Universal Algebra and Computational Complexity Lecture 3

Ross Willard
University of Waterloo, Canada

Třešť, September 2008

Summary of Lecture 2

Recall from Tuesday:

$\begin{array}{cccll}\text { FVAL, } & \text { PATH, } & \text { CVAL, } & \text { SAT, } & 1-C L O\end{array} \quad$ CLO

Summary of Lecture 2

Recall from Tuesday:

$\begin{array}{cccll}\text { FVAL, } & \text { PATH, } & \text { CVAL, } & \text { SAT, } & 1-C L O\end{array} \quad$ CLO

Today:

- Some decision problems involving finite algebras
- How hard are they?

Encoding finite algebras: size matters

Let \mathbf{A} be a finite algebra (always in a finite signature).
How do we encode \mathbf{A} for computations? And what is its size?

Encoding finite algebras: size matters

Let \mathbf{A} be a finite algebra (always in a finite signature).
How do we encode \mathbf{A} for computations? And what is its size?
Assume $A=\{0,1, \ldots, n-1\}$.

Encoding finite algebras: size matters

Let \mathbf{A} be a finite algebra (always in a finite signature).
How do we encode \mathbf{A} for computations? And what is its size?
Assume $A=\{0,1, \ldots, n-1\}$.
For each fundamental operation f : If $\operatorname{arity}(f)=r$, then f is given by its table, having ...

- n^{r} entries;
- each entry requires $\log n$ bits.

The tables (as bit-streams) must be separated from each other by \#'s.

Encoding finite algebras: size matters

Let \mathbf{A} be a finite algebra (always in a finite signature).
How do we encode \mathbf{A} for computations? And what is its size?
Assume $A=\{0,1, \ldots, n-1\}$.
For each fundamental operation f : If $\operatorname{arity}(f)=r$, then f is given by its table, having ...

- n^{r} entries;
- each entry requires $\log n$ bits.

The tables (as bit-streams) must be separated from each other by \#'s.
Hence the size of \mathbf{A} is

$$
\|\mathbf{A}\|=\sum_{\text {fund } f}\left(n^{\operatorname{arity}(f)} \log n+1\right)
$$

Size of an algebra

$$
\|\mathbf{A}\|=\sum_{\text {fund } f}\left(n^{\operatorname{arity}(f)} \log n+1\right)
$$

Define some parameters:
$R=$ maximum arity of the fundamental operations (assume >0)
$T=$ number of fundamental operations (assume >0).

Size of an algebra

$$
\|\mathbf{A}\|=\sum_{\text {fund } f}\left(n^{\operatorname{arity}(f)} \log n+1\right) .
$$

Define some parameters:
$R=$ maximum arity of the fundamental operations (assume >0)
$T=$ number of fundamental operations (assume >0).
Then

$$
n^{R} \log n \leq\|\mathbf{A}\| \leq T \cdot n^{R} \log n+T
$$

Size of an algebra

$$
\|\mathbf{A}\|=\sum_{\text {fund } f}\left(n^{\operatorname{arity}(f)} \log n+1\right) .
$$

Define some parameters:
$R=$ maximum arity of the fundamental operations (assume >0)
$T=$ number of fundamental operations (assume >0).
Then

$$
n^{R} \log n \leq\|\mathbf{A}\| \leq T \cdot n^{R} \log n+T
$$

In particular, if we restrict our attention to algebras with some fixed number T of operations, then

$$
\|\mathbf{A}\| \sim n^{R} \log n
$$

Some decision problems involving algebras

INPUT: a finite algebra \mathbf{A}.
(1) Is A simple? Subdirectly irreducible? Directly indecomposable?

Some decision problems involving algebras

INPUT: a finite algebra \mathbf{A}.
(1) Is A simple? Subdirectly irreducible? Directly indecomposable?
(2) Is A primal? Quasi-primal? Maltsev?

Some decision problems involving algebras

INPUT: a finite algebra \mathbf{A}.
(1) Is A simple? Subdirectly irreducible? Directly indecomposable?
(2) Is A primal? Quasi-primal? Maltsev?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence distributive? Congruence modular?

Some decision problems involving algebras

INPUT: a finite algebra \mathbf{A}.
(1) Is A simple? Subdirectly irreducible? Directly indecomposable?
(2) Is A primal? Quasi-primal? Maltsev?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence distributive? Congruence modular?

INPUT: two finite algebras \mathbf{A}, \mathbf{B}.
(4) Is $A \cong B$?
(3) Is $A \in V(B)$

Some decision problems involving algebras

INPUT: a finite algebra \mathbf{A}.
(1) Is A simple? Subdirectly irreducible? Directly indecomposable?
(2) Is A primal? Quasi-primal? Maltsev?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence distributive? Congruence modular?

INPUT: two finite algebras A, B.
(9) Is $A \cong B$?
(3) Is $A \in V(B)$

INPUT: A finite algebra \mathbf{A} and two terms $s(\vec{x}), t(\vec{x})$.
(6) Does $s=t$ have a solution in \mathbf{A} ?
(1) Is $s \approx t$ an identity of \mathbf{A} ?

Some decision problems involving algebras

INPUT: a finite algebra \mathbf{A}.
(1) Is A simple? Subdirectly irreducible? Directly indecomposable?
(2) Is A primal? Quasi-primal? Maltsev?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence distributive? Congruence modular?

INPUT: two finite algebras \mathbf{A}, \mathbf{B}.
(4) Is $A \cong B$?
(3) Is $A \in V(B)$

INPUT: A finite algebra \mathbf{A} and two terms $s(\vec{x}), t(\vec{x})$.
(6) Does $s=t$ have a solution in \mathbf{A} ?
(1) Is $s \approx t$ an identity of \mathbf{A} ?

INPUT: an operation f on a finite set.
(8) Does f generate a minimal clone?

Some decision problems involving algebras

INPUT: a finite algebra \mathbf{A}.
(1) Is A simple? Subdirectly irreducible? Directly indecomposable?
(2) Is A primal? Quasi-primal? Maltsev?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence distributive? Congruence modular?

