The Complexity of
 Constraint Satisfaction Problems

Andrei Krokhin
Durham University

Tutorial, Part II - Here and Now

Recap from Yesterday's Lecture

- Three forms of CSP: Variable-Value, Sat, and Hom
- Parameterisation: $\operatorname{CSP}(\Gamma), \operatorname{CSP}(\mathcal{B})$
- Feder-Vardi (Dichotomy) Conjecture
- Three approaches: graphs, logic, and algebra
- $\operatorname{Pol}(\Gamma)$ determines the complexity of $\operatorname{CSP}(\Gamma)$

Today

1. Constraints and Their Complexity: An introduction
2. Universal Algebra for CSP: A general theory

- From clones to algebras
- From algebras to varieties
- Hardness results
- Algebraic Dichotomy Conjecture
- Some tractability results

3. UA (and a bit of logic) for CSP: A bigger picture

Reducing the Domain

For a unary operation f and a relation R on D, let $f(R)=\left\{\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in R\right\}$. For a constraint language Γ, let $f(\Gamma)=\{f(R) \mid R \in \Gamma\}$.

Theorem 1 (Jeavons, 1998) Let Γ be finite, and let $f \in \operatorname{Pol}(\Gamma)$ be unary with minimal range. Then $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}(f(\Gamma))$ are polynomial-time equivalent.

Proof. Take an instance $\mathcal{P}=\bigwedge R_{i}\left(\bar{s}_{i}\right)$ of $\operatorname{CSP}(\Gamma)$ and consider the instance $\mathcal{P}^{\prime}=\bigwedge f\left(R_{i}\right)\left(\bar{s}_{i}\right)$ of $\operatorname{CSP}(f(\Gamma))$.

Since $f\left(R_{i}\right) \subseteq R_{i}$, we have $\operatorname{Sol}\left(\mathcal{P}^{\prime}\right) \subseteq \operatorname{Sol}(\mathcal{P})$, and conversely, for each $\varphi \in \operatorname{Sol}(\mathcal{P}), f \circ \varphi$ is a solution to \mathcal{P}^{\prime}.

Mapping $\mathcal{P}^{\prime} \mapsto \mathcal{P}$ is the reduction in the other direction.

Adding the Constants

By previous slide, assume that unary operations in $\operatorname{Pol}(\Gamma)$ form a permutation group G, i.e., Γ is a core.

Theorem 2 (Bulatov, Jeavons, K, 2005)

Let $\Gamma^{\prime}=\Gamma \cup\{\{a\} \mid a \in D\}$. Then $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ are polynomial-time equivalent.

Proof. Obviously, $\operatorname{CSP}(\Gamma)$ reduces to $\operatorname{CSP}\left(\Gamma^{\prime}\right)$.
The other direction. Let $D=\left\{a_{1}, \ldots, a_{n}\right\}$. Then $R_{G} \in\langle\Gamma\rangle$ where

$$
R_{G}=\left\{\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right) \mid g \in G\right\} .
$$

We may assume that $R_{G} \in \Gamma$ and $=_{D} \in \Gamma$.

Proof cont'd

Take an instance \mathcal{P}^{\prime} of $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ over a set of variables V^{\prime} and build an equivalent instance \mathcal{P} of $\operatorname{CSP}(\Gamma)$ as follows.

- Include all constraints from \mathcal{P}^{\prime} to \mathcal{P}
- Introduce new variables $y_{a}, a \in D$
- Replace each constraint of the form $x=a$ with $x=y_{a}$
- Introduce new constraint $R_{G}\left(y_{a_{1}}, \ldots, y_{a_{n}}\right)$

Any solution of \mathcal{P}^{\prime} extends to a solution of \mathcal{P} by $y_{a_{i}} \mapsto a_{i}$.
If ϕ is a solution to \mathcal{P} then we have $\phi\left(y_{a_{1}}, \ldots, y_{a_{n}}\right)=\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)$ for some $g \in G$. Then $g^{-1} \circ \phi\left(\right.$ restricted to $\left.V^{\prime}\right)$ is a solution to \mathcal{P}^{\prime}.

