Universal Algebra and Computational Complexity Lecture 3

Ross Willard

University of Waterloo, Canada

Třešť, September 2008

Ross Willard (Waterloo)

Algebra and Complexity

Třešť, September 2008

1 / 31

Recall from Tuesday:

L	\subseteq	NL	\subseteq	Ρ	\subseteq	NP	\subseteq	PSPACE	\subseteq EXPTIME \cdot	••
Ψ		Ψ		Ψ		Ψ		Ψ	Ψ	
FVAL,		PATH,	С	VAL,		SAT,		1- <i>CLO</i>	CLO	
2 <i>COL</i>		2 <i>SAT</i>	H	ORN-	-	3 <i>SAT</i> ,				
			3	SAT		3 <i>COL</i> ,				
						4 <i>COL</i> ,	etc.			
						HAMPA	ATH			

э

Recall from Tuesday:

L	\subseteq	NL	\subseteq	Ρ	\subseteq	NP	\subseteq	PSPACE	\subseteq EXPTIME	• • •
Ψ		Ψ		Ψ		Ψ		Ψ	Ψ	
FVAL	,	PATH,	С	VAL,		SAT,		1- <i>CLO</i>	CLO	
2 <i>COL</i>	-	2 <i>SAT</i>	H	ORN-		3 <i>SAT</i> ,				
			3	SAT		3 <i>COL</i> ,				
						4 <i>COL</i> , (etc.			
						HAMPA	ΑTΗ			

Today:

- Some decision problems involving finite algebras
- How hard are they?

Let A be a finite algebra (always in a finite signature).

How do we encode A for computations? And what is its size?

Let A be a finite algebra (always in a finite signature).

How do we encode A for computations? And what is its size?

Assume $A = \{0, 1, ..., n-1\}.$

Let **A** be a finite algebra (always in a finite signature).

How do we encode A for computations? And what is its size?

Assume $A = \{0, 1, \dots, n-1\}.$

For each fundamental operation f: If arity(f) = r, then f is given by its *table*, having ...

- n^r entries;
- each entry requires log *n* bits.

The tables (as bit-streams) must be separated from each other by #'s.

Let **A** be a finite algebra (always in a finite signature).

How do we encode A for computations? And what is its size?

Assume $A = \{0, 1, ..., n-1\}.$

For each fundamental operation f: If arity(f) = r, then f is given by its *table*, having ...

- n^r entries;
- each entry requires log *n* bits.

The tables (as bit-streams) must be separated from each other by #'s.

Hence the size of $\boldsymbol{\mathsf{A}}$ is

$$||\mathbf{A}|| = \sum_{\text{fund } f} \left(n^{\operatorname{arity}(f)} \log n + 1 \right).$$

$$||\mathbf{A}|| = \sum_{fund f} \left(n^{\operatorname{arity}(f)} \log n + 1 \right).$$

Define some parameters:

- R = maximum arity of the fundamental operations (assume > 0)
- T = number of fundamental operations (assume > 0).

$$||\mathbf{A}|| = \sum_{fund f} \left(n^{\operatorname{arity}(f)} \log n + 1 \right).$$

Define some parameters:

- R = maximum arity of the fundamental operations (assume > 0)
- T = number of fundamental operations (assume > 0).

Then

$$n^R \log n \leq ||\mathbf{A}|| \leq T \cdot n^R \log n + T.$$

4 / 31

$$||\mathbf{A}|| = \sum_{fund f} \left(n^{\operatorname{arity}(f)} \log n + 1 \right).$$

Define some parameters:

- R = maximum arity of the fundamental operations (assume > 0)
- T = number of fundamental operations (assume > 0).

Then

$$n^R \log n \leq ||\mathbf{A}|| \leq T \cdot n^R \log n + T.$$

In particular, if we restrict our attention to algebras with some fixed number ${\cal T}$ of operations, then

$$||\mathbf{A}|| \sim n^R \log n.$$

INPUT: a finite algebra A.

1 Is A simple? Subdirectly irreducible? Directly indecomposable?

INPUT: a finite algebra A.

- **1** Is A simple? Subdirectly irreducible? Directly indecomposable?
- Is A primal? Quasi-primal? Maltsev?

INPUT: a finite algebra A.

- **1** Is A simple? Subdirectly irreducible? Directly indecomposable?
- Is A primal? Quasi-primal? Maltsev?
- S Is V(A) congruence distributive? Congruence modular?

INPUT: a finite algebra A.

- **1** Is A simple? Subdirectly irreducible? Directly indecomposable?
- Is A primal? Quasi-primal? Maltsev?
- S Is V(A) congruence distributive? Congruence modular?

INPUT: two finite algebras A, B.

- Is $\mathbf{A} \cong \mathbf{B}$?
- Is $A \in V(B)$

INPUT: a finite algebra A.

- **1** Is A simple? Subdirectly irreducible? Directly indecomposable?
- Is A primal? Quasi-primal? Maltsev?
- S Is V(A) congruence distributive? Congruence modular?

INPUT: two finite algebras A, B.

- Is $A \cong B$?
- Is A ∈ V(B)

INPUT: A finite algebra **A** and two terms $s(\vec{x}), t(\vec{x})$.

- Does s = t have a solution in A?
- Is $s \approx t$ an identity of **A**?

INPUT: a finite algebra A.