INPUT: two finite algebras \mathbf{A}, \mathbf{B}.
(4) Is $A \cong B$?
(3) Is $A \in V(B)$

INPUT: A finite algebra \mathbf{A} and two terms $s(\vec{x}), t(\vec{x})$.
(6) Does $s=t$ have a solution in \mathbf{A} ?
(1) Is $s \approx t$ an identity of \mathbf{A} ?

INPUT: an operation f on a finite set.
(8) Does f generate a minimal clone?

How hard are these problems?

Categories of answers

Suppose D is some decision problem involving finite algebras.

Categories of answers

Suppose D is some decision problem involving finite algebras.
(1) Is there an "obvious" algorithm for D ? What is its complexity?

- If an obvious algorithm obviously has complexity Y, then we call Y an obvious upper bound for the complexity of D.

Categories of answers

Suppose D is some decision problem involving finite algebras.
(1) Is there an "obvious" algorithm for D ? What is its complexity?

- If an obvious algorithm obviously has complexity Y, then we call Y an obvious upper bound for the complexity of D.
(2) Do we know a clever (nonobvious) algorithm? Does it give a lesser complexity (relative to the spectrum $L<N L<P<N P$ etc.)?
- If so, call this a nonobvious upper bound.

Categories of answers

Suppose D is some decision problem involving finite algebras.
(1) Is there an "obvious" algorithm for D ? What is its complexity?

- If an obvious algorithm obviously has complexity Y, then we call Y an obvious upper bound for the complexity of D.
(2) Do we know a clever (nonobvious) algorithm? Does it give a lesser complexity (relative to the spectrum $L<N L<P<N P$ etc.)?
- If so, call this a nonobvious upper bound.
(3) Can we find a clever reduction of some X-complete problem to D ?
- If so, this gives X as a lower bound to the complexity of D.

Categories of answers

Suppose D is some decision problem involving finite algebras.
(1) Is there an "obvious" algorithm for D ? What is its complexity?

- If an obvious algorithm obviously has complexity Y, then we call Y an obvious upper bound for the complexity of D.
(2) Do we know a clever (nonobvious) algorithm? Does it give a lesser complexity (relative to the spectrum $L<N L<P<N P$ etc.)?
- If so, call this a nonobvious upper bound.
(3) Can we find a clever reduction of some X-complete problem to D ?
- If so, this gives X as a lower bound to the complexity of D.

Ideally, we want to find an $X \in\{L, N L, P, N P, \ldots\}$ which is both an upper and a lower bound to the complexity of $D \ldots$

- ... i.e., such that D is X-complete.

An easy problem: Subalgebra Membership (SUB-MEM)

Subalgebra Membership Problem (SUB-MEM)

INPUT:

- An algebra \mathbf{A}.
- A set $S \subseteq A$.
- An element $b \in A$.

QUESTION: Is $b \in \operatorname{Sg}^{\mathbf{A}}(S)$?

How hard is SUB-MEM?

An obvious upper bound for SUB-MEM

Algorithm:
INPUT: A, S, b.
$S_{0}:=S$
For $i=1, \ldots, n(:=|A|)$
$S_{i}:=S_{i-1}$
For each operation f (of arity r)
For each $\left(a_{1}, \ldots, a_{r}\right) \in\left(S_{i-1}\right)^{r}$
$c:=f\left(a_{1}, \ldots, a_{r}\right)$ $S_{i}:=S_{i} \cup\{c\}$.
Next i.
OUTPUT: whether $b \in S_{n}$.

An obvious upper bound for SUB-MEM

Algorithm:
INPUT: A, S, b.
$S_{0}:=S$
For $i=1, \ldots, n(:=|A|)$
n loops
$S_{i}:=S_{i-1}$
For each operation f (of arity r)
For each $\left(a_{1}, \ldots, a_{r}\right) \in\left(S_{i-1}\right)^{r}$
$c:=f\left(a_{1}, \ldots, a_{r}\right)$ $S_{i}:=S_{i} \cup\{c\}$.
Next i.
OUTPUT: whether $b \in S_{n}$.

An obvious upper bound for SUB-MEM

Algorithm:
INPUT: A, S, b.
$S_{0}:=S$
For $i=1, \ldots, n(:=|A|)$
$S_{i}:=S_{i-1}$
For each operation f (of arity r)
For each $\left(a_{1}, \ldots, a_{r}\right) \in\left(S_{i-1}\right)^{r}$ n loops

$$
\begin{aligned}
& c:=f\left(a_{1}, \ldots, a_{r}\right) \\
& S_{i}:=S_{i} \cup\{c\} .
\end{aligned}
$$

Next i.
OUTPUT: whether $b \in S_{n}$.

An obvious upper bound for SUB-MEM

Algorithm:
INPUT: A, S, b.
$S_{0}:=S$
For $i=1, \ldots, n(:=|A|)$
$S_{i}:=S_{i-1}$
For each operation f (of arity r)
For each $\left(a_{1}, \ldots, a_{r}\right) \in\left(S_{i-1}\right)^{r}$ $c:=f\left(a_{1}, \ldots, a_{r}\right)$ $S_{i}:=S_{i} \cup\{c\}$.
Next i.
OUTPUT: whether $b \in S_{n}$.
n loops
T operations
$\leq n^{r}$ instances

$$
\begin{gathered}
\text { Heuristics: } \\
n\left(\sum_{f} n^{\text {ar }(f)}\right) \leq \\
n\|\mathbf{A}\| \text { steps }
\end{gathered}
$$

The Complexity of SUB-MEM

So $\operatorname{SUB}-M E M \in \operatorname{TIME}\left(N^{2}\right)$, or maybe $\operatorname{TIME}\left(N^{4+\epsilon}\right)$, or surely in TIME $\left(N^{55}\right)$, and so we get the "obvious" upper bound:

$S U B-M E M \in P$.

The Complexity of SUB-MEM

So SUB-MEM $\in \operatorname{TIME}\left(N^{2}\right)$, or maybe $\operatorname{TIME}\left(N^{4+\epsilon}\right)$, or surely in TIME $\left(N^{55}\right)$, and so we get the "obvious" upper bound:

$S U B-M E M \in P$.

Next questions:

The Complexity of SUB-MEM

So $\operatorname{SUB}-M E M \in \operatorname{TIME}\left(N^{2}\right)$, or maybe $\operatorname{TIME}\left(N^{4+\epsilon}\right)$, or surely in TIME $\left(N^{55}\right)$, and so we get the "obvious" upper bound:

$$
S U B-M E M \in P .
$$

Next questions:

- Can we obtain P as a lower bound for SUB-MEM?

