Andrei Krokhin - Complexity of Constraint Satisfaction

The Complexity of Constraint Satisfaction Problems

Andrei Krokhin Durham University

Tutorial, Part I - Here and Now

Two Well-Known Problems

SAT: is a given propositional formula in CNF satisfiable?

$$F = (\neg x \lor y \lor \neg z) \land (x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z)$$

LINEAR EQUATIONS: does a given system of linear equations have a solution?

$$\begin{cases} 2x + 2y + 3z = 1\\ 3x - 2y - 2z = 0\\ 5x - y + 10z = 2 \end{cases}$$

Outline

- 1. Constraints and Their Complexity: An introduction
 - The CSP and its forms
 - Complexity of CSP: A roadmap
 - Some algebra, finally ...
- 2. Universal Algebra for CSP: A general theory
- **3**. UA (and a bit of logic) for CSP: A bigger picture

CSP in AI Setting

<u>Instance</u>: (V, D, C) where

- V is a finite set of variables,
- *D* is a (finite) set of values,
- C is a set of constraints $\{C_1, \ldots, C_q\}$ where
 - each constraint C_i is a pair (\overline{s}_i, R_i) with
 - * scope \overline{s}_i a list of variables of length m_i , and
 - * relation R_i an m_i -ary relation over D

Question: is there $f: V \to D$ such that $f(\overline{s}_i) \in R_i$ for all *i*?

Some Real-World Examples of CSPs

- Drawing up timetable for a conference
- Choosing frequencies for a mobile-phone network
- Fitting a protein structure to measurements
- Laying out components on a circuit board
- Finding a DNA sequence from a set of contigs
- Scheduling a construction project

CSP in Logical Setting

Instance: a first-order formula

$$\varphi(x_1,\ldots,x_n) = R_1(\overline{s}_1) \wedge \ldots \wedge R_q(\overline{s}_q).$$

Question: is φ satisfiable?

The \overline{s}_i 's = constraint scopes \overline{s}_i

Predicates R_i = constraint relations R_i

Hence, CSP generalizes SAT. In Database Theory, CSP = Conjunctive-Query Evaluation

CSP in Combinatorial Setting

The Homomorphism Problem:

Given two finite similar relational structures, $\mathcal{A} = (A; R_1^{\mathcal{A}}, \dots, R_k^{\mathcal{A}}) \text{ and } \mathcal{B} = (B; R_1^{\mathcal{B}}, \dots, R_k^{\mathcal{B}}),$ is there a homomorphism $h : \mathcal{A} \to \mathcal{B}$?

$$\forall i \ [(a_1, \dots, a_{n_i}) \in R_i^{\mathcal{A}} \Longrightarrow (h(a_1), \dots, h(a_{n_i})) \in R_i^{\mathcal{B}}]$$

- Think of elements in \mathcal{A} as of variables. Tuples in relations in $\mathcal{A} = \text{constraint scopes } \overline{s}_i$.
- Think of elements in \mathcal{B} are values. Relations in \mathcal{B} = constraint relations R_i .

Hence, CSP generalizes GRAPH HOMOMORPHISM.

Example: 2-SAT in Hom Form

Let $R_{ab}^{\mathcal{B}} = \{0, 1\}^2 \setminus \{(a, b)\}$ and $\mathcal{B} = (\{0, 1\}; R_{00}^{\mathcal{B}}, R_{01}^{\mathcal{B}}, R_{11}^{\mathcal{B}})$. Then 2-SAT is precisely $\text{CSP}(\mathcal{B})$.

An instance of 2-SAT, say

$$F = (\neg x \lor \neg z) \land (x \lor y) \land (y \lor \neg z) \land (u \lor x) \land (x \lor \neg u) \dots$$

becomes a structure \mathcal{A} with base set $\{x, y, z, u, ...\}$ and $R_{00}^{\mathcal{A}} = \{(x, y), (u, x), ...\}$ $R_{01}^{\mathcal{A}} = \{(y, z), (x, u), ...\}$ $R_{11}^{\mathcal{A}} = \{(x, z), ...\}$

Then $h : \mathcal{A} \to \mathcal{B}$ iff h is a satisfying assignment for F.

Forms of CSP: A recap

• Variable-value

Given finite sets V (variables), D (values), and a set of constraints $\{(\overline{s}_1, R_1), \dots, (\overline{s}_q, R_q)\}$ over V, is there a function $f: V \to D$ such that $f(\overline{s}_i) \in R_i$ for all i?

