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Encoding finite algebras: size matters

Let A be a finite algebra (always in a finite signature).

How do we encode A for computations? And what is its size?

Assume A = {0, 1, . . . , n−1}.

For each fundamental operation f : If arity(f ) = r , then f is given by its
table, having . . .

nr entries;
each entry requires log n bits.

The tables (as bit-streams) must be separated from each other by #’s.

Hence the size of A is

||A|| =
∑

fund f

(
narity(f ) log n + 1

)
.
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Size of an algebra

||A|| =
∑

fund f

(
narity(f ) log n + 1

)
.

Define some parameters:

R = maximum arity of the fundamental operations (assume > 0)
T = number of fundamental operations (assume > 0).

Then
nR log n ≤ ||A|| ≤ T ·nR log n + T .

In particular, if we restrict our attention to algebras with some fixed
number T of operations, then

||A|| ∼ nR log n.

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 4 / 31



Size of an algebra

||A|| =
∑

fund f

(
narity(f ) log n + 1

)
.

Define some parameters:

R = maximum arity of the fundamental operations (assume > 0)
T = number of fundamental operations (assume > 0).

Then
nR log n ≤ ||A|| ≤ T ·nR log n + T .

In particular, if we restrict our attention to algebras with some fixed
number T of operations, then

||A|| ∼ nR log n.

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 4 / 31



Size of an algebra

||A|| =
∑

fund f

(
narity(f ) log n + 1

)
.

Define some parameters:

R = maximum arity of the fundamental operations (assume > 0)
T = number of fundamental operations (assume > 0).

Then
nR log n ≤ ||A|| ≤ T ·nR log n + T .

In particular, if we restrict our attention to algebras with some fixed
number T of operations, then

||A|| ∼ nR log n.

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 4 / 31



Some decision problems involving algebras

INPUT: a finite algebra A.
1 Is A simple? Subdirectly irreducible? Directly indecomposable?

2 Is A primal? Quasi-primal? Maltsev?
3 Is V(A) congruence distributive? Congruence modular?

INPUT: two finite algebras A,B.
4 Is A ∼= B?
5 Is A ∈ V(B)

INPUT: A finite algebra A and two terms s(~x), t(~x).
6 Does s = t have a solution in A?
7 Is s ≈ t an identity of A?

INPUT: an operation f on a finite set.
8 Does f generate a minimal clone?

How hard are these problems?
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Categories of answers

Suppose D is some decision problem involving finite algebras.

1 Is there an “obvious” algorithm for D? What is its complexity?
If an obvious algorithm obviously has complexity Y , then we call Y an
obvious upper bound for the complexity of D.

2 Do we know a clever (nonobvious) algorithm? Does it give a lesser
complexity (relative to the spectrum L < NL < P < NP etc.)?

If so, call this a nonobvious upper bound.

3 Can we find a clever reduction of some X -complete problem to D?
If so, this gives X as a lower bound to the complexity of D.

Ideally, we want to find an X ∈ {L, NL, P, NP, . . .} which is both an
upper and a lower bound to the complexity of D . . .

. . . i.e., such that D is X -complete.
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An easy problem: Subalgebra Membership (SUB-MEM)

Subalgebra Membership Problem (SUB-MEM)
INPUT:

An algebra A.
A set S ⊆ A.
An element b ∈ A.

QUESTION: Is b ∈ SgA(S)?

How hard is SUB-MEM?
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An obvious upper bound for SUB-MEM

Algorithm:
INPUT: A, S , b.
S0 := S
For i = 1, . . . , n ( := |A|)

Si := Si−1
For each operation f (of arity r)

For each (a1, . . . , ar ) ∈ (Si−1)
r

c := f (a1, . . . , ar )
Si := Si ∪ {c}.

Next i .
OUTPUT: whether b ∈ Sn.

n loops

T operations
≤ nr instances

Heuristics:
n

(∑
f nar(f )

)
≤

n||A|| steps
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The Complexity of SUB-MEM

So SUB-MEM ∈ TIME (N2), or maybe TIME (N4+ε), or surely in
TIME (N55), and so we get the “obvious” upper bound:

SUB-MEM ∈ P .

Next questions:
Can we obtain P as a lower bound for SUB-MEM?
What was that P-complete problem again?. . . (CVAL or HORN-3SAT )
Can we show HORN-3SAT ≤L SUB-MEM?

Theorem (N. Jones & W. Laaser, ‘77)
Yes.
In other words, SUB-MEM is P-complete.
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A variation: 1-SUB-MEM

1-SUB-MEM
This is the restriction of SUB-MEM to unary algebras (all fundamental
operations are unary). I.e.,

INPUT: A unary algebra A, a set S ⊆ A, and b ∈ A.

