The Complexity of
 Constraint Satisfaction Problems

Andrei Krokhin
Durham University

Tutorial, Part I - Here and Now

Two Well-Known Problems

SAT: is a given propositional formula in CNF satisfiable?

$$
F=(\neg x \vee y \vee \neg z) \wedge(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z)
$$

Linear Equations: does a given system of linear equations have a solution?

$$
\left\{\begin{array}{l}
2 x+2 y+3 z=1 \\
3 x-2 y-2 z=0 \\
5 x-y+10 z=2
\end{array}\right.
$$

Outline

1. Constraints and Their Complexity: An introduction

- The CSP and its forms
- Complexity of CSP: A roadmap
- Some algebra, finally ...

2. Universal Algebra for CSP: A general theory
3. UA (and a bit of logic) for CSP: A bigger picture

CSP in AI Setting

Instance: (V, D, C) where

- V is a finite set of variables,
- D is a (finite) set of values,
- C is a set of constraints $\left\{C_{1}, \ldots, C_{q}\right\}$ where
- each constraint C_{i} is a pair $\left(\bar{s}_{i}, R_{i}\right)$ with * scope \bar{s}_{i} - a list of variables of length m_{i}, and * relation R_{i} - an m_{i}-ary relation over D

Question: is there $f: V \rightarrow D$ such that $f\left(\bar{s}_{i}\right) \in R_{i}$ for all i ?

Some Real-World Examples of CSPs

- Drawing up timetable for a conference
- Choosing frequencies for a mobile-phone network
- Fitting a protein structure to measurements
- Laying out components on a circuit board
- Finding a DNA sequence from a set of contigs
- Scheduling a construction project

CSP in Logical Setting

Instance: a first-order formula

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=R_{1}\left(\bar{s}_{1}\right) \wedge \ldots \wedge R_{q}\left(\bar{s}_{q}\right)
$$

$\underline{\text { Question: is } \varphi \text { satisfiable? }}$

The \bar{s}_{i} 's $=$ constraint scopes \bar{s}_{i}
Predicates $R_{i}=$ constraint relations R_{i}

Hence, CSP generalizes SAt.
In Database Theory, CSP $=$ Conjunctive-Query Evaluation

CSP in Combinatorial Setting

The Homomorphism Problem:
Given two finite similar relational structures, $\mathcal{A}=\left(A ; R_{1}^{\mathcal{A}}, \ldots, R_{k}^{\mathcal{A}}\right)$ and $\mathcal{B}=\left(B ; R_{1}^{\mathcal{B}}, \ldots, R_{k}^{\mathcal{B}}\right)$, is there a homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$?
$\forall i\left[\left(a_{1}, \ldots, a_{n_{i}}\right) \in R_{i}^{\mathcal{A}} \Longrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n_{i}}\right)\right) \in R_{i}^{\mathcal{B}}\right]$

- Think of elements in \mathcal{A} as of variables.

Tuples in relations in $\mathcal{A}=$ constraint scopes \bar{s}_{i}.

- Think of elements in \mathcal{B} are values.

Relations in $\mathcal{B}=$ constraint relations R_{i}.
Hence, CSP generalizes Graph Homomorphism.

Example: 2-Sat in Hom Form

Let $R_{a b}^{\mathcal{B}}=\{0,1\}^{2} \backslash\{(a, b)\}$ and $\mathcal{B}=\left(\{0,1\} ; R_{00}^{\mathcal{B}}, R_{01}^{\mathcal{B}}, R_{11}^{\mathcal{B}}\right)$.
Then 2 -Sat is precisely $\operatorname{CSP}(\mathcal{B})$.
An instance of 2-SAT, say

$$
F=(\neg x \vee \neg z) \wedge(x \vee y) \wedge(y \vee \neg z) \wedge(u \vee x) \wedge(x \vee \neg u) \ldots
$$

becomes a structure \mathcal{A} with base set $\{x, y, z, u, \ldots\}$ and

$$
\begin{aligned}
& R_{00}^{\mathcal{A}}=\{(x, y),(u, x), \ldots\} \\
& R_{01}^{\mathcal{A}}=\{(y, z),(x, u), \ldots\} \\
& R_{11}^{\mathcal{A}}=\{(x, z), \ldots\}
\end{aligned}
$$

Then $h: \mathcal{A} \rightarrow \mathcal{B}$ iff h is a satisfying assignment for F.