- **1** Is A simple? Subdirectly irreducible? Directly indecomposable?
- Is A primal? Quasi-primal? Maltsev?
- S Is V(A) congruence distributive? Congruence modular?

INPUT: two finite algebras A, B.

- Is $\mathbf{A} \cong \mathbf{B}$?
- Is A ∈ V(B)

INPUT: A finite algebra **A** and two terms $s(\vec{x}), t(\vec{x})$.

- Does s = t have a solution in A?
- Is $s \approx t$ an identity of **A**?

INPUT: an operation f on a finite set.

• Does f generate a minimal clone?

INPUT: a finite algebra A.

- **1** Is A simple? Subdirectly irreducible? Directly indecomposable?
- Is A primal? Quasi-primal? Maltsev?
- S Is V(A) congruence distributive? Congruence modular?

INPUT: two finite algebras A, B.

- Is $A \cong B$?
- Is A ∈ V(B)

INPUT: A finite algebra **A** and two terms $s(\vec{x}), t(\vec{x})$.

- Does s = t have a solution in A?
- Is $s \approx t$ an identity of **A**?

INPUT: an operation f on a finite set.

Ooes f generate a minimal clone?

How hard are these problems?

Ross Willard (Waterloo)

Categories of answers

Suppose D is some decision problem involving finite algebras.

э

Categories of answers

Suppose D is some decision problem involving finite algebras.

- **1** Is there an "obvious" algorithm for *D*? What is its complexity?
 - If an obvious algorithm obviously has complexity *Y*, then we call *Y* an obvious upper bound for the complexity of *D*.

Suppose D is some decision problem involving finite algebras.

1 Is there an "obvious" algorithm for *D*? What is its complexity?

- If an obvious algorithm obviously has complexity *Y*, then we call *Y* an obvious upper bound for the complexity of *D*.
- 3 Do we know a clever (nonobvious) algorithm? Does it give a lesser complexity (relative to the spectrum L < NL < P < NP etc.)?
 - If so, call this a nonobvious upper bound.

Suppose D is some decision problem involving finite algebras.

- **1** Is there an "obvious" algorithm for *D*? What is its complexity?
 - If an obvious algorithm obviously has complexity *Y*, then we call *Y* an obvious upper bound for the complexity of *D*.
- O we know a clever (nonobvious) algorithm? Does it give a lesser complexity (relative to the spectrum L < NL < P < NP etc.)?
 If so, call this a nonobvious upper bound.
- Can we find a clever reduction of some X-complete problem to D?
 If so, this gives X as a lower bound to the complexity of D.

Suppose D is some decision problem involving finite algebras.

- **1** Is there an "obvious" algorithm for *D*? What is its complexity?
 - If an obvious algorithm obviously has complexity *Y*, then we call *Y* an obvious upper bound for the complexity of *D*.
- Oo we know a clever (nonobvious) algorithm? Does it give a lesser complexity (relative to the spectrum L < NL < P < NP etc.)?
 If so, call this a nonobvious upper bound.
- Can we find a clever reduction of some X-complete problem to D?
 If so, this gives X as a lower bound to the complexity of D.

Ideally, we want to find an $X \in \{L, NL, P, NP, \ldots\}$ which is both an upper and a lower bound to the complexity of $D \ldots$

• ... i.e., such that D is X-complete.

Subalgebra Membership Problem (SUB-MEM)

INPUT:

- An algebra **A**.
- A set $S \subseteq A$.
- An element $b \in A$.

QUESTION: Is $b \in Sg^{\mathbf{A}}(S)$?

How hard is SUB-MEM?

7 / 31

Algorithm: INPUT: **A**, *S*, *b*. $S_0 := S$ For i = 1, ..., n (:= |A|) $S_i := S_{i-1}$ For each operation f (of arity r) For each $(a_1, ..., a_r) \in (S_{i-1})^r$ $c := f(a_1, \ldots, a_r)$ $S_i := S_i \cup \{c\}.$ Next i. OUTPUT: whether $b \in S_n$.

Algorithm: INPUT: **A**, *S*, *b*. $S_0 := S$ For i = 1, ..., n (:= |A|) n loops $S_i := S_{i-1}$ For each operation f (of arity r) For each $(a_1, ..., a_r) \in (S_{i-1})^r$ $c := f(a_1, \ldots, a_r)$ $S_i := S_i \cup \{c\}.$ Next i. OUTPUT: whether $b \in S_n$.

Algorithm: INPUT: **A**, *S*, *b*. $S_0 := S$ For i = 1, ..., n (:= |A|) n loops $S_i := S_{i-1}$ For each operation f (of arity r) T operations For each $(a_1, ..., a_r) \in (S_{i-1})^r$ $< n^r$ instances $c := f(a_1, \ldots, a_r)$ $S_i := S_i \cup \{c\}.$ Next i. OUTPUT: whether $b \in S_n$.

Algorithm:
INPUT:
$$\mathbf{A}, S, b.$$

 $S_0 := S$
For $i = 1, \dots, n$ (:= $|A|$)
 $S_i := S_{i-1}$ n loopsFor each operation f (of arity r)
For each $(a_1, \dots, a_r) \in (S_{i-1})^r$
 $C := f(a_1, \dots, a_r)$
 $S_i := S_i \cup \{c\}.$
Next $i.$
OUTPUT: whether $b \in S_n$. n loops
 r operations
 $\leq n^r$ instances
 $n (\sum_f n^{\operatorname{ar}(f)}) \leq n ||\mathbf{A}||$ steps

э

8 / 31

So $SUB-MEM \in TIME(N^2)$, or maybe $TIME(N^{4+\epsilon})$, or surely in $TIME(N^{55})$, and so we get the "obvious" upper bound:

 $SUB-MEM \in P$.