Search Problem

Theorem 3 (Bulatov, Jeavons, K, 2005)
If the decision problem $\operatorname{CSP}(\Gamma)$ is tractable then the corresponding search problem is tractable as well.

Proof. Take an instance \mathcal{P} of $\operatorname{CSP}(\Gamma)$ and build an equivalent instance \mathcal{P}^{\prime} of $\operatorname{CSP}(f(\Gamma))$ s.t. $\operatorname{Sol}\left(\mathcal{P}^{\prime}\right) \subseteq \operatorname{Sol}(\mathcal{P})$.

Remember: $\operatorname{CSP}(f(\Gamma) \cup\{\{a\} \mid a \in f(D)\})$ is tractable.
For all variables x (in order)

$$
\text { for all values } a \in f(D)
$$

if $\mathcal{P}^{\prime} \wedge(x=a)$ is satisfiable
set $\mathcal{P}^{\prime}:=\mathcal{P}^{\prime} \wedge(x=a)$ and go to next variable

From CSP to Algebras

Definition $1 A$ finite algebra is a pair $\mathbf{A}=(D, F)$ where D is a finite set and F is a family of operations on D.

The clone $\langle F\rangle$ is called the clone of term operations of \mathbf{A}.
Two algebras $\mathbf{A}_{1}=\left(D, F_{1}\right)$ and $\mathbf{A}_{2}=\left(D, F_{2}\right)$ are said to be term equivalent if they have the same clone of term op's.

Definition 2 Let $\mathbf{A}=(D, F)$ be a finite algebra.
Let $\operatorname{CSP}(\mathbf{A})=\{\operatorname{CSP}(\Gamma)|\Gamma \subseteq \operatorname{Inv}(F),|\Gamma|<\infty\}$.
We say that \mathbf{A} is tractable if each problem in $\operatorname{CSP}(\mathbf{A})$ is tractable, and \mathbf{A} is NP-complete if some problem in
$\operatorname{CSP}(\mathbf{A})$ is NP-complete.
Note: Term equivalent algebras have the same complexity.

A View on $\operatorname{CSP}(\mathbf{A})$

Fact. Relations from $\operatorname{Inv}(F)$ are universes of algebras from $\mathrm{SP}_{\text {fin }}(\mathbf{A})$ (the so-called subpowers of \mathbf{A}).

Take an instance $\left\{\left(\bar{s}_{1}, R_{1}\right), \ldots,\left(\bar{s}_{q}, R_{q}\right)\right\}$ of a problem in $\operatorname{CSP}(\mathbf{A})$, over a set of variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$.

For a constraint $\left(\bar{s}_{i}, R_{i}\right)$, consider the following subalgebra \mathbf{A}_{i} of $\mathbf{A}^{V}:\left\{\bar{a} \in D^{V} \mid \operatorname{pr}_{\bar{s}_{i}} \bar{a} \in R_{i}\right\}$.

Solutions to the instance $=$ elements in $\bigcap_{i=1}^{q} \mathbf{A}_{i}$.
Hence, $\operatorname{CSP}(\mathbf{A})=$ Subalgebra Intersection problem: "given" subalgebras $\mathbf{A}_{1}, \ldots, \mathbf{A}_{q}$ of $\mathbf{A}^{k}, k \geq 1$, is it true that $\bigcap_{i=1}^{q} \mathbf{A}_{i} \neq \emptyset$?

Varieties

Definition 3 For a class \mathcal{K} of similar algebras, let

- $\mathrm{H}(\mathcal{K})$ be the class of all hom images of algebras from \mathcal{K}
- $\mathrm{S}(\mathcal{K})$ be the class of all subalgebras of algebras from \mathcal{K}
- $\mathrm{P}(\mathcal{K})$ and $\mathrm{P}_{\text {fin }}(\mathcal{K})$ be the classes of all and all finite, respectively, direct products of algebras from \mathcal{K}

A class of similar algebras that is closed under the operators H, S and P is called a variety.

For an algebra \mathbf{A}, the class $\operatorname{HSP}(\mathbf{A})$ is the variety generated by \mathbf{A}, and is denoted $\operatorname{var}(\mathbf{A})$.