QUESTION: Is b ∈ SgA(S)?

Here is a nondeterministic log-space algorithm showing 1-SUB-MEM ∈ NL:

NALGORITHM: guess a sequence c0, c1, . . . , ck such that
c0 ∈ S
For each i < k , ci+1 = fj(ci ) for some fundamental operation fj
ck = b.

Theorem (N. Jones, Y. Lien & W. Laaser, ‘76)
1-SUB-MEM is NL-complete.
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Some tractable problems about algebras

Using SUB-MEM, we can deduce that many more problems are tractable
(in P).

1 Given A and S ∪ {(a, b)} ⊆ A2, determine whether (a, b) ∈ CgA(S).
Easy exercise: show this problem is ≤P SUB-MEM.
(Bonus: prove that it is in NL.)

2 Given A and S ⊆ A, determine whether S is a subalgebra of A.

S ∈ Sub(A) ⇔ ∀a ∈ A(a ∈ SgA(S) → a ∈ S).

3 Given A and θ ∈ Eqv(A), determine whether θ is a congruence of A.
4 Given A and h : A → A, determine whether h is an endomorphism.
5 Given A, determine whether A is simple.

A simple ⇔ ∀a, b, c, d [c 6= d → (a, b) ∈ CgA(c, d)].

6 Given A, determine whether A is abelian.

A abelian ⇔ ∀a, c, d [c 6= d → ((a, a), (c, d)) 6∈ CgA2
(0A)].
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Clone Membership Problem (CLO)

INPUT: An algebra A and an operation g : Ak → A.

QUESTION: Is g ∈ CloA?

Obvious algorithm: Determine whether g ∈ SgA(Ak )
(prk

1 , . . . , prk
k ).

The running time is bounded by a polynomial in ||A(Ak)||.
Can show

log ||A(Ak)|| ≤ nk ||A|| ≤ (||g ||+ ||A||)2.

Hence the running time is bounded by the exponential of a polynomial in
the size of the input (A, g). I.e., CLO ∈ EXPTIME .

By reducing a known EXPTIME -complete problem to CLO, Friedman and
Bergman et al showed:

Theorem
CLO is EXPTIME-complete.
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The Primal Algebra Problem (PRIMAL)
INPUT: a finite algebra A.

QUESTION: Is A primal?

The obvious algorithm is actually a reduction to CLO.

For a finite set A, let gA be your favorite binary Sheffer operation on A.

Define f : PRIMALinp → CLOinp by

f : A 7→ (A, gA).

Since
A is primal ⇔ gA ∈ CloA,

we have PRIMAL ≤f CLO. Clearly f is P-computable, so

PRIMAL ≤P CLO

which gives the obvious upper bound

PRIMAL ∈ EXPTIME .
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PRIMAL

But testing primality of algebras is special. Maybe there is a better,
“nonobvious” algorithm?

(E.g., using Rosenberg’s classification?)

Open Problem 1.
Determine the complexity of PRIMAL.

Is it in PSPACE? ( = NPSPACE )
Is it EXPTIME -complete? ( ⇔ CLO ≤P PRIMAL)

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 14 / 31



PRIMAL

But testing primality of algebras is special. Maybe there is a better,
“nonobvious” algorithm?

(E.g., using Rosenberg’s classification?)

Open Problem 1.
Determine the complexity of PRIMAL.

Is it in PSPACE? ( = NPSPACE )
Is it EXPTIME -complete? ( ⇔ CLO ≤P PRIMAL)

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 14 / 31



MALTSEV
INPUT: a finite algebra A.

QUESTION: Does A have a Maltsev term?

The obvious upper bound is NEXPTIME , since MALTSEV is a projection
of

{ (A, p) : p ∈ CloA︸ ︷︷ ︸
EXPTIME

and p is a Maltsev operation︸ ︷︷ ︸
P

},

a problem in EXPTIME .

But a slightly less obvious algorithm puts MALTSEV in EXPTIME . Use
the fact that if x , y name the two projections A2 → A, then A has a
Maltsev term iff

(y , x) ∈ SgA(A2)
((x , x), (x , y), (y , y))

(which is decidable in EXPTIME ).
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Similar characterizations give EXPTIME as an upper bound to the
following:

Some problems in EXPTIME
Given A:

1 Does A have a majority term?
2 Does A have a semilattice term?
3 Does A have Jónsson terms?
4 Does A have Gumm terms?
5 Does A have terms equivalent to V(A) being congruence

meet-semidistributive?
6 Etc. etc.