So $SUB-MEM \in TIME(N^2)$, or maybe $TIME(N^{4+\epsilon})$, or surely in $TIME(N^{55})$, and so we get the "obvious" upper bound:

 $SUB-MEM \in P$.

So $SUB-MEM \in TIME(N^2)$, or maybe $TIME(N^{4+\epsilon})$, or surely in $TIME(N^{55})$, and so we get the "obvious" upper bound:

 $SUB-MEM \in P$.

Next questions:

• Can we obtain *P* as a *lower* bound for *SUB-MEM*?

So $SUB-MEM \in TIME(N^2)$, or maybe $TIME(N^{4+\epsilon})$, or surely in $TIME(N^{55})$, and so we get the "obvious" upper bound:

 $SUB-MEM \in P$.

- Can we obtain *P* as a *lower* bound for *SUB-MEM*?
- What was that *P*-complete problem again?...

So $SUB-MEM \in TIME(N^2)$, or maybe $TIME(N^{4+\epsilon})$, or surely in $TIME(N^{55})$, and so we get the "obvious" upper bound:

 $SUB-MEM \in P$.

- Can we obtain *P* as a *lower* bound for *SUB-MEM*?
- What was that *P*-complete problem again?...(CVAL or HORN-3SAT)

So $SUB-MEM \in TIME(N^2)$, or maybe $TIME(N^{4+\epsilon})$, or surely in $TIME(N^{55})$, and so we get the "obvious" upper bound:

 $SUB-MEM \in P$.

- Can we obtain *P* as a *lower* bound for *SUB-MEM*?
- What was that P-complete problem again?...(CVAL or HORN-3SAT)
- Can we show HORN-3SAT \leq_L SUB-MEM?

So $SUB-MEM \in TIME(N^2)$, or maybe $TIME(N^{4+\epsilon})$, or surely in $TIME(N^{55})$, and so we get the "obvious" upper bound:

 $SUB-MEM \in P$.

Next questions:

- Can we obtain P as a *lower* bound for SUB-MEM?
- What was that P-complete problem again?...(CVAL or HORN-3SAT)
- Can we show HORN-3SAT \leq_L SUB-MEM?

Theorem (N. Jones & W. Laaser, '77)

Yes.

In other words, SUB-MEM is P-complete.

1-SUB-MEM

This is the restriction of *SUB-MEM* to unary algebras (all fundamental operations are unary). I.e.,

INPUT: A *unary* algebra **A**, a set $S \subseteq A$, and $b \in A$.

QUESTION: Is $b \in Sg^{\mathbf{A}}(S)$?

1-SUB-MEM

This is the restriction of *SUB-MEM* to unary algebras (all fundamental operations are unary). I.e.,

INPUT: A *unary* algebra A, a set $S \subseteq A$, and $b \in A$. QUESTION: Is $b \in Sg^{A}(S)$?

Here is a nondeterministic log-space algorithm showing 1-SUB-MEM \in NL:

NALGORITHM: guess a sequence c_0, c_1, \ldots, c_k such that

- $c_0 \in S$
- For each i < k, $c_{i+1} = f_j(c_i)$ for some fundamental operation f_j
- $c_k = b$.

10 / 31

1-SUB-MEM

This is the restriction of *SUB-MEM* to unary algebras (all fundamental operations are unary). I.e.,

INPUT: A *unary* algebra A, a set $S \subseteq A$, and $b \in A$. QUESTION: Is $b \in Sg^{A}(S)$?

Here is a nondeterministic log-space algorithm showing 1-SUB-MEM \in NL:

NALGORITHM: guess a sequence c_0, c_1, \ldots, c_k such that

• $c_0 \in S$

• For each i < k, $c_{i+1} = f_j(c_i)$ for some fundamental operation f_j

•
$$c_k = b$$
.

Theorem (N. Jones, Y. Lien & W. Laaser, '76)

1-SUB-MEM is NL-complete.

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

• Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{\mathbf{A}}(S)$.

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{\mathbf{A}}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{A}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.
 - (Bonus: prove that it is in NL.)

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{A}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.
 - (Bonus: prove that it is in NL.)

2 Given **A** and $S \subseteq A$, determine whether S is a subalgebra of **A**.

$$S \in \mathrm{Sub}(\mathsf{A}) \iff \forall a \in A(a \in \mathrm{Sg}^{\mathsf{A}}(S) \to a \in S).$$

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{\mathsf{A}}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.
 - (Bonus: prove that it is in NL.)

2 Given **A** and $S \subseteq A$, determine whether S is a subalgebra of **A**.

$$S \in \mathrm{Sub}(\mathsf{A}) \iff \forall \mathsf{a} \in \mathsf{A}(\mathsf{a} \in \mathrm{Sg}^{\mathsf{A}}(S) \to \mathsf{a} \in S).$$

③ Given A and $\theta \in Eqv(A)$, determine whether θ is a congruence of A.

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{\mathsf{A}}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.
 - (Bonus: prove that it is in NL.)