From Algebras to Varieties

Theorem 4 (Bulatov, Jeavons, 2003) If an algebra A is tractable then every finite algebra in $\operatorname{var}(\mathbf{A})$ is tractable. If $\operatorname{var}(\mathbf{A})$ contains a finite $\mathbf{N P}$-complete algebra then \mathbf{A} is NP-complete.

Proof. We know $(\operatorname{HSP}(\mathbf{A}))_{f i n}=\operatorname{HSP}_{f i n}(\mathbf{A})$.
Let $\mathbf{B}=\left(B, F_{B}\right)$ be a subalgebra or a homomorphic image or a finite direct power of $\mathbf{A}=\left(D, F_{A}\right)$.

Take a finite $\Gamma \subseteq \operatorname{Inv}\left(F_{B}\right)$. We need to reduce $\operatorname{CSP}(\Gamma)$ to $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ for some finite $\Gamma^{\prime} \subseteq \operatorname{Inv}\left(F_{A}\right)$.

If \mathbf{B} is a subalgebra of \mathbf{A} then $\operatorname{Inv}\left(F_{B}\right) \subseteq \operatorname{Inv}\left(F_{A}\right)$, so we can take $\Gamma^{\prime}=\Gamma$.

Proof: Homomorphic Images

Let $\psi: \mathbf{A} \rightarrow \mathbf{B}$ be a surjective homomorphism.
For a k-ary relation R on B, let

$$
\psi^{-1}(R)=\left\{\left(a_{1}, \ldots, a_{k}\right) \in D^{k} \mid\left(\psi\left(a_{1}\right), \ldots, \psi\left(a_{k}\right)\right) \in R\right\}
$$

Fact. If $R \in \operatorname{Inv}\left(F_{B}\right)$ then $\psi^{-1}(R) \in \operatorname{Inv}\left(F_{A}\right)$.
Take $\Gamma^{\prime}=\left\{\psi^{-1}(R) \mid R \in \Gamma\right\}$.
The reduction from $\operatorname{CSP}(\Gamma)$ to $\operatorname{CSP}\left(\Gamma^{\prime}\right)$ is straightforward: an instance $\bigwedge R_{i}\left(\bar{s}_{i}\right)$ is transformed into $\bigwedge \psi^{-1}\left(R_{i}\right)\left(\bar{s}_{i}\right)$.

Proof: Finite Direct Powers

Let $\mathbf{B}=\mathbf{A}^{k}$.

Let R be an m-ary relation on D^{k}. Form an $k m$-ary relation R^{\prime} on D as follows: if $\left(\left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{m 1}, \ldots, a_{m k}\right)\right) \in R$ then $\left(a_{11}, \ldots, a_{1 k}, \ldots, a_{m 1}, \ldots, a_{m k}\right) \in R^{\prime}$.

Take $\Gamma^{\prime}=\left\{R^{\prime} \mid R \in \Gamma\right\}$. We have $\Gamma^{\prime} \subseteq \operatorname{Inv}\left(F_{A}\right)$.
Take instance $\bigwedge R_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$ of $\operatorname{CSP}(\Gamma)$. For every variable x_{i} in it, introduce new variables $x_{i}^{1}, \ldots, x_{i}^{k}$.

Transform the instance into an equivalent instance

$$
\bigwedge R_{i}^{\prime}\left(x_{1}^{1}, \ldots, x_{1}^{k}, \ldots, x_{n_{i}}^{1}, \ldots, x_{n_{i}}^{k}\right) .
$$

Varieties and Identities

Definition 4 An equational class is a class of all algebras (in a given signature) satisfying a given set of identities.

Example 1 - Mal'tsev $f(x, y, y)=f(y, y, x)=x$

- Semilattice $x \cdot x=x, x \cdot y=y \cdot x, x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- Near-unanimity (NU)

$$
f(y, x, \ldots, x)=f(x, y, \ldots, x)=\ldots=f(x, x, \ldots, y)=x
$$

Theorem 5 (Birkhoff) Varieties $=$ equational classes.
Thus, identities of \mathbf{A} determine the complexity of $\operatorname{CSP}(\mathbf{A})$.