• Satisfiability

Given a formula $\mathcal{P}(x_1, \ldots, x_n) = R_1(\overline{s}_1) \wedge \ldots \wedge R_q(\overline{s}_q)$ (where R_i 's are seen as predicates), is \mathcal{P} satisfiable?

• Homomorphism

Given two finite similar relational structures, $\mathcal{A} = (V; R_1^{\mathcal{A}}, \dots, R_k^{\mathcal{A}}) \text{ and } \mathcal{B} = (D; R_1^{\mathcal{B}}, \dots, R_k^{\mathcal{B}}),$ is there a homomorphism $h : \mathcal{A} \to \mathcal{B}$?

The Complexity of CSP

Fact. CSP is **NP**-complete.

Membership in **NP** is trivial.

Complete because contains 3-SAT.

Question: What restrictions make it computationally easy?

Parameterisation of CSP

With any instance of CSP one can associate two natural parameters reflecting

- 1. Which variables constrain which others, i.e.,
 - constraint scopes, or
 - query language, or
 - LHS structure \mathcal{A} (as in $\mathcal{A} \to \mathcal{B}$).
- 2. How values for the variables are constrained, i.e.,
 - constraint relations, or
 - relational database, or
 - RHS structure \mathcal{B} (as in $\mathcal{A} \to \mathcal{B}$).

Restricting LHS: "The other side"

For a class \mathbb{C} of structures, let $\text{CSP}(\mathbb{C}, -)$ denote the set of all CSP instances $(\mathcal{A}, \mathcal{B})$ with $\mathcal{A} \in \mathbb{C}$.

Example: if $\mathbb{C} = \{K_n \mid n > 0\}$ is the class of all complete graphs then $\text{CSP}(\mathbb{C}, -)$ is the CLIQUE problem (NP-c).

For any fixed \mathcal{A} , $\operatorname{CSP}(\{\mathcal{A}\}, -)$ is in **P**. Simply check each mapping $A \to B$. If |A| = k then $|B|^k$ is polynomial in $|\mathcal{B}|$. Boring.

Theorem 1 (Grohe'07) Let \mathbb{C} be an arity-bounded class of structures. Under a "reasonable" complexity-theoretic assumption, $CSP(\mathbb{C}, -)$ is in **P** iff "all structures in \mathbb{C} look like trees (when you look at \mathbb{C} from far enough)".

Restricting RHS: Constraint Languages

Fix a finite set D.

Definition 1 A constraint language is any finite set Γ of relations on D. The problem $\text{CSP}(\Gamma)$ is the restriction of CSP where all constraint relations R_i must belong to Γ .

Equivalently, fix target structure \mathcal{B} (aka template) and ask whether a given structure \mathcal{A} homomorphically maps to \mathcal{B} . Notation: $\text{CSP}(\mathcal{B}) = \{\mathcal{A} \mid \mathcal{A} \to \mathcal{B}\}.$

The structure \mathcal{B} is obtained from Γ by indexing relations. NB. For a digraph \mathcal{H} , $CSP(\mathcal{H})$ is known as \mathcal{H} -COLOURING, appears in 100s of papers + recent book by Hell & Nešetřil.

Examples

- Let $D = \{0, 1\}$ and $R = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$. If $\Gamma = \{R\}$ then $CSP(\Gamma)$ is NOT-ALL-EQUAL SAT. This problem is **NP**-complete.
- Let $D = \{0, 1\}$ and $R = \{(x, y, z) \mid y \land z \rightarrow x\}$. If $\Gamma = \{R, \{0\}, \{1\}\}$ then $CSP(\Gamma)$ is HORN 3-SAT. This problem is **P**-complete.
- Let $D = \{0, 1\}$ and $\Gamma = \{\leq, \{0\}, \{1\}\}$. Then $CSP(\Gamma)$ is the complement of PATH (i.e., UNREACHABILITY). Think: An instance is satisfiable iff it contains no path of the form $1 = x_1 \leq x_2 \leq \ldots \leq x_n = 0$. This problem is **NL**-complete.

More Examples

- If $\Gamma = \{\neq_D\}$ where \neq_D is the disequality relation on Dand |D| = k then $\text{CSP}(\Gamma)$ is GRAPH k-COLOURING. Think: elements of D are colours, variables are the nodes, and constraints $x \neq_D y$ are the edges of graph. Belongs to \mathbf{L} if $k \leq 2$, **NP**-complete for $k \geq 3$.
- Let D with |D| = p have a structure of \mathbb{Z}_p , p prime. If $\Gamma = \{R, \{0\}, \{1\}\}$ where $R = \{(x, y, z) \mid x + y = z\}$ then $\mathrm{CSP}(\Gamma)$ is (essentially) the problem of solving LINEAR EQUATIONS over \mathbb{Z}_p .