2 Given **A** and $S \subseteq A$, determine whether S is a subalgebra of **A**.

$$S \in \mathrm{Sub}(\mathsf{A}) \iff \forall a \in A(a \in \mathrm{Sg}^{\mathsf{A}}(S) \to a \in S).$$

3 Given **A** and $\theta \in Eqv(A)$, determine whether θ is a congruence of **A**.

(4) Given **A** and $h : A \rightarrow A$, determine whether h is an endomorphism.

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{\mathsf{A}}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.
 - (Bonus: prove that it is in NL.)

2 Given **A** and $S \subseteq A$, determine whether S is a subalgebra of **A**.

$$S \in \mathrm{Sub}(\mathsf{A}) \iff \forall a \in A(a \in \mathrm{Sg}^{\mathsf{A}}(S) \to a \in S).$$

3 Given **A** and $\theta \in Eqv(A)$, determine whether θ is a congruence of **A**.

(4) Given **A** and $h : A \rightarrow A$, determine whether h is an endomorphism.

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{A}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.
 - (Bonus: prove that it is in NL.)

2 Given **A** and $S \subseteq A$, determine whether S is a subalgebra of **A**.

$$S \in \mathrm{Sub}(\mathsf{A}) \iff \forall a \in A(a \in \mathrm{Sg}^{\mathsf{A}}(S) \to a \in S).$$

3 Given **A** and $\theta \in Eqv(A)$, determine whether θ is a congruence of **A**.

- **(a)** Given **A** and $h : A \rightarrow A$, determine whether h is an endomorphism.
- Given A, determine whether A is simple.

$$\mathsf{A} \text{ simple } \Leftrightarrow \forall a, b, c, d[c \neq d \rightarrow (a, b) \in \mathrm{Cg}^{\mathsf{A}}(c, d)].$$

Using SUB-MEM, we can deduce that many more problems are tractable (in P).

- Given A and $S \cup \{(a, b)\} \subseteq A^2$, determine whether $(a, b) \in Cg^{\mathbf{A}}(S)$.
 - Easy exercise: show this problem is $\leq_P SUB-MEM$.
 - (Bonus: prove that it is in NL.)

2 Given **A** and $S \subseteq A$, determine whether S is a subalgebra of **A**.

$$S \in \mathrm{Sub}(\mathsf{A}) \iff \forall \mathsf{a} \in \mathsf{A}(\mathsf{a} \in \mathrm{Sg}^{\mathsf{A}}(S) \to \mathsf{a} \in S).$$

③ Given **A** and $\theta \in Eqv(A)$, determine whether θ is a congruence of **A**.

9 Given **A** and $h : A \rightarrow A$, determine whether h is an endomorphism.

Given A, determine whether A is simple.

$$\mathsf{A} \text{ simple } \Leftrightarrow \forall a, b, c, d[c \neq d \rightarrow (a, b) \in \mathrm{Cg}^{\mathsf{A}}(c, d)].$$

o Given **A**, determine whether **A** is abelian.

 $\textbf{A} \text{ abelian } \Leftrightarrow \forall a, c, d[c \neq d \rightarrow ((a, a), (c, d)) \notin \operatorname{Cg}^{\textbf{A}^2}(0_A)].$

INPUT: An algebra **A** and an operation $g: A^k \rightarrow A$.

QUESTION: Is $g \in \text{Clo } \mathbf{A}$?

3. 3

INPUT: An algebra **A** and an operation $g: A^k \rightarrow A$.

QUESTION: Is $g \in \text{Clo } \mathbf{A}$?

Obvious algorithm: Determine whether $g \in \operatorname{Sg}^{\mathbf{A}^{(A^k)}}(pr_1^k, \dots, pr_k^k)$.

The running time is bounded by a polynomial in $||\mathbf{A}^{(A^k)}||$.

INPUT: An algebra **A** and an operation $g: A^k \to A$.

QUESTION: Is $g \in \text{Clo } \mathbf{A}$?

Obvious algorithm: Determine whether $g \in \operatorname{Sg}^{\mathbf{A}^{(A^k)}}(pr_1^k, \dots, pr_k^k)$.

The running time is bounded by a polynomial in $||\mathbf{A}^{(A^k)}||$. Can show

$$\log ||\mathbf{A}^{(A^k)}|| \le n^k ||\mathbf{A}|| \le (||g|| + ||\mathbf{A}||)^2.$$

Hence the running time is bounded by the exponential of a polynomial in the size of the input (\mathbf{A}, g) . I.e., $CLO \in EXPTIME$.

INPUT: An algebra **A** and an operation $g: A^k \rightarrow A$.

QUESTION: Is $g \in \text{Clo } \mathbf{A}$?

Obvious algorithm: Determine whether $g \in \operatorname{Sg}^{\mathbf{A}^{(A^k)}}(pr_1^k, \dots, pr_k^k)$.

The running time is bounded by a polynomial in $||\mathbf{A}^{(A^k)}||$. Can show

$$\log ||\mathbf{A}^{(\mathbf{A}^k)}|| \le n^k ||\mathbf{A}|| \le (||g|| + ||\mathbf{A}||)^2.$$

Hence the running time is bounded by the exponential of a polynomial in the size of the input (\mathbf{A}, g) . I.e., $CLO \in EXPTIME$.