Idempotent Algebras

We have shown that we only need to consider constraint languages Γ which contain all constant relations $\{a\}$. Then all polymorphisms of Γ are idempotent, that is, they satisfy the identity $f(x, \ldots, x)=x$.

Hence, we need to classify only idempotent algebras and idempotent varieties.

NP-complete Algebras: G-sets

For a permutation group G on D, a G-set is an algebra all whose operations are of the form $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{i}\right)$ for some $g \in G$ and $1 \leq i \leq n$.
If a G-set is idempotent then $g=i d$ and f is a projection.
Lemma 1 If $\mathbf{A}=(D, F)$ is a non-trivial idempotent G-set then A is NP-complete.

Proof. Assume $0,1 \in D . \operatorname{Inv}(F)$ is the set of all relations on D. Hence $R=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\} \in \operatorname{Inv}(F)$. Recall that $\operatorname{CSP}(\{R\})$ is the Not-All-Equal Sat problem, it's NP-complete.

NP-complete Algebras and Conjecture

Theorem 6 (Bulatov, Jeavons, K, 2005)
An idempotent algebra \mathbf{A} is $\mathbf{N P}$-complete if $\operatorname{var}(\mathbf{A})$ contains a G-set.

Proposition 1 For an idempotent algebra A, var(A) contains a G-set iff HS(A) contains a G-set.

All known NP-complete algebras satisfy this condition.

Conjecture 1 (BJK, 2005) (Structure of Dichotomy)
An idempotent algebra A is NP-complete if $\mathrm{HS}(\mathbf{A})$ contains a G-set, and it is tractable otherwise.

The Mother and The Highlights

Theorem 7 (Schaefer'78)

The dichotomy conjecture holds for $D=\{0,1\}$.
Schaefer's description perfectly aligns with Conjecture 1.
The theorem was one of main arguments for FV conjecture.

Definition 5 An algebra is called conservative if every subset is a subalgebra.

Theorem 8 (Bulatov'02-06)

The Structure of Dichotomy conjecture holds

1. for all three-element algebras, and
2. for all conservative algebras.

Taylor Operations

Theorem 9 (Taylor, 1977)

For any finite idempotent algebra A, TFAE

1. The variety $\operatorname{var}(\mathbf{A})$ does not contain a G-set.
2. The algebra \mathbf{A} has an n-ary (Taylor) term operation f satisfying n identities of the form

$$
f\left(x_{i 1}, \ldots, x_{i n}\right)=f\left(y_{i 1}, \ldots, y_{i n}\right), \quad i=1, \ldots, n
$$

where all $x_{i j}, y_{i j} \in\{x, y\}$ and $x_{i i} \neq y_{i i}$.
Ex: Mal'tsev, semilattice, NU operations are all Taylor.
NB. For idempotent algebras, no Taylor term \Rightarrow NPc and, if the conjecture is true, then Taylor term $\Rightarrow \mathbf{P}$.

WNU Operations

An idempotent operation is called weak NU operation if $f(y, x, \ldots, x)=f(x, y, \ldots, x)=\ldots=f(x, x, \ldots, y)$.

Examples: $x_{1} \vee \ldots \vee x_{n}, \quad x_{1}+\ldots+x_{n}+x_{n+1}(\bmod n)$.
NB. Any WNU operation is a Taylor operation.
Theorem 10 (Maróti, McKenzie, 2006)
For any finite idempotent algebra A with a Taylor term has an WNU term operation f of some arity ≥ 2.

NB. For idempotent algebras, no WNU term \Rightarrow NPc, and, if the conjecture is true, then WNU term $\Rightarrow \mathbf{P}$.

WNU: Application in Graph Theory

Recall that, for a digraph \mathcal{H}, \mathcal{H}-colouring $=\operatorname{CSP}(\mathcal{H})$.
Assume wlog that \mathcal{H} is a core. If H is a directed cycle then $\operatorname{CSP}(\mathcal{H})$ is tractable. Why?
Same if \mathcal{H} is a disjoint union of directed cycles.
Conjecture 2 (Bang-Jensen,Hell, '90)
If \mathcal{H} is a core digraph without sources or sinks that is not as above then $\operatorname{CSP}(\mathcal{H})$ is $\mathbf{N P}$-complete.