Forms of CSP: A recap

- Variable-value

Given finite sets V (variables), D (values), and a set of constraints $\left\{\left(\bar{s}_{1}, R_{1}\right), \ldots,\left(\bar{s}_{q}, R_{q}\right)\right\}$ over V, is there a function $f: V \rightarrow D$ such that $f\left(\bar{s}_{i}\right) \in R_{i}$ for all i ?

- Satisfiability

Given a formula $\mathcal{P}\left(x_{1}, \ldots, x_{n}\right)=R_{1}\left(\bar{s}_{1}\right) \wedge \ldots \wedge R_{q}\left(\bar{s}_{q}\right)$ (where R_{i} 's are seen as predicates), is \mathcal{P} satisfiable?

- Homomorphism

Given two finite similar relational structures,

$$
\mathcal{A}=\left(V ; R_{1}^{\mathcal{A}}, \ldots, R_{k}^{\mathcal{A}}\right) \text { and } \mathcal{B}=\left(D ; R_{1}^{\mathcal{B}}, \ldots, R_{k}^{\mathcal{B}}\right),
$$

is there a homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$?

The Complexity of CSP

Fact. CSP is NP-complete.
Membership in NP is trivial.
Complete because contains 3 -SAT.

Question: What restrictions make it computationally easy?

Parameterisation of CSP

With any instance of CSP one can associate two natural parameters reflecting

1. Which variables constrain which others, i.e.,

- constraint scopes, or
- query language, or
- LHS structure \mathcal{A} (as in $\mathcal{A} \rightarrow \mathcal{B}$).

2. How values for the variables are constrained, i.e.,

- constraint relations, or
- relational database, or
- RHS structure \mathcal{B} (as in $\mathcal{A} \rightarrow \mathcal{B}$).

Restricting LHS: "The other side"

For a class \mathbb{C} of structures, let $\operatorname{CSP}(\mathbb{C},-)$ denote the set of all CSP instances $(\mathcal{A}, \mathcal{B})$ with $\mathcal{A} \in \mathbb{C}$.

Example: if $\mathbb{C}=\left\{K_{n} \mid n>0\right\}$ is the class of all complete graphs then $\operatorname{CSP}(\mathbb{C},-)$ is the Clique problem (NP-c). For any fixed $\mathcal{A}, \operatorname{CSP}(\{\mathcal{A}\},-)$ is in P . Simply check each mapping $A \rightarrow B$. If $|A|=k$ then $|B|^{k}$ is polynomial in $|\mathcal{B}|$. Boring.

Theorem 1 (Grohe'07) Let \mathbb{C} be an arity-bounded class of structures. Under a "reasonable" complexity-theoretic assumption, $\operatorname{CSP}(\mathbb{C},-)$ is in \mathbf{P} iff "all structures in \mathbb{C} look like trees (when you look at \mathbb{C} from far enough)".

Restricting RHS: Constraint Languages

Fix a finite set D.
Definition 1 A constraint language is any finite set Γ of relations on D. The problem $\operatorname{CSP}(\Gamma)$ is the restriction of CSP where all constraint relations R_{i} must belong to Γ.

Equivalently, fix target structure \mathcal{B} (aka template) and ask whether a given structure \mathcal{A} homomorphically maps to \mathcal{B}.
Notation: $\operatorname{CSP}(\mathcal{B})=\{\mathcal{A} \mid \mathcal{A} \rightarrow \mathcal{B}\}$.
The structure \mathcal{B} is obtained from Γ by indexing relations.
NB. For a digraph $\mathcal{H}, \operatorname{CSP}(\mathcal{H})$ is known as \mathcal{H}-colouring, appears in 100s of papers + recent book by Hell \& Nešetřil.