By reducing a known *EXPTIME*-complete problem to *CLO*, Friedman and Bergman *et al* showed:

Theorem

CLO is EXPTIME-complete.

The Primal Algebra Problem (*PRIMAL*)

INPUT: a finite algebra A.

QUESTION: Is A primal?

∃ ▶ ∢

э

The Primal Algebra Problem (PRIMAL)

INPUT: a finite algebra A.

QUESTION: Is A primal?

The obvious algorithm is actually a reduction to CLO.

For a finite set A, let g_A be your favorite binary Sheffer operation on A.

Define $f : PRIMAL_{inp} \rightarrow CLO_{inp}$ by

 $f: \mathbf{A} \mapsto (\mathbf{A}, g_{\mathbf{A}}).$

The Primal Algebra Problem (PRIMAL)

INPUT: a finite algebra A.

QUESTION: Is A primal?

The obvious algorithm is actually a reduction to CLO.

For a finite set A, let g_A be your favorite binary Sheffer operation on A. Define $f : PRIMAL_{inp} \rightarrow CLO_{inp}$ by

 $f: \mathbf{A} \mapsto (\mathbf{A}, g_{\mathbf{A}}).$

Since

which gives the obvious upper bound

 $PRIMAL \in EXPTIME.$

Ross Willard (Waterloo)

13 / 31

But testing primality of algebras is special. Maybe there is a better, "nonobvious" algorithm?

(E.g., using Rosenberg's classification?)

But testing primality of algebras is special. Maybe there is a better, "nonobvious" algorithm?

(E.g., using Rosenberg's classification?)

Open Problem 1.

Determine the complexity of PRIMAL.

- Is it in *PSPACE*? (= *NPSPACE*)
- Is it *EXPTIME*-complete? (\Leftrightarrow *CLO* \leq_P *PRIMAL*)

MALTSEV

INPUT: a finite algebra A.

QUESTION: Does A have a Maltsev term?

The obvious upper bound is *NEXPTIME*, since *MALTSEV* is a projection of

$$\{(\mathbf{A}, p) : \underbrace{p \in \operatorname{Clo} \mathbf{A}}_{EXPTIME} \text{ and } \underbrace{p \text{ is a Maltsev operation}}_{P} \}$$

a problem in EXPTIME.

MALTSEV

INPUT: a finite algebra A.

QUESTION: Does A have a Maltsev term?

The obvious upper bound is *NEXPTIME*, since *MALTSEV* is a projection of

$$\{(\mathbf{A}, p) : \underbrace{p \in \operatorname{Clo} \mathbf{A}}_{EXPTIME} \text{ and } \underbrace{p \text{ is a Maltsev operation}}_{P} \},\$$

a problem in EXPTIME.

But a slightly less obvious algorithm puts *MALTSEV* in *EXPTIME*. Use the fact that if x, y name the two projections $A^2 \rightarrow A$, then **A** has a Maltsev term iff

$$(y,x) \in \operatorname{Sg}^{\mathbf{A}^{(A^2)}}((x,x),(x,y),(y,y))$$

(which is decidable in EXPTIME).

Similar characterizations give *EXPTIME* as an upper bound to the following:

Some problems in EXPTIME

Given A:

- Does A have a majority term?
- Ooes A have a semilattice term?
- 3 Does A have Jónsson terms?
- Ooes A have Gumm terms?
- Does A have terms equivalent to V(A) being congruence meet-semidistributive?
- 6 Etc. etc.

Are these problems easier than EXPTIME, or EXPTIME-complete?

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given **A**,

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given **A**,

• Does A have Jónsson terms?

17 / 31

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given **A**,

- Does A have Jónsson terms?
- **2** Does **A** have Gumm terms?

17 / 31

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given **A**,

- Does A have Jónsson terms?
- **2** Does **A** have Gumm terms?
- Solution Is V(A) congruence meet-semidistributive?

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given **A**,

- Does A have Jónsson terms?
- **2** Does **A** have Gumm terms?
- Solution Is V(A) congruence meet-semidistributive?
- Ooes A have a semilattice term?

17 / 31

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given **A**,

- Does A have Jónsson terms?
- **2** Does **A** have Gumm terms?
- Is V(A) congruence meet-semidistributive?
- Ooes A have a semilattice term?
- **o** Does **A** have any nontrivial idempotent term?

Theorem (R. Freese, M. Valeriote, '0?)

The following problems are all EXPTIME-complete: Given **A**,

- Does A have Jónsson terms?
- **2** Does **A** have Gumm terms?
- Is V(A) congruence meet-semidistributive?
- Ooes A have a semilattice term?
- **o** Does **A** have any nontrivial idempotent term?
 - idempotent means "satisfies $f(x, x, ..., x) \approx x$."
 - nontrivial means "other than x."

Proof.

Freese and Valeriote give a construction which, given an input $\Gamma = (\mathbf{A}, g)$ to *CLO*, produces an algebra \mathbf{B}_{Γ} such that:

- $g \in \text{Clo } \mathbf{A} \Rightarrow$ there is a flat semilattice order on B_{Γ} such that $(x \wedge y) \lor (x \wedge z)$ is a term operation of \mathbf{B}_{Γ} .
- $g \notin \operatorname{Clo} A \Rightarrow B_{\Gamma}$ has no nontrivial idempotent term operations.

Proof.

