf{c}} \quad(v \in V, \mathbf{c} \in\{\mathbf{r}, \mathbf{g}, \mathbf{b}\})$. - Think of x_{v}^{c} as representing the assertion " v is colored \mathbf{c}."

A reduction of $3 C O L$ to SAT

Given a finite graph $G=(V, E)$, we want a boolean formula φ_{G} such that G is 3-colorable $\Leftrightarrow \varphi_{G}$ is satisfiable.

- The variables of φ_{G} will be all $x_{V}^{\mathbf{c}} \quad(v \in V, \mathbf{c} \in\{\mathbf{r}, \mathbf{g}, \mathbf{b}\})$.
- Think of $x_{v}^{\mathbf{c}}$ as representing the assertion " v is colored \mathbf{c}."
- For each $v \in V$ let α_{v} be the formula " v has exactly one color," i.e.,

$$
\left(x_{v}^{\mathbf{r}} \vee x_{v}^{\mathbf{g}} \vee x_{v}^{\mathbf{b}}\right) \wedge \neg\left(x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{g}}\right) \wedge \neg\left(x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{b}}\right) \wedge \neg\left(x_{v}^{\mathbf{b}} \wedge x_{v}^{\mathbf{b}}\right)
$$

A reduction of $3 C O L$ to $S A T$

Given a finite graph $G=(V, E)$, we want a boolean formula φ_{G} such that G is 3-colorable $\Leftrightarrow \varphi_{G}$ is satisfiable.

- The variables of φ_{G} will be all $x_{V}^{\mathbf{c}} \quad(v \in V, \mathbf{c} \in\{\mathbf{r}, \mathbf{g}, \mathbf{b}\})$.
- Think of x_{v}^{c} as representing the assertion " v is colored \mathbf{c}."
- For each $v \in V$ let α_{v} be the formula " v has exactly one color," i.e.,

$$
\left(x_{v}^{\mathbf{r}} \vee x_{v}^{\mathbf{g}} \vee x_{v}^{\mathbf{b}}\right) \wedge \neg\left(x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{g}}\right) \wedge \neg\left(x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{b}}\right) \wedge \neg\left(x_{v}^{\mathbf{b}} \wedge x_{v}^{\mathbf{b}}\right)
$$

- For $v, w \in V$ let $\beta_{v, w}$ be the formula " v and w have different colors," i.e.,

$$
\neg\left(x_{v}^{\mathbf{r}} \wedge x_{w}^{\mathbf{r}}\right) \wedge \neg\left(x_{v}^{\mathbf{g}} \wedge x_{w}^{\mathbf{g}}\right) \wedge \neg\left(x_{v}^{\mathbf{b}} \wedge x_{w}^{\mathbf{b}}\right) .
$$

A reduction of $3 C O L$ to SAT

Given a finite graph $G=(V, E)$, we want a boolean formula φ_{G} such that G is 3-colorable $\Leftrightarrow \varphi_{G}$ is satisfiable.

- The variables of φ_{G} will be all $x_{V}^{\mathbf{c}} \quad(v \in V, \mathbf{c} \in\{\mathbf{r}, \mathbf{g}, \mathbf{b}\})$.
- Think of x_{v}^{c} as representing the assertion " v is colored \mathbf{c}."
- For each $v \in V$ let α_{v} be the formula " v has exactly one color," i.e.,

$$
\left(x_{v}^{\mathbf{r}} \vee x_{v}^{\mathbf{g}} \vee x_{v}^{\mathbf{b}}\right) \wedge \neg\left(x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{g}}\right) \wedge \neg\left(x_{v}^{\mathbf{r}} \wedge x_{v}^{\mathbf{b}}\right) \wedge \neg\left(x_{v}^{\mathbf{b}} \wedge x_{v}^{\mathbf{b}}\right)
$$

- For $v, w \in V$ let $\beta_{v, w}$ be the formula " v and w have different colors," i.e.,

$$
\neg\left(x_{v}^{\mathbf{r}} \wedge x_{w}^{\mathbf{r}}\right) \wedge \neg\left(x_{v}^{\mathbf{g}} \wedge x_{w}^{\mathbf{g}}\right) \wedge \neg\left(x_{v}^{\mathbf{b}} \wedge x_{w}^{\mathbf{b}}\right) .
$$

- Let

$$
\varphi_{G}=\left(\bigwedge_{v \in V} \alpha_{v}\right) \wedge\left(\bigwedge_{(v, w) \in E} \beta_{v, w}\right)
$$

This clearly works.

Picture of $3 \mathrm{COL} \leq_{f}$ SAT

Define $f: G \mapsto \varphi_{G}$. Then $3 C O L \leq_{f} S A T$.