Examples

- Let $D=\{0,1\}$ and $R=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$. If $\Gamma=\{R\}$ then $\operatorname{CSP}(\Gamma)$ is Not-All-Equal Sat. This problem is NP-complete.
- Let $D=\{0,1\}$ and $R=\{(x, y, z) \mid y \wedge z \rightarrow x\}$. If $\Gamma=\{R,\{0\},\{1\}\}$ then $\operatorname{CSP}(\Gamma)$ is Horn 3-Sat. This problem is \mathbf{P}-complete.
- Let $D=\{0,1\}$ and $\Gamma=\{\leq,\{0\},\{1\}\}$. Then $\operatorname{CSP}(\Gamma)$ is the complement of Path (i.e., UnReachability). Think: An instance is satisfiable iff it contains no path of the form $1=x_{1} \leq x_{2} \leq \ldots \leq x_{n}=0$.
This problem is NL-complete.

More Examples

- If $\Gamma=\left\{\neq D_{D}\right\}$ where $\neq D_{D}$ is the disequality relation on D and $|D|=k$ then $\operatorname{CSP}(\Gamma)$ is Graph k-colouring. Think: elements of D are colours, variables are the nodes, and constraints $x \not f_{D} y$ are the edges of graph. Belongs to \mathbf{L} if $k \leq 2$, NP-complete for $k \geq 3$.
- Let D with $|D|=p$ have a structure of \mathbb{Z}_{p}, p prime. If $\Gamma=\{R,\{0\},\{1\}\}$ where $R=\{(x, y, z) \mid x+y=z\}$ then $\operatorname{CSP}(\Gamma)$ is (essentially) the problem of solving Linear Equations over \mathbb{Z}_{p}.

Classification Problems \& The Holy Grail

Two main classification problems about problems $\operatorname{CSP}(\Gamma)$:

1. Classify $\operatorname{CSP}(\Gamma)$ w.r.t. computational complexity, (i.e., w.r.t. membership in a given complexity class)
2. Classify $\operatorname{CSP}(\mathcal{B})$ w.r.t. descriptive complexity, (i.e., w.r.t. definability in a given logic)

Conjecture 1 (Feder,Vardi '98)

Dichotomy Conjecture: for each Γ, the problem $\operatorname{CSP}(\Gamma)$ is either tractable (i.e., in \mathbf{P}) or NP-complete.

Original Motivation for FV Conjecture

Ladner ' $75: \mathbf{P} \neq \mathbf{N P}$ implies that $\mathbf{N P}-(\mathbf{P} \cup \mathbf{N P c}) \neq \emptyset$.
Want: a large(st) "natural" subclass of NP where..$=\emptyset$.
Feder \& Vardi define complexity class MMSNP obtained from NP by simultaneously imposing 3 logical restrictions.

FV: Any 2 of them give NP modulo P-reductions $(. . \neq \emptyset)$.
Theorem 2 (Feder,Vardi '98; Kun '07)

1) The class $\{\operatorname{CSP}(\Gamma)\}$ is a proper sublclass of MMSNP.
2) The two classes are the same modulo \mathbf{P}-reductions.

Hence, Dichotomy for CSP \Rightarrow Dichotomy for MMSNP.

The Three Approaches

The three main approaches to our classification problems are:

- via Combinatorics (Graphs \& Posets)
- Interesting, but only a hint in this tutorial
- via Logic and Games
- Some in 3rd lecture, not much (phew-w-w...)
- via Algebra
- Hey, that's what we like !!!

Combinatorics Approach: Encoding CSP

Theorem 3 (FV'98) For every structure \mathcal{B} there exist

- a poset $P_{\mathcal{B}}$;
- a bipartite graph $G_{\mathcal{B}}$;
- a digraph $H_{\mathcal{B}}$
such that these problems are polynomially equivalent:
- $\operatorname{CSP}(\mathcal{B})$,
- poset-retraction $\left(P_{\mathcal{B}}\right)$,
- bipartite graph-retraction $\left(G_{\mathcal{B}}\right)$,
- digraph-homomorphism $\left(H_{\mathcal{B}}\right)$.

Logic and Games Approach

One can view $\operatorname{CSP}(\mathcal{B})$ as the membership problem for the class of structures \mathcal{A} such that $\mathcal{A} \rightarrow \mathcal{B}$.