Classification Problems & The Holy Grail

Two main classification problems about problems $CSP(\Gamma)$:

- Classify CSP(Γ) w.r.t. computational complexity,
 (i.e., w.r.t. membership in a given complexity class)
- 2. Classify $CSP(\mathcal{B})$ w.r.t. descriptive complexity, (i.e., w.r.t. definability in a given logic)

Conjecture 1 (Feder, Vardi '98) Dichotomy Conjecture: for each Γ , the problem $CSP(\Gamma)$ is either tractable (i.e., in **P**) or **NP**-complete.

Original Motivation for FV Conjecture

Ladner '75 : $\mathbf{P} \neq \mathbf{NP}$ implies that $\mathbf{NP} - (\mathbf{P} \cup \mathbf{NPc}) \neq \emptyset$.

Want: a large(st) "natural" subclass of **NP** where $.. = \emptyset$.

Feder & Vardi define complexity class **MMSNP** obtained from **NP** by simultaneously imposing 3 logical restrictions.

FV: Any 2 of them give **NP** modulo **P**-reductions $(.. \neq \emptyset)$.

Theorem 2 (Feder, Vardi '98; Kun '07)
1) The class {CSP(Γ)} is a proper sublclass of MMSNP.
2) The two classes are the same modulo P-reductions.

Hence, Dichotomy for $CSP \Rightarrow$ Dichotomy for **MMSNP**.

The Three Approaches

The three main approaches to our classification problems are:

- via Combinatorics (Graphs & Posets)
 - Interesting, but only a hint in this tutorial
- via Logic and Games
 - Some in 3rd lecture, not much (phew-w-w...)
- via Algebra
 - Hey, that's what we like !!!

Combinatorics Approach: Encoding CSP

Theorem 3 (FV'98) For every structure \mathcal{B} there exist

- a poset $P_{\mathcal{B}}$;
- a bipartite graph $G_{\mathcal{B}}$;
- a digraph $H_{\mathcal{B}}$

such that these problems are polynomially equivalent:

- $\operatorname{CSP}(\mathcal{B}),$
- $poset-retraction(P_{\mathcal{B}}),$
- bipartite graph-retraction($G_{\mathcal{B}}$),
- $digraph-homomorphism(H_{\mathcal{B}})$.

Logic and Games Approach

One can view $CSP(\mathcal{B})$ as the membership problem for the class of structures \mathcal{A} such that $\mathcal{A} \to \mathcal{B}$.

Typical result describes the class $CSP(\mathcal{B})$

- by a logical specification (e.g., formula in a nice logic) that can be checked easily against a given structure, or
- as a class of structures A for which there exists an (easily detectable) winning strategy in a certain game on A and B.

Examples: in my 3rd lecture

A UAlgebraic Approach: Intuition

Intuition: The more one can express in Γ the harder $\text{CSP}(\Gamma)$.

Example: Suppose Γ contains two binary relations, R_1 and R_2 . Consider the following (part of) instance

 $((x, z), R_1), ((z, y), R_2).$

- The implicit constraint on (x, y) is $R_3 = R_1 \circ R_2$.
- It may not belong to Γ , but
- $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}(\Gamma \cup \{R_3\})$ are logspace equivalent.

Question: Where does this lead us to?

Relational Clones

Definition 2 For a set of relations Γ on D, let $\langle \Gamma \rangle$ denote the set of all relations that can be expressed by primitive positive (p.p.-) formulas over Γ , that is, using

- relations in $\Gamma \cup \{=_D\}$,
- conjunction,
- existential quantification.

Example: $R_1(x, y, z) = \exists u [R_2(x, u) \land R_3(u, y) \land y = z].$ The set $\langle \Gamma \rangle$ is the relational clone generated by Γ .

Relational Clones cont'd

Theorem 4 (Jeavons '98)

If Γ_1 and Γ_2 are constraint languages such that $\langle \Gamma_1 \rangle \subseteq \langle \Gamma_2 \rangle$ then $\text{CSP}(\Gamma_1)$ is logspace reducible to $\text{CSP}(\Gamma_2)$.