The Complexity of SUB-MEM

So $\operatorname{SUB}-M E M \in \operatorname{TIME}\left(N^{2}\right)$, or maybe $\operatorname{TIME}\left(N^{4+\epsilon}\right)$, or surely in TIME $\left(N^{55}\right)$, and so we get the "obvious" upper bound:

$$
S U B-M E M \in P
$$

Next questions:

- Can we obtain P as a lower bound for SUB-MEM?
- What was that P-complete problem again?...

The Complexity of SUB-MEM

So $\operatorname{SUB}-M E M \in \operatorname{TIME}\left(N^{2}\right)$, or maybe $\operatorname{TIME}\left(N^{4+\epsilon}\right)$, or surely in TIME $\left(N^{55}\right)$, and so we get the "obvious" upper bound:

$$
S U B-M E M \in P
$$

Next questions:

- Can we obtain P as a lower bound for SUB-MEM?
- What was that P-complete problem again?... (CVAL or HORN-3SAT)

The Complexity of SUB-MEM

So $\operatorname{SUB}-M E M \in \operatorname{TIME}\left(N^{2}\right)$, or maybe $\operatorname{TIME}\left(N^{4+\epsilon}\right)$, or surely in TIME $\left(N^{55}\right)$, and so we get the "obvious" upper bound:

$$
S U B-M E M \in P
$$

Next questions:

- Can we obtain P as a lower bound for SUB-MEM?
- What was that P-complete problem again?... (CVAL or HORN-3SAT)
- Can we show HORN-3SAT $\leq_{L} S U B-M E M$?

The Complexity of SUB-MEM

So $\operatorname{SUB}-M E M \in \operatorname{TIME}\left(N^{2}\right)$, or maybe $\operatorname{TIME}\left(N^{4+\epsilon}\right)$, or surely in $\operatorname{TIME}\left(N^{55}\right)$, and so we get the "obvious" upper bound:

$S U B-M E M \in P$.

Next questions:

- Can we obtain P as a lower bound for SUB-MEM?
- What was that P-complete problem again?... (CVAL or HORN-3SAT)
- Can we show HORN-3SAT $\leq_{L} S U B-M E M$?

Theorem (N. Jones \& W. Laaser, '77)

Yes.
In other words, SUB-MEM is P-complete.

A variation: 1-SUB-MEM

1-SUB-MEM

This is the restriction of SUB-MEM to unary algebras (all fundamental operations are unary). I.e.,

INPUT: A unary algebra \mathbf{A}, a set $S \subseteq A$, and $b \in A$.
QUESTION: Is $b \in \operatorname{Sg}^{\mathbf{A}}(S)$?

A variation: 1-SUB-MEM

1-SUB-MEM

This is the restriction of SUB-MEM to unary algebras (all fundamental operations are unary). l.e.,

INPUT: A unary algebra \mathbf{A}, a set $S \subseteq A$, and $b \in A$.
QUESTION: Is $b \in \operatorname{Sg}^{\mathbf{A}}(S)$?

Here is a nondeterministic log-space algorithm showing 1-SUB-MEM \in NL:
NALGORITHM: guess a sequence $c_{0}, c_{1}, \ldots, c_{k}$ such that

- $c_{0} \in S$
- For each $i<k, c_{i+1}=f_{j}\left(c_{i}\right)$ for some fundamental operation f_{j}
- $c_{k}=b$.

A variation: 1-SUB-MEM

1-SUB-MEM

This is the restriction of SUB-MEM to unary algebras (all fundamental operations are unary). l.e.,

INPUT: A unary algebra \mathbf{A}, a set $S \subseteq A$, and $b \in A$.
QUESTION: Is $b \in \operatorname{Sg}^{\mathbf{A}}(S)$?

Here is a nondeterministic log-space algorithm showing $1-S U B-M E M \in N L$:
NALGORITHM: guess a sequence $c_{0}, c_{1}, \ldots, c_{k}$ such that

- $c_{0} \in S$
- For each $i<k, c_{i+1}=f_{j}\left(c_{i}\right)$ for some fundamental operation f_{j}
- $c_{k}=b$.

Theorem (N. Jones, Y. Lien \& W. Laaser, '76)

1-SUB-MEM is NL-complete.

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \operatorname{Cg}^{\mathbf{A}}(S)$.

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \operatorname{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is \leq_{p} SUB-MEM.

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \operatorname{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is \leq_{p} SUB-MEM.
- (Bonus: prove that it is in NL.)

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \operatorname{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is $\leq_{p} S U B-M E M$.
- (Bonus: prove that it is in NL.)
(2) Given \mathbf{A} and $S \subseteq A$, determine whether S is a subalgebra of \mathbf{A}.

$$
S \in \operatorname{Sub}(\mathbf{A}) \Leftrightarrow \forall a \in A\left(a \in \operatorname{Sg}^{\mathbf{A}}(S) \rightarrow a \in S\right)
$$

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \mathrm{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is $\leq_{p} S U B-M E M$.
- (Bonus: prove that it is in NL.)
(2) Given \mathbf{A} and $S \subseteq A$, determine whether S is a subalgebra of \mathbf{A}.

$$
S \in \operatorname{Sub}(\mathbf{A}) \Leftrightarrow \forall a \in A\left(a \in \operatorname{Sg}^{\mathbf{A}}(S) \rightarrow a \in S\right)
$$

(3) Given \mathbf{A} and $\theta \in \operatorname{Eqv}(A)$, determine whether θ is a congruence of \mathbf{A}.

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \mathrm{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is $\leq_{p} S U B-M E M$.
- (Bonus: prove that it is in NL.)
(2) Given \mathbf{A} and $S \subseteq A$, determine whether S is a subalgebra of \mathbf{A}.

$$
S \in \operatorname{Sub}(\mathbf{A}) \Leftrightarrow \forall a \in A\left(a \in \operatorname{Sg}^{\mathbf{A}}(S) \rightarrow a \in S\right)
$$

(3) Given \mathbf{A} and $\theta \in \operatorname{Eqv}(A)$, determine whether θ is a congruence of \mathbf{A}.
(4) Given \mathbf{A} and $h: A \rightarrow A$, determine whether h is an endomorphism.