Freese and Valeriote give a construction which, given an input $\Gamma = (\mathbf{A}, g)$ to *CLO*, produces an algebra \mathbf{B}_{Γ} such that:

- $g \in \text{Clo } \mathbf{A} \Rightarrow$ there is a flat semilattice order on B_{Γ} such that $(x \wedge y) \lor (x \wedge z)$ is a term operation of \mathbf{B}_{Γ} .
- $g \notin \operatorname{Clo} A \Rightarrow B_{\Gamma}$ has no nontrivial idempotent term operations.

Moreover, the function $f : \Gamma \mapsto B_{\Gamma}$ is easily computed (in **P**).

Hence f is simultaneously a P-reduction of CLO to all the problems in the statement of the theorem.

Open Problem 2.

Are the following easier than EXPTIME, or EXPTIME-complete?

- Determining if **A** has a majority operation.
- Determining if A has a Maltsev operation (MALTSEV).

Open Problem 2.

Are the following easier than EXPTIME, or EXPTIME-complete?

- Determining if **A** has a majority operation.
- Determining if A has a Maltsev operation (MALTSEV).

If MALTSEV is easier than EXPTIME, then so is PRIMAL, since

Open Problem 2.

Are the following easier than EXPTIME, or EXPTIME-complete?

- Determining if **A** has a majority operation.
- Determining if A has a Maltsev operation (MALTSEV).

If MALTSEV is easier than EXPTIME, then so is PRIMAL, since

Theorem	
 A is primal iff: A has no proper subalgebras, A is simple, A is rigid, A is not abelian, and A is Maltsev. 	} in P
	(ロ) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三

19 / 31

Surprisingly, the previous problems become significantly easier when restricted to *idempotent* algebras.

Theorem (Freese & Valeriote, '0?)

The following problems for *idempotent* algebras are in **P**:

- A has a majority term.
- A has Jónsson terms.
- A has Gumm terms.
- V(A) is congruence meet-semidistributive.
- A is Maltsev.
- $V(\mathbf{A})$ is congruence k-permutable for some k.

20 / 31

Surprisingly, the previous problems become significantly easier when restricted to *idempotent* algebras.

Theorem (Freese & Valeriote, '0?)

The following problems for *idempotent* algebras are in **P**:

- A has a majority term.
- A has Jónsson terms.
- A has Gumm terms.
- V(A) is congruence meet-semidistributive.
- A is Maltsev.
- $V(\mathbf{A})$ is congruence k-permutable for some k.

Proof.

Fiendishly nonobvious algorithms using tame congruence theory.

Variety Membership Problem (VAR-MEM)

INPUT: two finite algebras A, B in the same signature.

QUESTION: Is $A \in V(B)$?

The obvious algorithm (J. Kalicki, '52): determine whether the identity map on A extends to a homomorphism $F_{V(B)}(A) \rightarrow A$.

Variety Membership Problem (VAR-MEM)

INPUT: two finite algebras A, B in the same signature.

QUESTION: Is $A \in V(B)$?

The obvious algorithm (J. Kalicki, '52): determine whether the identity map on A extends to a homomorphism $F_{V(B)}(A) \rightarrow A$.

Theorem (C. Bergman & G. Slutzki, '00)

The obvious algorithm puts VAR-MEM in 2-EXPTIME.

Variety Membership Problem (VAR-MEM)

INPUT: two finite algebras A, B in the same signature.

QUESTION: Is $A \in V(B)$?

The obvious algorithm (J. Kalicki, '52): determine whether the identity map on A extends to a homomorphism $F_{V(B)}(A) \rightarrow A$.

Theorem (C. Bergman & G. Slutzki, '00)

The obvious algorithm puts VAR-MEM in 2-EXPTIME.

2-EXPTIME
$$\stackrel{\text{def}}{=} \bigcup_{k=1}^{\infty} TIME(2^{(2^{O(N^k)})})$$

 \cdots NEXPTIME \subseteq EXPSPACE \subseteq 2-EXPTIME \subseteq N(2-EXPTIME) \cdots

21 / 31

Image: Image:

What is the "real" complexity of VAR-MEM?

Theorem (Z. Székely, thesis '00)

VAR-MEM is NP-hard (i.e., $3SAT \leq_P VAR-MEM$).

Theorem (M. Kozik, thesis '04)

VAR-MEM is EXPSPACE-hard.

э

What is the "real" complexity of VAR-MEM?

Theorem (Z. Székely, thesis '00)

VAR-MEM is NP-hard (i.e., $3SAT \leq_P VAR-MEM$).

Theorem (M. Kozik, thesis '04)

VAR-MEM is EXPSPACE-hard.

Theorem (M. Kozik, '0?)

VAR-MEM is 2-EXPTIME-hard and therefore 2-EXPTIME-complete. Moreover, there exists a specific finite algebra **B** such that the subproblem:

INPUT: a finite algebra A in the same signature as B.

QUESTION: Is $A \in V(B)$

is 2-EXPTIME-complete.

Ross Willard (Waterloo)

The Equivalence of Terms problem (*EQUIV-TERM*) INPUT:

- A finite algebra A.
- Two terms $s(\vec{x}), t(\vec{x})$ in the signature of **A**.

QUESTION: Is $s(\vec{x}) \approx t(\vec{x})$ identically true in A?