Formulas

Picture of $3 C O L \leq_{f} S A T$

Define $f: G \mapsto \varphi_{G}$. Then $3 C O L \leq_{f} S A T$.

Formulas

Thus SAT is at least as hard as $3 C O L$, modulo the cost of computing φ_{G}.
What is the cost of computing φ_{G} ?

Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

At the start.

Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

At the end.

Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

Exercise: Can compute φ_{G} from G in $\operatorname{TIME}\left(N^{2}\right)$ and $\operatorname{SPACE}(\log N)$.

Complexity of computing f

In general:

Definition

a functional Turing machine is a Turing machine whose output bit is replaced by an output tape (write-only).

- Output tape grad student can only move RIGHT.

Let C, D be decision problems with appropriately encoded input sets $C_{i n p}, D_{i n p}$ respectively.

Definition

A function $f: C_{i n p} \rightarrow D_{\text {inp }}$ is computed by a functional Turing Machine M if whenever M is started with input $x \in C_{i n p}$, it eventually halts with $f(x)$ written on its output tape.

X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function $f: C_{i n p} \rightarrow D_{i n p}$ is computable in X if there exists a functional Turing Machine which computes f and on input x requires no more resources than those permitted by the definition of X.

X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function $f: C_{i n p} \rightarrow D_{i n p}$ is computable in X if there exists a functional Turing Machine which computes f and on input x requires no more resources than those permitted by the definition of X.

Example: the function $f: G \mapsto \varphi_{G}$ in our example showing $3 C O L \leq_{f} S A T$ is P-computable.

- (In fact, it is L-computable.)

X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function $f: C_{i n p} \rightarrow D_{\text {inp }}$ is computable in X if there exists a functional Turing Machine which computes f and on input x requires no more resources than those permitted by the definition of X.

Example: the function $f: G \mapsto \varphi_{G}$ in our example showing $3 C O L \leq_{f} S A T$ is P-computable.

- (In fact, it is L-computable.)

Lemma

For any decent complexity class X, if $C \leq_{f} D \in X$ and f is X-computable, then $C \in X$.

X-reductions

Suppose X, Y are complexity classes with $X \subseteq Y$.
Let C, D be decision problems with $C, D \in Y$.

Definition

(1) We say that C reduces to $D(\bmod X)$ and write

$$
C \leq x D
$$

if there exists an X-computable function $f: C_{i n p} \rightarrow D_{\text {inp }}$ which reduces C to D.

X-reductions

Suppose X, Y are complexity classes with $X \subseteq Y$.
Let C, D be decision problems with $C, D \in Y$.

Definition

(1) We say that C reduces to $D(\bmod X)$ and write

$$
C \leq_{x} D
$$

if there exists an X-computable function $f: C_{i n p} \rightarrow D_{\text {inp }}$ which reduces C to D.
(2) We write $C \equiv_{x} D$ if both $C \leq_{x} D$ and $D \leq_{x} C$.

X-reductions

Suppose X, Y are complexity classes with $X \subseteq Y$.
Let C, D be decision problems with $C, D \in Y$.

Definition

(1) We say that C reduces to $D(\bmod X)$ and write

$$
C \leq x D
$$

if there exists an X-computable function $f: C_{i n p} \rightarrow D_{\text {inp }}$ which reduces C to D.
(2) We write $C \equiv_{x} D$ if both $C \leq_{x} D$ and $D \leq_{x} C$.

This turns the $\equiv x$-classes of Y into a poset.
Most widely used when $X=P$.

The picture of $N P(\bmod P)$

Theorem

The poset (NP/ \equiv_{P}, \leq_{P}) has ...
(1) a least element (consisting of all the elements of P), and
(2) (S. Cook, '71; L. Levin, '73) a greatest element, namely, the \equiv_{p}-class containing SAT.

Jargon: SAT is NP-complete (for \leq_{P} reductions).

Definition

A decision problem D is $N P$-complete if:

- $D \in N P$, and
- $C \leq_{p} D$ for all $C \in N P$.

Equivalently (by Cook-Levin), D is $N P$-complete iff $D \equiv{ }_{P} S A T$.

Karp's Theorem

Theorem (R. Karp, '72)

Many problems are NP-complete.

Karp's Theorem

Theorem (R. Karp, '72)

Many problems are NP-complete.

Examples:

- 3COL, 4COL, etc.
- HAMPATH
- 3SAT (the restriction of SAT to formulas in CNF, each conjunct being a disjunction of at most 3 literals)
(Exercise: check that our proof we gave for $3 C O L \leq_{p} S A T$ also shows $3 C O L \leq_{P} 3 S A T$.)