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \mathrm{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is $\leq_{p} S U B-M E M$.
- (Bonus: prove that it is in NL.)
(2) Given \mathbf{A} and $S \subseteq A$, determine whether S is a subalgebra of \mathbf{A}.

$$
S \in \operatorname{Sub}(\mathbf{A}) \Leftrightarrow \forall a \in A\left(a \in \operatorname{Sg}^{\mathbf{A}}(S) \rightarrow a \in S\right)
$$

(3) Given \mathbf{A} and $\theta \in \operatorname{Eqv}(A)$, determine whether θ is a congruence of \mathbf{A}.
(4) Given \mathbf{A} and $h: A \rightarrow A$, determine whether h is an endomorphism.

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \operatorname{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is $\leq_{p} S U B-M E M$.
- (Bonus: prove that it is in NL.)
(2) Given \mathbf{A} and $S \subseteq A$, determine whether S is a subalgebra of \mathbf{A}.

$$
S \in \operatorname{Sub}(\mathbf{A}) \Leftrightarrow \forall a \in A\left(a \in \operatorname{Sg}^{\mathbf{A}}(S) \rightarrow a \in S\right)
$$

(3) Given \mathbf{A} and $\theta \in \operatorname{Eqv}(A)$, determine whether θ is a congruence of \mathbf{A}.
(4) Given \mathbf{A} and $h: A \rightarrow A$, determine whether h is an endomorphism.
(5) Given \mathbf{A}, determine whether \mathbf{A} is simple.

$$
\text { A simple } \Leftrightarrow \forall a, b, c, d\left[c \neq d \rightarrow(a, b) \in \operatorname{Cg}^{\mathbf{A}}(c, d)\right] \text {. }
$$

Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable (in P).
(1) Given \mathbf{A} and $S \cup\{(a, b)\} \subseteq A^{2}$, determine whether $(a, b) \in \mathrm{Cg}^{\mathbf{A}}(S)$.

- Easy exercise: show this problem is $\leq_{p} S U B-M E M$.
- (Bonus: prove that it is in NL.)
(2) Given \mathbf{A} and $S \subseteq A$, determine whether S is a subalgebra of \mathbf{A}.

$$
S \in \operatorname{Sub}(\mathbf{A}) \Leftrightarrow \forall a \in A\left(a \in \operatorname{Sg}^{\mathbf{A}}(S) \rightarrow a \in S\right)
$$

(3) Given \mathbf{A} and $\theta \in \operatorname{Eqv}(A)$, determine whether θ is a congruence of \mathbf{A}.
(4) Given \mathbf{A} and $h: A \rightarrow A$, determine whether h is an endomorphism.
(5) Given \mathbf{A}, determine whether \mathbf{A} is simple.

$$
\text { A simple } \Leftrightarrow \forall a, b, c, d\left[c \neq d \rightarrow(a, b) \in \operatorname{Cg}^{\mathbf{A}}(c, d)\right] \text {. }
$$

(6) Given \mathbf{A}, determine whether \mathbf{A} is abelian.

$$
\mathbf{A} \text { abelian } \Leftrightarrow \forall a, c, d\left[c \neq d \rightarrow((a, a),(c, d)) \notin \operatorname{Cg}^{\mathbf{A}^{2}}\left(0_{A}\right)\right]
$$

Clone Membership Problem (CLO)

INPUT: An algebra \mathbf{A} and an operation $g: A^{k} \rightarrow A$.
QUESTION: Is $g \in \operatorname{Clo} \mathbf{A}$?

Clone Membership Problem (CLO)

INPUT: An algebra \mathbf{A} and an operation $g: A^{k} \rightarrow A$.
QUESTION: Is $g \in \operatorname{Clo} \mathbf{A}$?

Obvious algorithm: Determine whether $g \in \operatorname{Sg}^{\mathbf{A}^{\left(A^{k}\right)}}\left(p r_{1}^{k}, \ldots, p r_{k}^{k}\right)$. The running time is bounded by a polynomial in $\left\|\mathbf{A}^{\left(A^{k}\right)}\right\|$.

Clone Membership Problem (CLO)

INPUT: An algebra \mathbf{A} and an operation $g: A^{k} \rightarrow A$.
QUESTION: Is $g \in \operatorname{Clo} \mathbf{A}$?
Obvious algorithm: Determine whether $g \in \operatorname{Sg}^{\mathbf{A}^{\left(A^{k}\right)}}\left(p r_{1}^{k}, \ldots, p r_{k}^{k}\right)$.
The running time is bounded by a polynomial in $\left\|\mathbf{A}^{\left(A^{k}\right)}\right\|$.
Can show

$$
\log \left\|\mathbf{A}^{\left(A^{k}\right)}\right\| \leq n^{k}\|\mathbf{A}\| \leq(\|g\|+\|\mathbf{A}\|)^{2}
$$

Hence the running time is bounded by the exponential of a polynomial in the size of the input (\mathbf{A}, g). I.e., $C L O \in E X P T I M E$.

Clone Membership Problem (CLO)

INPUT: An algebra \mathbf{A} and an operation $g: A^{k} \rightarrow A$.
QUESTION: Is $g \in \operatorname{Clo} \mathbf{A}$?
Obvious algorithm: Determine whether $g \in \operatorname{Sg}^{\mathbf{A}^{\left(A^{k}\right)}}\left(p r_{1}^{k}, \ldots, p r_{k}^{k}\right)$.
The running time is bounded by a polynomial in $\left\|\mathbf{A}^{\left(A^{k}\right)}\right\|$. Can show

$$
\log \left\|\mathbf{A}^{\left(A^{k}\right)}\right\| \leq n^{k}\|\mathbf{A}\| \leq(\|g\|+\|\mathbf{A}\|)^{2}
$$

Hence the running time is bounded by the exponential of a polynomial in the size of the input (\mathbf{A}, g). I.e., $C L O \in E X P T I M E$.

By reducing a known EXPTIME-complete problem to CLO, Friedman and Bergman et al showed:

Theorem

CLO is EXPTIME-complete.

The Primal Algebra Problem (PRIMAL)

INPUT: a finite algebra \mathbf{A}.