Typical result describes the class $\operatorname{CSP}(\mathcal{B})$

- by a logical specification (e.g., formula in a nice logic) that can be checked easily against a given structure, or
- as a class of structures \mathcal{A} for which there exists an (easily detectable) winning strategy in a certain game on \mathcal{A} and \mathcal{B}.

Examples: in my 3rd lecture

A UAlgebraic Approach: Intuition

Intuition: The more one can express in Γ the harder $\operatorname{CSP}(\Gamma)$.

Example: Suppose Γ contains two binary relations, R_{1} and R_{2}. Consider the following (part of) instance

$$
\left((x, z), R_{1}\right),\left((z, y), R_{2}\right)
$$

- The implicit constraint on (x, y) is $R_{3}=R_{1} \circ R_{2}$.
- It may not belong to Γ, but
- $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}\left(\Gamma \cup\left\{R_{3}\right\}\right)$ are logspace equivalent.

Question: Where does this lead us to?

Relational Clones

Definition 2 For a set of relations Γ on D, let $\langle\Gamma\rangle$ denote the set of all relations that can be expressed by primitive positive (p.p.-) formulas over Γ, that is, using

- relations in $\Gamma \cup\left\{=_{D}\right\}$,
- conjunction,
- existential quantification.

Example: $R_{1}(x, y, z)=\exists u\left[R_{2}(x, u) \wedge R_{3}(u, y) \wedge y=z\right]$.
The set $\langle\Gamma\rangle$ is the relational clone generated by Γ.

Relational Clones cont'd

Theorem 4 (Jeavons '98)
If Γ_{1} and Γ_{2} are constraint languages such that $\left\langle\Gamma_{1}\right\rangle \subseteq\left\langle\Gamma_{2}\right\rangle$ then $\operatorname{CSP}\left(\Gamma_{1}\right)$ is logspace reducible to $\operatorname{CSP}\left(\Gamma_{2}\right)$.

Proof. Reduction goes as follows:

1. Take an instance $R_{1}\left(\bar{s}_{1}\right) \wedge \ldots \wedge R_{q}\left(\bar{s}_{q}\right)$ where $R_{i} \in \Gamma_{1}$.
2. Since $R_{i} \in\left\langle\Gamma_{2}\right\rangle$, replace each $R_{i}\left(\bar{s}_{1}\right)$ by the corresponding p.p.-formula over Γ_{2}
3. Remove quantifiers, renaming variables as necessary.
4. Identify variables connected by equality constraints.
5. Remove equality constraints.

Example

Assume $\Gamma_{1}=\left\{R_{1}\right\}$ and $\Gamma_{2}=\left\{R_{2}, R_{3}\right\}$, and $R_{1} \in\left\langle\Gamma_{2}\right\rangle$.
0) Fix expression for R_{1}, for example,
$R_{1}(x, y, z)=\exists u\left[R_{2}(x, u) \wedge R_{3}(u, y) \wedge y=z\right]$.

1) Take an instance $R_{1}(x, y, z) \wedge R_{1}(z, t, y)$.
2) Transform it into equivalent formula
$\exists u\left[R_{2}(x, u) \wedge R_{3}(u, y) \wedge y=z\right] \wedge \exists u\left[R_{2}(z, u) \wedge R_{3}(u, t) \wedge t=y\right]$.
3) Remove quantifiers, renaming the quantified variables
$R_{2}\left(x, u_{1}\right) \wedge R_{3}\left(u_{1}, y\right) \wedge y=z \wedge R_{2}\left(z, u_{2}\right) \wedge R_{3}\left(u_{2}, t\right) \wedge t=y$.
4-5) Identify z, t with y and remove equality constraints $R_{2}\left(x, u_{1}\right) \wedge R_{3}\left(u_{1}, y\right) \wedge R_{2}\left(y, u_{2}\right) \wedge R_{3}\left(u_{2}, y\right)$.