Ladner's Theorem

Remark: the picture below of $N P$ is accurate only if $P \neq N P$:

Ladner's Theorem

Remark: the picture below of $N P$ is accurate only if $P \neq N P$:

The picture if $P=N P: \quad \bigcirc P=N P=N P$-complete

Ladner's Theorem

Remark: the picture below of $N P$ is accurate only if $P \neq N P$:

The picture if $P=N P: \quad \bigcirc P=N P=N P$-complete

```
Theorem (R. Ladner, '75)
If \(P \neq N P\), then \(|N P / \equiv P| \geq 3\).
```


Ladner's Theorem

Remark: the picture below of $N P$ is accurate only if $P \neq N P$:

The picture if $P=N P: \quad \bigcirc P=N P=N P$-complete

Theorem (R. Ladner, '75)

If $P \neq N P$, then $\left|N P / \equiv_{P}\right| \geq 3$.

In fact, if $P \neq N P$, then $N P / \equiv_{P}$ is order dense.

The picture of EXPTIME $(\bmod P)$

The picture of EXPTIME $(\bmod P)$

- (H. Friedman '82, unpubl.; C. Bergman, D. Juedes \& G. Slutzki, '99) CLO is EXPTIME-complete (for \leq_{p} reductions).

The picture of EXPTIME $(\bmod P)$

- (H. Friedman '82, unpubl.; C. Bergman, D. Juedes \& G. Slutzki, '99) CLO is EXPTIME-complete (for \leq_{p} reductions).

The picture of EXPTIME $(\bmod P)$

- (H. Friedman '82, unpubl.; C. Bergman, D. Juedes \& G. Slutzki, '99) CLO is EXPTIME-complete (for \leq_{p} reductions).
- (D. Kozen, '77) 1-CLO is PSPACE-complete (for \leq_{P} reductions).

The picture of $N P(\bmod L)$

The picture of $N P(\bmod L)$

- SAT, 3SAT and 3COL are NP-complete (for \leq_{L} reductions).

The picture of $N P(\bmod L)$

- SAT, 3SAT and 3COL are NP-complete (for \leq_{L} reductions).
- (W. Savitch, '70) PATH, 2SAT are NL-complete (for \leq_{L} reductions).

The picture of $N P(\bmod L)$

- SAT, 3SAT and 3COL are NP-complete (for \leq_{L} reductions).
- (W. Savitch, '70) PATH, 2SAT are NL-complete (for \leq_{L} reductions).
- (R. Ladner, '75) CVAL is ...

The picture of $N P(\bmod L)$

- SAT, 3SAT and 3COL are NP-complete (for \leq_{L} reductions).
- (W. Savitch, '70) PATH, 2SAT are NL-complete (for \leq_{L} reductions).
- (R. Ladner, '75) CVAL is ... P-complete (for \leq_{L} reductions).

The picture of $N P(\bmod L)$

- SAT, 3SAT and 3COL are NP-complete (for \leq_{L} reductions).
- (W. Savitch, '70) PATH, 2SAT are NL-complete (for \leq_{L} reductions).
- (R. Ladner, '75) CVAL is $\ldots \quad P$-complete (for \leq_{L} reductions).

The picture of $N P(\bmod L)$

- SAT, 3SAT and 3COL are NP-complete (for \leq_{L} reductions).
- (W. Savitch, '70) PATH, 2SAT are NL-complete (for \leq_{L} reductions).
- (R. Ladner, '75) CVAL is . . $\quad P$-complete (for \leq_{L} reductions).
- (???) HORN-SAT and HORN-3SAT are also P-complete.

Summary

L U	$\begin{aligned} & N L \\ & ש \end{aligned}$	$\subseteq \begin{gathered} P \\ ש \end{gathered}$	$\underset{\Psi}{N P} \subseteq$	PSPACE ${ }^{*}$	$\subseteq \underset{u}{\subseteq}$
FVAL,	PATH,	CVAL,	SAT,	1-CLO	CLO
2 COL	2SAT	HORN-	3SAT,		
		3SAT	3COL,		
			4COL, etc.		
			HAMPATH		

Moreover, each problem listed above is "hardest in its class," i.e., is complete with respect to either \leq_{P} or \leq_{L} reductions.

Summary

L	$\begin{aligned} & N L \\ & \Psi \end{aligned}$	$\subseteq \begin{gathered} P \\ ש \end{gathered}$	$\subseteq \underset{\Psi}{N P} \subseteq$	PSPACE Ψ	$\subseteq \underset{U}{\subseteq}$
FVAL,	PATH,	CVAL,	SAT,	1-CLO	CLO
2 COL	2SAT	HORN-	3SAT,		
		3SAT	3COL,		
			4COL, etc.		
			HAMPATH		

Moreover, each problem listed above is "hardest in its class," i.e., is complete with respect to either \leq_{P} or \leq_{L} reductions.

In Thursday's lecture: some problems from universal algebra.