QUESTION: Is A primal?

The Primal Algebra Problem (PRIMAL)

INPUT: a finite algebra \mathbf{A}.
QUESTION: Is A primal?

The obvious algorithm is actually a reduction to CLO.
For a finite set A, let g_{A} be your favorite binary Sheffer operation on A.
Define $f: P R I M A L_{\text {inp }} \rightarrow C L O_{i n p}$ by

$$
f: \mathbf{A} \mapsto\left(\mathbf{A}, g_{A}\right)
$$

The Primal Algebra Problem (PRIMAL)

INPUT: a finite algebra \mathbf{A}.
QUESTION: Is A primal?

The obvious algorithm is actually a reduction to CLO.
For a finite set A, let g_{A} be your favorite binary Sheffer operation on A.
Define $f: P R I M A L_{i n p} \rightarrow C L O_{i n p}$ by

$$
f: \mathbf{A} \mapsto\left(\mathbf{A}, g_{A}\right)
$$

Since

$$
\mathbf{A} \text { is primal } \Leftrightarrow g_{A} \in \operatorname{Clo} \mathbf{A},
$$

we have $P R I M A L \leq_{f} C L O$. Clearly f is P-computable, so

$$
P R I M A L \leq_{P} C L O
$$

which gives the obvious upper bound

$$
P R I M A L \in E X P T I M E .
$$

PRIMAL

But testing primality of algebras is special. Maybe there is a better, "nonobvious" algorithm?
(E.g., using Rosenberg's classification?)

PRIMAL

But testing primality of algebras is special. Maybe there is a better, "nonobvious" algorithm?
(E.g., using Rosenberg's classification?)

Open Problem 1.

Determine the complexity of PRIMAL.

- Is it in PSPACE? (= NPSPACE)
- Is it EXPTIME-complete? $\left(\Leftrightarrow C L O \leq_{P} P R I M A L\right)$

MALTSEV

INPUT: a finite algebra A.
QUESTION: Does A have a Maltsev term?

The obvious upper bound is NEXPTIME, since MALTSEV is a projection of

$$
\{(\mathbf{A}, p): \underbrace{p \in \operatorname{Clo} \mathbf{A}}_{\text {EXPTIME }} \text { and } \underbrace{p \text { is a Maltsev operation }}_{P}\}
$$

a problem in EXPTIME.

MALTSEV

INPUT: a finite algebra \mathbf{A}.
QUESTION: Does A have a Maltsev term?

The obvious upper bound is NEXPTIME, since MALTSEV is a projection of

$$
\{(\mathbf{A}, p): \underbrace{p \in \operatorname{Clo} \mathbf{A}}_{\text {EXPTIME }} \text { and } \underbrace{p \text { is a Maltsev operation }}_{P}\}
$$

a problem in EXPTIME.
But a slightly less obvious algorithm puts MALTSEV in EXPTIME. Use the fact that if x, y name the two projections $A^{2} \rightarrow A$, then \mathbf{A} has a Maltsev term iff

$$
(y, x) \in \operatorname{Sg}^{\mathbf{A}^{\left(A^{2}\right)}}((x, x),(x, y),(y, y))
$$

(which is decidable in EXPTIME).

Similar characterizations give EXPTIME as an upper bound to the following:

Some problems in EXPTIME

Given A:

(1) Does \mathbf{A} have a majority term?
(2) Does A have a semilattice term?
(3) Does \mathbf{A} have Jónsson terms?
(4) Does \mathbf{A} have Gumm terms?
(0) Does A have terms equivalent to $\mathrm{V}(\mathrm{A})$ being congruence meet-semidistributive?
(0) Etc. etc.

Are these problems easier than EXPTIME, or EXPTIME-complete?

Freese \& Valeriote's theorem

For some of these problems we have an answer:
Theorem (R. Freese, M. Valeriote, '0?)
The following problems are all EXPTIME-complete: Given A,

Freese \& Valeriote's theorem

For some of these problems we have an answer:
Theorem (R. Freese, M. Valeriote, '0?)
The following problems are all EXPTIME-complete: Given A,
(1) Does A have Jónsson terms?

Freese \& Valeriote's theorem

For some of these problems we have an answer:
Theorem (R. Freese, M. Valeriote, '0?)
The following problems are all EXPTIME-complete: Given A,
(1) Does A have Jónsson terms?
(2) Does A have Gumm terms?

Freese \& Valeriote's theorem

For some of these problems we have an answer:
Theorem (R. Freese, M. Valeriote, '0?)
The following problems are all EXPTIME-complete: Given A,
(1) Does A have Jónsson terms?
(2) Does A have Gumm terms?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence meet-semidistributive?

Freese \& Valeriote's theorem

For some of these problems we have an answer:
Theorem (R. Freese, M. Valeriote, '0?)
The following problems are all EXPTIME-complete: Given A,
(1) Does A have Jónsson terms?
(2) Does A have Gumm terms?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence meet-semidistributive?
(9) Does \mathbf{A} have a semilattice term?

Freese \& Valeriote's theorem

For some of these problems we have an answer:
Theorem (R. Freese, M. Valeriote, '0?)
The following problems are all EXPTIME-complete: Given A,
(1) Does A have Jónsson terms?
(2) Does A have Gumm terms?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence meet-semidistributive?
(9) Does \mathbf{A} have a semilattice term?
(5) Does A have any nontrivial idempotent term?

Freese \& Valeriote's theorem

For some of these problems we have an answer:

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given A,
(1) Does A have Jónsson terms?
(2) Does A have Gumm terms?
(3) Is $\mathrm{V}(\mathrm{A})$ congruence meet-semidistributive?
(4) Does \mathbf{A} have a semilattice term?
(5) Does A have any nontrivial idempotent term?

- idempotent means "satisfies $f(x, x, \ldots, x) \approx x$."
- nontrivial means "other than x."

Freese \& Valeriote's theorem

Proof.

Freese and Valeriote give a construction which, given an input $\Gamma=(\mathbf{A}, g)$ to $C L O$, produces an algebra B_{Γ} such that:

- $g \in \operatorname{Clo} \mathbf{A} \Rightarrow$ there is a flat semilattice order on B_{Γ} such that $(x \wedge y) \vee(x \wedge z)$ is a term operation of B_{Γ}.
- $g \notin \operatorname{Clo} A \Rightarrow B_{\Gamma}$ has no nontrivial idempotent term operations.