Theorem 11 (Barto, Kozik, Niven' 08) Let \mathcal{H} be a core digraph without sources or sinks. If \mathcal{H} has a WNU polymorphism then it is a disjoint union of directed cycles.

Corollary 1 Conjecture 2 holds.

How To Prove Tractability

Currently, the two main (systematic) methods are:

- via bounded width (k-minimality or Datalog)

More on this in tomorrow's lecture

- via small generating sets

More on this now

An Algorithm to Solve CSP(A)

Take a CSP instance $\left\{\left(\bar{s}_{1}, R_{1}\right), \ldots,\left(\bar{s}_{q}, R_{q}\right)\right\}$ of a problem in $\operatorname{CSP}(\mathbf{A})$, over a set of variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$.

For a constraint $\left(\bar{s}_{i}, R_{i}\right)$, consider the following subalgebra \mathbf{A}_{i} of $\mathbf{A}^{V}:\left\{\bar{a} \in D^{V} \mid \operatorname{pr}_{\bar{s}_{i}} \bar{a} \in R_{i}\right\}$.

Let $\mathbf{A}_{0}^{\prime}=\mathbf{A}^{n}$ and $\mathbf{A}_{r}^{\prime}=\bigcap_{i=1}^{r} \mathbf{A}_{i}=\mathbf{A}_{r-1}^{\prime} \cap \mathbf{A}_{r}$ for $r>0$.
The solutions to the instance $=$ the elements in \mathbf{A}_{q}^{\prime}.
Assume that we know a way to represent subpowers of A, a way to recognise $\operatorname{Rep}(\emptyset)$, and an algorithm \mathfrak{A} that takes $\operatorname{Rep}\left(\mathbf{A}_{r-1}^{\prime}\right)$ and $C_{r}=\left(\bar{s}_{i}, R_{i}\right)$ and computes $\operatorname{Rep}\left(\mathbf{A}_{r}^{\prime}\right)$.

This algorithm solves any problem in $\operatorname{CSP}(\mathbf{A})$!

Small generating sets

For \mathfrak{A} to be polynomial, Rep must be "compact".
One way to represent a subpower is by a generating set.
For each n, let $g_{\mathbf{A}}(n)$ denote the smallest k such that each subalgebra of \mathbf{A}^{n} has a generating set of size $\leq k$.

Assume $g_{\mathbf{A}}(n)$ is bounded by a polynomial function.
Can \mathfrak{A} be made polynomial then?
Theorem 12 (Idziak,Marković,McKenzie,Valeriote,Willard) Yes.

Details follow an algorithm that was first used by Dalmau for Mal'tsev algebras and then for GMM, a common generalisation of Mal'tsev and NU.

Few Subpowers

An algebra \mathbf{A} is said to have few subpowers if the function $s_{\mathbf{A}}(n)=\log _{2}\left|\left\{\mathbf{B}: \mathbf{B} \leq \mathbf{A}^{n}\right\}\right| \leq p(n)$ for some polynomial p. Examples: NU algebras (Baker-Pixley'74), Mal'tsev alg's.

Non-Examples: semilattices.

Theorem 13 (Berman+IMMVW'07)

For any algebra \mathbf{A}, the functions $s_{\mathbf{A}}(n)$ and $g_{\mathbf{A}}(n)$ are

- either both bounded by a polynomial from above,
- or both bounded by an exponential function from below.

In particular, few subpowers \Leftrightarrow small generating sets.

Few Subpowers: A Mal'tsev condition

Theorem 14 (Berman+IMMVW'07) A finite algebra has few subpowers iff it has a k-edge term for some $k>1$. A k-edge operation is a $(k+1)$-ary operation satisfying

$$
\begin{aligned}
t(x, x, y, y, y, \ldots, y, y) & =y \\
t(x, y, x, y, y, \ldots, y, y) & =y \\
t(y, y, y, x, y, \ldots, y, y) & =y \\
t(y, y, y, y, x, \ldots, y, y) & =y \\
& \vdots \\
t(y, y, y, y, y, \ldots, y, x) & =y
\end{aligned}
$$

NB. 2-edge $=$ Mal'tsev.