Are these problems easier than EXPTIME , or EXPTIME -complete?
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Freese & Valeriote’s theorem

For some of these problems we have an answer:

Theorem (R. Freese, M. Valeriote, ‘0?)
The following problems are all EXPTIME-complete:
Given A,

1 Does A have Jónsson terms?
2 Does A have Gumm terms?
3 Is V(A) congruence meet-semidistributive?
4 Does A have a semilattice term?
5 Does A have any nontrivial idempotent term?

idempotent means “satisfies f (x , x , . . . , x) ≈ x.”
nontrivial means “other than x.”
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Freese & Valeriote’s theorem

Proof.
Freese and Valeriote give a construction which, given an input Γ = (A, g)
to CLO, produces an algebra BΓ such that:

g ∈ CloA ⇒ there is a flat semilattice order on BΓ such that
(x ∧ y) ∨ (x ∧ z) is a term operation of BΓ.
g 6∈ Clo A ⇒ BΓ has no nontrivial idempotent term operations.

Moreover, the function f : Γ 7→ BΓ is easily computed (in P).

Hence f is simultaneously a P-reduction of CLO to all the problems in the
statement of the theorem.
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Open Problem 2.
Are the following easier than EXPTIME , or EXPTIME -complete?

Determining if A has a majority operation.
Determining if A has a Maltsev operation (MALTSEV ).

If MALTSEV is easier than EXPTIME , then so is PRIMAL, since

Theorem

A is primal iff:
A has no proper subalgebras,
A is simple,
A is rigid,
A is not abelian, and
A is Maltsev.

 in P

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 19 / 31



Open Problem 2.
Are the following easier than EXPTIME , or EXPTIME -complete?

Determining if A has a majority operation.
Determining if A has a Maltsev operation (MALTSEV ).

If MALTSEV is easier than EXPTIME , then so is PRIMAL, since

Theorem

A is primal iff:
A has no proper subalgebras,
A is simple,
A is rigid,
A is not abelian, and
A is Maltsev.

 in P

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 19 / 31



Open Problem 2.
Are the following easier than EXPTIME , or EXPTIME -complete?

Determining if A has a majority operation.
Determining if A has a Maltsev operation (MALTSEV ).

If MALTSEV is easier than EXPTIME , then so is PRIMAL, since

Theorem

A is primal iff:
A has no proper subalgebras,
A is simple,
A is rigid,
A is not abelian, and
A is Maltsev.

 in P

Ross Willard (Waterloo) Algebra and Complexity Třešť, September 2008 19 / 31



Surprisingly, the previous problems become significantly easier when
restricted to idempotent algebras.

Theorem (Freese & Valeriote, ‘0?)
The following problems for idempotent algebras are in P:

1 A has a majority term.
2 A has Jónsson terms.
3 A has Gumm terms.
4 V (A) is congruence meet-semidistributive.
5 A is Maltsev.
6 V (A) is congruence k-permutable for some k.

Proof.
Fiendishly nonobvious algorithms using tame congruence theory.
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Variety Membership Problem (VAR-MEM)
INPUT: two finite algebras A,B in the same signature.

QUESTION: Is A ∈ V(B)?

The obvious algorithm (J. Kalicki, ‘52): determine whether the identity
map on A extends to a homomorphism FV(B)(A) → A.

Theorem (C. Bergman & G. Slutzki, ‘00)
The obvious algorithm puts VAR-MEM in 2-EXPTIME.

2-EXPTIME def
=

∞⋃
k=1

TIME (2(2O(Nk )))

· · ·NEXPTIME ⊆ EXPSPACE ⊆ 2-EXPTIME ⊆ N(2-EXPTIME ) · · ·
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What is the “real” complexity of VAR-MEM?

Theorem (Z. Székely, thesis ‘00)
VAR-MEM is NP-hard (i.e., 3SAT ≤P VAR-MEM).

Theorem (M. Kozik, thesis ‘04)
VAR-MEM is EXPSPACE-hard.

Theorem (M. Kozik, ‘0?)
VAR-MEM is 2-EXPTIME-hard and therefore 2-EXPTIME-complete.
Moreover, there exists a specific finite algebra B such that the subproblem:

INPUT: a finite algebra A in the same signature as B.

QUESTION: Is A ∈ V(B)

is 2-EXPTIME-complete.
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The Equivalence of Terms problem (EQUIV -TERM)
INPUT:

A finite algebra A.
Two terms s(~x), t(~x) in the signature of A.

QUESTION: Is s(~x) ≈ t(~x) identically true in A?