Freese \& Valeriote's theorem

Proof.

Freese and Valeriote give a construction which, given an input $\Gamma=(\mathbf{A}, g)$ to $C L O$, produces an algebra B_{Γ} such that:

- $g \in \operatorname{Clo} \mathbf{A} \Rightarrow$ there is a flat semilattice order on B_{Γ} such that $(x \wedge y) \vee(x \wedge z)$ is a term operation of B_{Γ}.
- $g \notin \operatorname{Clo} A \Rightarrow B_{\Gamma}$ has no nontrivial idempotent term operations.

Moreover, the function $f: \Gamma \mapsto \mathrm{B}_{\Gamma}$ is easily computed (in P).
Hence f is simultaneously a P-reduction of $C L O$ to all the problems in the statement of the theorem.

Open Problem 2.

Are the following easier than EXPTIME, or EXPTIME-complete?

- Determining if \mathbf{A} has a majority operation.
- Determining if A has a Maltsev operation (MALTSEV).

Open Problem 2.

Are the following easier than EXPTIME, or EXPTIME-complete?

- Determining if \mathbf{A} has a majority operation.
- Determining if A has a Maltsev operation (MALTSEV).

If MALTSEV is easier than EXPTIME, then so is PRIMAL, since

Open Problem 2.

Are the following easier than EXPTIME, or EXPTIME-complete?

- Determining if \mathbf{A} has a majority operation.
- Determining if \mathbf{A} has a Maltsev operation (MALTSEV).

If MALTSEV is easier than EXPTIME, then so is PRIMAL, since

Theorem

A is primal iff:

- A has no proper subalgebras,
- A is simple,
- A is rigid,
- \mathbf{A} is not abelian, and
- A is Maltsev.

Surprisingly, the previous problems become significantly easier when restricted to idempotent algebras.

Theorem (Freese \& Valeriote, '0?)

The following problems for idempotent algebras are in P :
(1) A has a majority term.
(2) A has Jónsson terms.
(3) A has Gumm terms.
(4) $V(\mathrm{~A})$ is congruence meet-semidistributive.
(5) \mathbf{A} is Maltsev.
(6) $V(\mathbf{A})$ is congruence k-permutable for some k.

Surprisingly, the previous problems become significantly easier when restricted to idempotent algebras.

Theorem (Freese \& Valeriote, '0?)

The following problems for idempotent algebras are in \mathbf{P} :
(1) A has a majority term.
(2) A has Jónsson terms.
(3) A has Gumm terms.
(4) $V(\mathrm{~A})$ is congruence meet-semidistributive.
(5) \mathbf{A} is Maltsev.
(6) $V(\mathbf{A})$ is congruence k-permutable for some k.

Proof.

Fiendishly nonobvious algorithms using tame congruence theory.

Variety Membership Problem (VAR-MEM)

INPUT: two finite algebras \mathbf{A}, \mathbf{B} in the same signature.

QUESTION: Is $A \in V(B)$?

The obvious algorithm (J. Kalicki, '52): determine whether the identity map on A extends to a homomorphism $\mathbf{F}_{\mathbf{V (B)}}(A) \rightarrow \mathbf{A}$.

Variety Membership Problem (VAR-MEM)

INPUT: two finite algebras \mathbf{A}, \mathbf{B} in the same signature. QUESTION: Is $A \in V(B)$?

The obvious algorithm (J. Kalicki, '52): determine whether the identity map on A extends to a homomorphism $\mathbf{F}_{\mathbf{V (B)}}(A) \rightarrow \mathbf{A}$.

Theorem (C. Bergman \& G. Slutzki, '00)

The obvious algorithm puts VAR-MEM in 2-EXPTIME.

Variety Membership Problem (VAR-MEM)

INPUT: two finite algebras \mathbf{A}, \mathbf{B} in the same signature.
QUESTION: Is $A \in V(B)$?
The obvious algorithm (J. Kalicki, '52): determine whether the identity map on A extends to a homomorphism $\mathbf{F}_{\mathbf{V (B)}}(A) \rightarrow \mathbf{A}$.

Theorem (C. Bergman \& G. Slutzki, '00)

The obvious algorithm puts VAR-MEM in 2-EXPTIME.

$$
2-E X P T I M E \stackrel{\text { def }}{=} \bigcup_{k=1}^{\infty} \operatorname{TIME}\left(2^{\left(2^{O\left(N^{k}\right)}\right)}\right)
$$

$\cdots N E X P T I M E \subseteq E X P S P A C E \subseteq 2-E X P T I M E \subseteq N(2-E X P T I M E) \cdots$

What is the "real" complexity of VAR-MEM?

```
Theorem (Z. Székely, thesis '00)
\(V A R-M E M\) is \(N P\)-hard (i.e., \(3 S A T \leq_{P} V A R-M E M\) ).
```

Theorem (M. Kozik, thesis '04)
VAR-MEM is EXPSPACE-hard.

What is the "real" complexity of VAR-MEM?

Theorem (Z. Székely, thesis '00)

VAR-MEM is NP-hard (i.e., $3 S A T \leq_{P}$ VAR-MEM).

Theorem (M. Kozik, thesis '04)

VAR-MEM is EXPSPACE-hard.

Theorem (M. Kozik, '0?)

VAR-MEM is 2-EXPTIME-hard and therefore 2-EXPTIME-complete. Moreover, there exists a specific finite algebra \mathbf{B} such that the subproblem:

INPUT: a finite algebra \mathbf{A} in the same signature as \mathbf{B}.
QUESTION: Is $\mathrm{A} \in \mathrm{V}(\mathrm{B})$
is 2-EXPTIME-complete.

The Equivalence of Terms problem (EQUIV-TERM)

INPUT:

- A finite algebra \mathbf{A}.
- Two terms $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}. QUESTION: Is $s(\vec{x}) \approx t(\vec{x})$ identically true in \mathbf{A} ?

It is convenient to name the negation of this problem:

```
The Inequivalence of Terms problem (INEQUIV-TERM)
INPUT: (same)
QUESTION: Does \(s(\vec{x}) \neq t(\vec{x})\) have a solution in A?
```

How hard are these problems?