It is convenient to name the *negation* of this problem:

The Inequivalence of Terms problem (*INEQUIV-TERM*)

INPUT: (same)

QUESTION: Does $s(\vec{x}) \neq t(\vec{x})$ have a solution in **A**?

How hard are these problems?

3. 3

On the other hand, and equally obviously, $SAT \leq_P INEQUIV\text{-}TERM$. (Map $\varphi \mapsto (\mathbf{2}_{BA}, \varphi, \mathbf{0})$.)

э.

On the other hand, and equally obviously, $SAT \leq_P INEQUIV\text{-}TERM$. (Map $\varphi \mapsto (\mathbf{2}_{BA}, \varphi, \mathbf{0})$.)

Hence INEQUIV-TERM is obviously NP-complete.

EQUIV-TERM, being its negation, is said to be co-NP-complete.

On the other hand, and equally obviously, $SAT \leq_P INEQUIV\text{-}TERM$. (Map $\varphi \mapsto (\mathbf{2}_{BA}, \varphi, \mathbf{0})$.)

Hence INEQUIV-TERM is obviously NP-complete.

EQUIV-TERM, being its negation, is said to be co-NP-complete.

Definition

- Co-NP is the class of problems D whose negation $\neg D$ is in NP.
- A problem D is co-NP-complete if its negation ¬D is NP-complete, or equivalently, if D is in the top ≡_P-class of co-NP.

Done. End of story. Boring.

For each fixed finite algebra A we can pose the subproblem for \underline{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of **A**.

QUESTION: (same).

For each fixed finite algebra A we can pose the subproblem for \underline{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of **A**.

QUESTION: (same).

The following are obviously obvious:

For each fixed finite algebra A we can pose the subproblem for \underline{A} :

EQUIV-TERM(A)

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of **A**.

QUESTION: (same).

The following are obviously obvious:

• EQUIV-TERM(A) is in co-NP for any algebra A.

For each fixed finite algebra A we can pose the subproblem for \underline{A} :

$EQUIV-TERM(\mathbf{A})$

INPUT: two terms $s(\vec{x}), t(\vec{x})$ in the signature of **A**. QUESTION: (same).

The following are obviously obvious:

- EQUIV-TERM(A) is in co-NP for any algebra A.
- EQUIV-TERM(2_{BA}) is co-NP-complete. (Hint: $\varphi \mapsto (\varphi, 0)$.)

For each fixed finite algebra A we can pose the subproblem for \underline{A} :

$EQUIV-TERM(\mathbf{A})$

```
INPUT: two terms s(\vec{x}), t(\vec{x}) in the signature of A.
QUESTION: (same).
```

The following are obviously obvious:

- EQUIV-TERM(A) is in co-NP for any algebra A.
- EQUIV-TERM($\mathbf{2}_{BA}$) is co-NP-complete. (Hint: $\varphi \mapsto (\varphi, 0)$.)
- EQUIV-TERM(A) is in P when A is nice, say, a vector space or a set.

For each fixed finite algebra A we can pose the subproblem for \underline{A} :

$EQUIV-TERM(\mathbf{A})$

```
INPUT: two terms s(\vec{x}), t(\vec{x}) in the signature of A.
QUESTION: (same).
```

The following are obviously obvious:

- EQUIV-TERM(A) is in co-NP for any algebra A.
- EQUIV-TERM(2_{BA}) is co-NP-complete. (Hint: $\varphi \mapsto (\varphi, 0)$.)
- EQUIV-TERM(A) is in P when A is nice, say, a vector space or a set.

Problem: for which finite algebras A is EQUIV-TERM(A) NP-complete? For which A is it in P?

Ross Willard (Waterloo)

Algebra and Complexity

Třešť, September 2008 26 / 31

B> B

Theorem (H. Hunt & R. Stearns, '90; S. Burris & J. Lawrence, '93)

Let R be a finite ring.

- If \mathbf{R} is nilpotent, then EQUIV-TERM(\mathbf{R}) is in P.
- Otherwise, EQUIV-TERM(R) is co-NP-complete.

Theorem (H. Hunt & R. Stearns, '90; S. Burris & J. Lawrence, '93)

Let R be a finite ring.

- If \mathbf{R} is nilpotent, then EQUIV-TERM(\mathbf{R}) is in P.
- Otherwise, EQUIV-TERM(R) is co-NP-complete.

Theorem (Burris & Lawrence, '04; G. Horváth & C. Szabó, '06; Horváth, Lawrence, L. Mérai & Szabó, '07)

Let **G** be a finite group.

- If G is nonsolvable, then EQUIV-TERM(G) is co-NP-complete.
- If **G** is nilpotent, or of the form $Z_{m_1} \rtimes (Z_{m_2} \rtimes \cdots (Z_{m_k} \rtimes A) \cdots)$ with each m_i square-free and **A** abelian, then EQUIV-TERM(**G**) is in *P*.

Image: Image:

Theorem (H. Hunt & R. Stearns, '90; S. Burris & J. Lawrence, '93)

Let R be a finite ring.

- If \mathbf{R} is nilpotent, then EQUIV-TERM(\mathbf{R}) is in P.
- Otherwise, EQUIV-TERM(R) is co-NP-complete.

Theorem (Burris & Lawrence, '04; G. Horváth & C. Szabó, '06; Horváth, Lawrence, L. Mérai & Szabó, '07)

Let **G** be a finite group.