It is convenient to name the negation of this problem:

The Inequivalence of Terms problem (INEQUIV -TERM)
INPUT: (same)

QUESTION: Does s(~x) 6= t(~x) have a solution in A?

How hard are these problems?
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Obviously INEQUIV -TERM is in NP . (Any solution ~x to s(~x) 6= t(~x)
serves as a certificate.)

On the other hand, and equally obviously, SAT ≤P INEQUIV -TERM.
(Map ϕ 7→ (2BA, ϕ, 0).)

Hence INEQUIV -TERM is obviously NP-complete.

EQUIV -TERM, being its negation, is said to be co-NP-complete.

Definition
Co-NP is the class of problems D whose negation ¬D is in NP .
A problem D is co-NP-complete if its negation ¬D is NP-complete, or
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But WAIT!!!! There’s more!!!!

For each fixed finite algebra A we can pose the subproblem for A:

EQUIV -TERM(A)

INPUT: two terms s(~x), t(~x) in the signature of A.

QUESTION: (same).

The following are obviously obvious:

EQUIV -TERM(A) is in co-NP for any algebra A.
EQUIV -TERM(2BA) is co-NP-complete. (Hint: ϕ 7→ (ϕ, 0).)
EQUIV -TERM(A) is in P when A is nice, say, a vector space or a set.

Problem: for which finite algebras A is EQUIV -TERM(A) NP-complete?
For which A is it in P?
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There are a huge number of publications in this area. Here is a sample:

Theorem (H. Hunt & R. Stearns, ‘90; S. Burris & J. Lawrence, ‘93)
Let R be a finite ring.

If R is nilpotent, then EQUIV -TERM(R) is in P.
Otherwise, EQUIV -TERM(R) is co-NP-complete.

Theorem (Burris & Lawrence, ‘04; G. Horváth & C. Szabó, ‘06;
Horváth, Lawrence, L. Mérai & Szabó, ‘07)
Let G be a finite group.

If G is nonsolvable, then EQUIV -TERM(G) is co-NP-complete.
If G is nilpotent, or of the form Zm1 o (Zm2 o · · · (Zmk o A) · · · ) with
each mi square-free and A abelian, then EQUIV -TERM(G) is in P.

And many partial results for semigroups due to e.g. Kisielewicz, Klíma,
Pleshcheva, Popov, Seif, Szabó, Tesson, Therien, Vértesi, and Volkov.
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An outrageous scandal

Theorem (G. Horváth & C. Szabó)
Consider the group A4.

EQUIV -TERM(A4) is in P.
Yet there is an algebra A with the same clone as A4 such that
EQUIV -TERM(A) is co-NP-complete.

This is either wonderful or scandalous.

In my opinion, this is evidence that EQUIV -TERM is the wrong problem.
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Definition
A circuit (in a given signature for algebras) is an object, similar to a term,
except that repeated subterms need be written only once.

Example: Let t = ((x + y) + (x + y)) + ((x + y) + (x + y)).

A circuit for t:

x y

+

+

+

Straight-line program:

v1 = x + y
v2 = v1 + v1

t = v2 + v2.

Note that circuits may be significantly shorter than the terms they
represent.
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Equivalence of Terms Problem (correct version)

Fix a finite algebra A.

The Equivalence of Circuits problem (EQUIV -CIRC (A))
INPUT: two circuits s(~x), t(~x) in the signature of A.

QUESTION: is s(~x) ≈ t(~x) identically true in A?

This is the correct problem.
The input is presented “honestly” (computationally).
It is invariant for algebras with the same clone.

Open Problem 3.
For which finite algebras A is EQUIV -CIRC (A) NP-complete? For which
A is it in P?
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Two problems for relational structures

Relational Clone Membership (RCLO)
INPUT:

A finite relational structure M.
A finitary relation R ⊆ Mk .

QUESTION: Is R ∈ Inv Pol(M)?

A slightly nonobvious characterization gives NEXPTIME as an upper
bound. For a lower bound, we have:

Theorem (W,‘0?)
RCLO is EXPTIME-hard.

Open Problem 4.
Is RCLO in EXPTIME? Is it NEXPTIME -complete?
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Fix a finite relational structure B.

Consider the following problem associated to B:

A problem
INPUT: a finite structure A in the same signature as B.

QUESTION: Is there a homomorphism h : A → B?

This problem is called CSP(B).

Obviously CSP(B) ∈ NP for any B.

If K3 is the triangle graph, then CSP(K3) = 3COL, so is NP-complete in
this case. If G is a bipartite graph, then then CSP(G) ∈ P .

CSP Classification Problem
For which finite relational structures B is CSP(B) in P? For which is it
NP-complete?
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