Obviously INEQUIV-TERM is in NP. (Any solution \vec{x} to $s(\vec{x}) \neq t(\vec{x})$ serves as a certificate.)

Obviously INEQUIV-TERM is in NP. (Any solution \vec{x} to $s(\vec{x}) \neq t(\vec{x})$ serves as a certificate.)

On the other hand, and equally obviously, $S A T \leq_{P} I N E Q U I V-T E R M$. (Map $\varphi \mapsto\left(2_{B A}, \varphi, 0\right)$.)

Obviously INEQUIV-TERM is in NP. (Any solution \vec{x} to $s(\vec{x}) \neq t(\vec{x})$ serves as a certificate.)

On the other hand, and equally obviously, $S A T \leq_{P} I N E Q U I V-T E R M$. (Map $\varphi \mapsto\left(2_{B A}, \varphi, 0\right)$.)

Hence INEQUIV-TERM is obviously NP-complete.
EQUIV-TERM, being its negation, is said to be co-NP-complete.

Obviously INEQUIV-TERM is in NP. (Any solution \vec{x} to $s(\vec{x}) \neq t(\vec{x})$ serves as a certificate.)

On the other hand, and equally obviously, $S A T \leq_{p} I N E Q U I V-T E R M$. (Map $\varphi \mapsto\left(2_{B A}, \varphi, 0\right)$.)

Hence INEQUIV-TERM is obviously NP-complete.
EQUIV-TERM, being its negation, is said to be co-NP-complete.

Definition

- Co- $N P$ is the class of problems D whose negation $\neg D$ is in $N P$.
- A problem D is co- $N P$-complete if its negation $\neg D$ is $N P$-complete, or equivalently, if D is in the top $\equiv p$-class of co- $N P$.

Done. End of story. Boring.

But WAIT!!!! There's more!!!!

For each fixed finite algebra \mathbf{A} we can pose the subproblem for \mathbf{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}. QUESTION: (same).

But WAIT!!!! There's more!!!!

For each fixed finite algebra \mathbf{A} we can pose the subproblem for \mathbf{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}. QUESTION: (same).

The following are obviously obvious:

But WAIT!!!! There's more!!!!

For each fixed finite algebra \mathbf{A} we can pose the subproblem for \mathbf{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}. QUESTION: (same).

The following are obviously obvious:

- EQUIV-TERM(A) is in co-NP for any algebra \mathbf{A}.

But WAIT!!!! There's more!!!!

For each fixed finite algebra \mathbf{A} we can pose the subproblem for \mathbf{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}. QUESTION: (same).

The following are obviously obvious:

- EQUIV-TERM(\mathbf{A}) is in co-NP for any algebra \mathbf{A}.
- EQUIV-TERM $\left(\mathbf{2}_{B A}\right)$ is co-NP-complete. (Hint: $\varphi \mapsto(\varphi, 0)$.)

But WAIT!!!! There's more!!!!

For each fixed finite algebra \mathbf{A} we can pose the subproblem for \mathbf{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}. QUESTION: (same).

The following are obviously obvious:

- EQUIV-TERM(A) is in co-NP for any algebra \mathbf{A}.
- EQUIV-TERM $\left(\mathbf{2}_{B A}\right)$ is co-NP-complete. (Hint: $\varphi \mapsto(\varphi, 0)$.)
- EQUIV-TERM(A) is in P when \mathbf{A} is nice, say, a vector space or a set.

But WAIT!!!! There's more!!!!

For each fixed finite algebra \mathbf{A} we can pose the subproblem for \mathbf{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}.
QUESTION: (same).

The following are obviously obvious:

- EQUIV-TERM(A) is in co-NP for any algebra \mathbf{A}.
- EQUIV-TERM $\left(\mathbf{2}_{B A}\right)$ is co-NP-complete. (Hint: $\varphi \mapsto(\varphi, 0)$.)
- EQUIV-TERM(A) is in P when \mathbf{A} is nice, say, a vector space or a set.

Problem: for which finite algebras \mathbf{A} is $E Q U I V-\operatorname{TERM}(\mathbf{A})$ NP-complete? For which \mathbf{A} is it in P ?

There are a huge number of publications in this area. Here is a sample:

There are a huge number of publications in this area. Here is a sample:
Theorem (H. Hunt \& R. Stearns, '90; S. Burris \& J. Lawrence, '93)
Let R be a finite ring.

- If R is nilpotent, then EQUIV-TERM (R) is in P.
- Otherwise, EQUIV-TERM (R) is co-NP-complete.

There are a huge number of publications in this area. Here is a sample:

Theorem (H. Hunt \& R. Stearns, '90; S. Burris \& J. Lawrence, '93)

Let R be a finite ring.

- If R is nilpotent, then EQUIV-TERM (R) is in P.
- Otherwise, EQUIV-TERM(R) is co-NP-complete.

Theorem (Burris \& Lawrence, '04; G. Horváth \& C. Szabó, '06; Horváth, Lawrence, L. Mérai \& Szabó, '07)
Let \mathbf{G} be a finite group.

- If G is nonsolvable, then $E Q U I V-T E R M(\mathbf{G})$ is co-NP-complete.
- If \mathbf{G} is nilpotent, or of the form $\mathbf{Z}_{m_{1}} \rtimes\left(\mathbf{Z}_{m_{2}} \rtimes \cdots\left(\mathbf{Z}_{m_{k}} \rtimes \mathbf{A}\right) \cdots\right)$ with each m_{i} square-free and \mathbf{A} abelian, then EQUIV-TERM (\mathbf{G}) is in P.

There are a huge number of publications in this area. Here is a sample:

Theorem (H. Hunt \& R. Stearns, '90; S. Burris \& J. Lawrence, '93)

Let R be a finite ring.

- If R is nilpotent, then EQUIV-TERM(R$)$ is in P.
- Otherwise, EQUIV-TERM(R) is co-NP-complete.

Theorem (Burris \& Lawrence, '04; G. Horváth \& C. Szabó, '06; Horváth, Lawrence, L. Mérai \& Szabó, '07)

Let \mathbf{G} be a finite group.