- $\bullet~$ If G is nonsolvable, then EQUIV-TERM(G) is co-NP-complete.
- If **G** is nilpotent, or of the form $Z_{m_1} \rtimes (Z_{m_2} \rtimes \cdots (Z_{m_k} \rtimes A) \cdots)$ with each m_i square-free and **A** abelian, then EQUIV-TERM(**G**) is in *P*.

And many partial results for **semigroups** due to e.g. Kisielewicz, Klíma, Pleshcheva, Popov, Seif, Szabó, Tesson, Therien, Vértesi, and Volkov.

Ross Willard (Waterloo)

글 🕨 🛛 글

Theorem (G. Horváth & C. Szabó)

Consider the group A_4 .

- EQUIV-TERM(A_4) is in P.
- Yet there is an algebra **A** with the same clone as **A**₄ such that EQUIV-TERM(**A**) is co-NP-complete.

This is either wonderful or scandalous.

In my opinion, this is evidence that EQUIV-TERM is the wrong problem.

Definition

A circuit (in a given signature for algebras) is an object, similar to a term, except that repeated subterms need be written only once.

Note that circuits may be significantly shorter than the terms they represent.

Fix a finite algebra A.

The Equivalence of Circuits problem (*EQUIV-CIRC*(**A**))

INPUT: two circuits $s(\vec{x}), t(\vec{x})$ in the signature of **A**.

QUESTION: is $s(\vec{x}) \approx t(\vec{x})$ identically true in **A**?

Fix a finite algebra A.

The Equivalence of Circuits problem (*EQUIV-CIRC*(**A**))

INPUT: two circuits $s(\vec{x}), t(\vec{x})$ in the signature of **A**.

QUESTION: is $s(\vec{x}) \approx t(\vec{x})$ identically true in **A**?

This is the correct problem.

- The input is presented "honestly" (computationally).
- It is invariant for algebras with the same clone.

Fix a finite algebra A.

The Equivalence of Circuits problem (*EQUIV-CIRC*(**A**))

INPUT: two circuits $s(\vec{x}), t(\vec{x})$ in the signature of **A**.

QUESTION: is $s(\vec{x}) \approx t(\vec{x})$ identically true in **A**?

This is the correct problem.

- The input is presented "honestly" (computationally).
- It is invariant for algebras with the same clone.

Open Problem 3. For which finite algebras A is *EQUIV-CIRC*(A) *NP*-complete? For which A is it in *P*?

Ross Willard (Waterloo)

Relational Clone Membership (RCLO)

INPUT:

- A finite relational structure M.
- A finitary relation $R \subseteq M^k$.

QUESTION: Is $R \in Inv Pol(M)$?

Relational Clone Membership (RCLO)

INPUT:

- A finite relational structure M.
- A finitary relation $R \subseteq M^k$.

QUESTION: Is $R \in Inv Pol(M)$?

A slightly nonobvious characterization gives *NEXPTIME* as an upper bound. For a lower bound, we have:

Theorem (W, '0?)

RCLO is EXPTIME-hard.

Relational Clone Membership (RCLO)

INPUT:

- A finite relational structure M.
- A finitary relation $R \subseteq M^k$.

QUESTION: Is $R \in Inv Pol(M)$?

A slightly nonobvious characterization gives *NEXPTIME* as an upper bound. For a lower bound, we have:

Theorem (W, '0?)

RCLO is EXPTIME-hard.

Open Problem 4.

Is RCLO in EXPTIME? Is it NEXPTIME-complete?

Ross Willard (Waterloo)

Algebra and Complexity

Třešť, September 2008 30 / 31

Consider the following problem associated to B:

A problem

INPUT: a finite structure **A** in the same signature as **B**.

QUESTION: Is there a homomorphism $h : \mathbf{A} \to \mathbf{B}$?

This problem is called $CSP(\mathbf{B})$.

Consider the following problem associated to B:

A problem

INPUT: a finite structure **A** in the same signature as **B**.

QUESTION: Is there a homomorphism $h : \mathbf{A} \rightarrow \mathbf{B}$?

This problem is called CSP(B).

Obviously $CSP(\mathbf{B}) \in NP$ for any **B**.

Consider the following problem associated to B:

A problem

INPUT: a finite structure **A** in the same signature as **B**.

QUESTION: Is there a homomorphism $h : \mathbf{A} \rightarrow \mathbf{B}$?

This problem is called $CSP(\mathbf{B})$.

Obviously $CSP(\mathbf{B}) \in NP$ for any **B**.

If K_3 is the triangle graph, then $CSP(K_3) = 3COL$, so is *NP*-complete in this case. If **G** is a bipartite graph, then then $CSP(\mathbf{G}) \in P$.

Consider the following problem associated to B:

A problem

INPUT: a finite structure **A** in the same signature as **B**.

QUESTION: Is there a homomorphism $h : \mathbf{A} \rightarrow \mathbf{B}$?

This problem is called $CSP(\mathbf{B})$.

Obviously $CSP(\mathbf{B}) \in NP$ for any **B**.

If K_3 is the triangle graph, then $CSP(K_3) = 3COL$, so is *NP*-complete in this case. If **G** is a bipartite graph, then then $CSP(\mathbf{G}) \in P$.

CSP Classification Problem

For which finite relational structures **B** is CSP(B) in *P*? For which is it *NP*-complete?

Ross Willard (Waterloo)