Invariance and Polymorphisms

Definition 3 An m-ary relation R is invariant under an n-ary operation f (or f is a polymorphism of R) if, for any tuples $\bar{a}_{1}=\left(a_{11}, \ldots, a_{1 m}\right), \ldots, \bar{a}_{n}=\left(a_{n 1}, \ldots, a_{n m}\right) \in R$, the tuple obtained by applying f componentwise belongs to R.
$\left.\begin{array}{cccl}f & f & f & \\ \left(\begin{array}{ccc}a_{11} & , & \cdots \\ \vdots & \vdots & a_{1 m}\end{array}\right) & \in R \\ \frac{\vdots}{\left(f\left(a_{11}, \ldots, a_{n 1}\right)\right.}, & \cdots, & f\left(a_{1 m}, \ldots, a_{n m}\right)\end{array}\right) \quad \in R$

Example

Example 1 Consider the relation, R, defined by

$$
R=\{(0,0,0),(1,0,0),(0,0,1)\}
$$

- the binary operation min is a polymorphism of R. For example,

$$
\begin{gathered}
\min \\
\left.\begin{array}{cccc}
\min & \min & \\
\left(\begin{array}{cccc}
1 & , & 0 & 0
\end{array}\right) \in R \\
(0, & 0 & 1
\end{array}\right) \in R \\
\left(\begin{array}{ccccc}
(0, & 0 & , & 0
\end{array}\right) \in R
\end{gathered}
$$

- the binary operation max is not.

Galois Correspondence

Let $\operatorname{Pol}(\Gamma)$ be the set of all polymorphisms of Γ.
If F is a set of operations on D, let $\operatorname{Inv}(F)=\{R \mid R$ is invariant under all operations in $F\}$, and let $\langle F\rangle$ be the set of all operations obtained from F via superpositions $f\left(f_{1}, \ldots, f_{n}\right)$.
Then $\langle F\rangle$ is called the clone generated by F.
Theorem 5 (Geiger '68; Bodnarchuk et al. '69)

- For any constraint language $\Gamma,\langle\Gamma\rangle=\operatorname{Inv}(\operatorname{Pol}(\Gamma))$.
- For any set F of operations, $\langle F\rangle=\operatorname{Pol}(\operatorname{Inv}(F))$.

Clones in Control of Complexity

Theorem 6 (Jeavons '98) If Γ_{1} are Γ_{2} are constraint languages such that $\operatorname{Pol}\left(\Gamma_{1}\right) \subseteq \operatorname{Pol}\left(\Gamma_{2}\right)$ then $\operatorname{CSP}\left(\Gamma_{2}\right)$ is logspace reducible to $\operatorname{CSP}\left(\Gamma_{1}\right)$.

Proof. The operator $\operatorname{Inv}()$ is anti-monotone, so $\operatorname{Pol}\left(\Gamma_{1}\right) \subseteq \operatorname{Pol}\left(\Gamma_{2}\right)$ implies

$$
\left\langle\Gamma_{2}\right\rangle=\operatorname{Inv}\left(\operatorname{Pol}\left(\Gamma_{2}\right)\right) \subseteq \operatorname{Inv}\left(\operatorname{Pol}\left(\Gamma_{1}\right)\right)=\left\langle\Gamma_{1}\right\rangle
$$

We already know that $\left\langle\Gamma_{2}\right\rangle \subseteq\left\langle\Gamma_{1}\right\rangle$ implies the conclusion of the theorem.

Corollary 1 If $\operatorname{Pol}\left(\Gamma_{1}\right)=\operatorname{Pol}\left(\Gamma_{2}\right)$ then $\operatorname{CSP}\left(\Gamma_{1}\right)$ and $\operatorname{CSP}\left(\Gamma_{2}\right)$ are logspace equivalent.

One Striking Feature: Reductions For Free

How do you show that a problem X is NP-complete?
You construct a reduction (an explicit transformation) to X from some NP-complete problem (say Sat).

You don't have to do this for $\operatorname{CSP}(\Gamma)$!!!
Just show that $\operatorname{Pol}(\Gamma) \subseteq \operatorname{Pol}\left(\Gamma^{\prime}\right)$ for some Γ^{\prime} with NP-complete $\operatorname{CSP}\left(\Gamma^{\prime}\right)$.

Think about it: it may be very hard to actually construct a reduction, but you do some apparently unrelated algebra and show that it exists, which is all you need.