- If G is nonsolvable, then EQUIV-TERM($\mathbf{G})$ is co-NP-complete.
- If \mathbf{G} is nilpotent, or of the form $\mathbf{Z}_{m_{1}} \rtimes\left(\mathbf{Z}_{m_{2}} \rtimes \cdots\left(\mathbf{Z}_{m_{k}} \rtimes \mathbf{A}\right) \cdots\right)$ with each m_{i} square-free and \mathbf{A} abelian, then EQUIV-TERM (\mathbf{G}) is in P.

And many partial results for semigroups due to e.g. Kisielewicz, Klíma, Pleshcheva, Popov, Seif, Szabó, Tesson, Therien, Vértesi, and Volkov.

An outrageous scandal

An outrageous scandal

Theorem (G. Horváth \& C. Szabó)

Consider the group \mathbf{A}_{4}.

- EQUIV-TERM $\left(\mathbf{A}_{4}\right)$ is in P.
- Yet there is an algebra \mathbf{A} with the same clone as \mathbf{A}_{4} such that $E Q U I V-T E R M(\mathbf{A})$ is co-NP-complete.

This is either wonderful or scandalous.

In my opinion, this is evidence that EQUIV-TERM is the wrong problem.

Definition

A circuit (in a given signature for algebras) is an object, similar to a term, except that repeated subterms need be written only once.

Example: Let $t=((x+y)+(x+y))+((x+y)+(x+y))$.

A circuit for t :

Straight-line program:

$$
\begin{aligned}
v_{1} & =x+y \\
v_{2} & =v_{1}+v_{1} \\
t & =v_{2}+v_{2} .
\end{aligned}
$$

Note that circuits may be significantly shorter than the terms they represent.

Equivalence of Terms Problem (correct version)

Fix a finite algebra \mathbf{A}.
The Equivalence of Circuits problem (EQUIV-CIRC(A))
INPUT: two circuits $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}.
QUESTION: is $s(\vec{x}) \approx t(\vec{x})$ identically true in \mathbf{A} ?

Equivalence of Terms Problem (correct version)

Fix a finite algebra \mathbf{A}.
The Equivalence of Circuits problem (EQUIV-CIRC(A))
INPUT: two circuits $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}.
QUESTION: is $s(\vec{x}) \approx t(\vec{x})$ identically true in \mathbf{A} ?

This is the correct problem.

- The input is presented "honestly" (computationally).
- It is invariant for algebras with the same clone.

Equivalence of Terms Problem (correct version)

Fix a finite algebra \mathbf{A}.

The Equivalence of Circuits problem (EQUIV-CIRC(A))

INPUT: two circuits $s(\vec{x}), t(\vec{x})$ in the signature of \mathbf{A}.
QUESTION: is $s(\vec{x}) \approx t(\vec{x})$ identically true in \mathbf{A} ?

This is the correct problem.

- The input is presented "honestly" (computationally).
- It is invariant for algebras with the same clone.

Open Problem 3.

For which finite algebras \mathbf{A} is $E Q U I V-C I R C(\mathbf{A}) N P$-complete? For which A is it in P?

Two problems for relational structures

Relational Clone Membership (RCLO)

INPUT:

- A finite relational structure M .
- A finitary relation $R \subseteq M^{k}$.

QUESTION: Is $R \in \operatorname{Inv} \operatorname{Pol}(\mathrm{M})$?

Two problems for relational structures

Relational Clone Membership (RCLO)

INPUT:

- A finite relational structure M .
- A finitary relation $R \subseteq M^{k}$.

QUESTION: Is $R \in \operatorname{Inv} \operatorname{Pol}(\mathrm{M})$?

A slightly nonobvious characterization gives NEXPTIME as an upper bound. For a lower bound, we have:

Theorem (W, '0?)
RCLO is EXPTIME-hard.

Two problems for relational structures

Relational Clone Membership (RCLO)

INPUT:

- A finite relational structure M .
- A finitary relation $R \subseteq M^{k}$.

QUESTION: Is $R \in \operatorname{Inv} \operatorname{Pol}(\mathrm{M})$?

A slightly nonobvious characterization gives NEXPTIME as an upper bound. For a lower bound, we have:

Theorem (W, '0?)

RCLO is EXPTIME-hard.

Open Problem 4.

Is RCLO in EXPTIME? Is it NEXPTIME-complete?

Fix a finite relational structure B.
Consider the following problem associated to \mathbf{B} :
A problem
INPUT: a finite structure \mathbf{A} in the same signature as \mathbf{B}.
QUESTION: Is there a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$?

This problem is called $\operatorname{CSP}(\mathrm{B})$.

Fix a finite relational structure B.
Consider the following problem associated to B :
A problem
INPUT: a finite structure \mathbf{A} in the same signature as \mathbf{B}.
QUESTION: Is there a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$?

This problem is called $\operatorname{CSP}(\mathrm{B})$.
Obviously $\operatorname{CSP}(\mathrm{B}) \in N P$ for any B.

Fix a finite relational structure B.
Consider the following problem associated to B :

A problem

INPUT: a finite structure \mathbf{A} in the same signature as \mathbf{B}.
QUESTION: Is there a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$?

This problem is called $\operatorname{CSP}(\mathrm{B})$.
Obviously $\operatorname{CSP}(\mathrm{B}) \in N P$ for any B .
If K_{3} is the triangle graph, then $\operatorname{CSP}\left(\mathrm{K}_{3}\right)=3 C O L$, so is $N P$-complete in this case. If \mathbf{G} is a bipartite graph, then then $\operatorname{CSP}(\mathbf{G}) \in P$.

Fix a finite relational structure B.
Consider the following problem associated to B :

A problem

INPUT: a finite structure \mathbf{A} in the same signature as \mathbf{B}.
QUESTION: Is there a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$?

This problem is called $\operatorname{CSP}(\mathrm{B})$.
Obviously $\operatorname{CSP}(\mathrm{B}) \in N P$ for any B .
If K_{3} is the triangle graph, then $\operatorname{CSP}\left(\mathrm{K}_{3}\right)=3 C O L$, so is $N P$-complete in this case. If \mathbf{G} is a bipartite graph, then then $\operatorname{CSP}(\mathbf{G}) \in P$.

CSP Classification Problem

For which finite relational structures B is $\operatorname{CSP}(\mathrm{B})$ in P ? For which is it $N P$-complete?