Proof. Reduction goes as follows:

- 1. Take an instance $R_1(\overline{s}_1) \wedge \ldots \wedge R_q(\overline{s}_q)$ where $R_i \in \Gamma_1$.
- 2. Since $R_i \in \langle \Gamma_2 \rangle$, replace each $R_i(\overline{s}_1)$ by the corresponding p.p.-formula over Γ_2
- 3. Remove quantifiers, renaming variables as necessary.
- 4. Identify variables connected by equality constraints.
- 5. Remove equality constraints.

Example

Assume $\Gamma_1 = \{R_1\}$ and $\Gamma_2 = \{R_2, R_3\}$, and $R_1 \in \langle \Gamma_2 \rangle$. 0) Fix expression for R_1 , for example, $R_1(x, y, z) = \exists u [R_2(x, u) \land R_3(u, y) \land y = z]$. 1) Take an instance $R_1(x, y, z) \land R_1(z, t, y)$. 2) Transform it into equivalent formula $\exists u [R_2(x, u) \land R_3(u, y) \land y = z] \land \exists u [R_2(z, u) \land R_3(u, t) \land t = y]$. 3) Remove quantifiers, renaming the quantified variables

 $R_2(x, u_1) \wedge R_3(u_1, y) \wedge y = z \wedge R_2(z, u_2) \wedge R_3(u_2, t) \wedge t = y.$

4-5) Identify z, t with y and remove equality constraints $R_2(x, u_1) \wedge R_3(u_1, y) \wedge R_2(y, u_2) \wedge R_3(u_2, y).$

Invariance and Polymorphisms

Definition 3 An *m*-ary relation *R* is invariant under an *n*-ary operation *f* (or *f* is a polymorphism of *R*) if, for any tuples $\bar{a}_1 = (a_{11}, \ldots, a_{1m}), \ldots, \bar{a}_n = (a_{n1}, \ldots, a_{nm}) \in R$, the tuple obtained by applying *f* componentwise belongs to *R*.

Example

Example 1 Consider the relation, R, defined by

 $R = \{(0, 0, 0), (1, 0, 0), (0, 0, 1)\}$

• the binary operation min is a polymorphism of R. For example,

• the binary operation max is not.

Galois Correspondence

Let $Pol(\Gamma)$ be the set of all polymorphisms of Γ .

If F is a set of operations on D, let $Inv(F) = \{R \mid R \text{ is invariant under all operations in } F\},$ and let $\langle F \rangle$ be the set of all operations obtained from Fvia superpositions $f(f_1, \ldots, f_n)$. Then $\langle F \rangle$ is called the clone generated by F.

Theorem 5 (Geiger '68; Bodnarchuk et al. '69)

- For any constraint language Γ , $\langle \Gamma \rangle = \text{Inv}(\text{Pol}(\Gamma))$.
- For any set F of operations, $\langle F \rangle = Pol(Inv(F))$.

Clones in Control of Complexity

Theorem 6 (Jeavons '98) If Γ_1 are Γ_2 are constraint languages such that $Pol(\Gamma_1) \subseteq Pol(\Gamma_2)$ then $CSP(\Gamma_2)$ is logspace reducible to $CSP(\Gamma_1)$.

Proof. The operator Inv() is anti-monotone, so $Pol(\Gamma_1) \subseteq Pol(\Gamma_2)$ implies

 $\langle \Gamma_2 \rangle = \operatorname{Inv}(\operatorname{Pol}(\Gamma_2)) \subseteq \operatorname{Inv}(\operatorname{Pol}(\Gamma_1)) = \langle \Gamma_1 \rangle.$

We already know that $\langle \Gamma_2 \rangle \subseteq \langle \Gamma_1 \rangle$ implies the conclusion of the theorem.

Corollary 1 If $Pol(\Gamma_1) = Pol(\Gamma_2)$ then $CSP(\Gamma_1)$ and $CSP(\Gamma_2)$ are logspace equivalent.

One Striking Feature: Reductions For Free

How do you show that a problem X is **NP**-complete?

You construct a reduction (an explicit transformation) to X from some NP-complete problem (say SAT).

You don't have to do this for $CSP(\Gamma)$!!!

Just show that $Pol(\Gamma) \subseteq Pol(\Gamma')$ for some Γ' with **NP**-complete $CSP(\Gamma')$.

Think about it: it may be very hard to actually construct a reduction, but you do some apparently unrelated algebra and show that it exists, which is all you need.