Andrei Krokhin - Complexity of Constraint Satisfaction

The Complexity of Constraint Satisfaction Problems

1

Andrei Krokhin Durham University

Tutorial, Part II - Here and Now

Recap from Yesterday's Lecture

- Three forms of CSP: Variable-Value, Sat, and Hom
- Parameterisation: $CSP(\Gamma)$, $CSP(\mathcal{B})$
- Feder-Vardi (Dichotomy) Conjecture
- Three approaches: graphs, logic, and algebra
- $Pol(\Gamma)$ determines the complexity of $CSP(\Gamma)$

Today

- 1. Constraints and Their Complexity: An introduction
- 2. Universal Algebra for CSP: A general theory
 - From clones to algebras
 - From algebras to varieties
 - Hardness results
 - Algebraic Dichotomy Conjecture
 - Some tractability results
- **3**. UA (and a bit of logic) for CSP: A bigger picture

Reducing the Domain

For a unary operation f and a relation R on D, let $f(R) = \{(f(a_1), \dots, f(a_n)) \mid (a_1, \dots, a_n) \in R\}.$ For a constraint language Γ , let $f(\Gamma) = \{f(R) \mid R \in \Gamma\}.$

Theorem 1 (Jeavons, 1998) Let Γ be finite, and let $f \in Pol(\Gamma)$ be unary with minimal range. Then $CSP(\Gamma)$ and $CSP(f(\Gamma))$ are polynomial-time equivalent.

Proof. Take an instance $\mathcal{P} = \bigwedge R_i(\overline{s}_i)$ of $\operatorname{CSP}(\Gamma)$ and consider the instance $\mathcal{P}' = \bigwedge f(R_i)(\overline{s}_i)$ of $\operatorname{CSP}(f(\Gamma))$.

Since $f(R_i) \subseteq R_i$, we have $Sol(\mathcal{P}') \subseteq Sol(\mathcal{P})$, and conversely, for each $\varphi \in Sol(\mathcal{P})$, $f \circ \varphi$ is a solution to \mathcal{P}' . Mapping $\mathcal{P}' \mapsto \mathcal{P}$ is the reduction in the other direction.

Adding the Constants

By previous slide, assume that unary operations in $Pol(\Gamma)$ form a permutation group G, i.e., Γ is a core.

Theorem 2 (Bulatov, Jeavons, K, 2005) Let $\Gamma' = \Gamma \cup \{\{a\} \mid a \in D\}$. Then $CSP(\Gamma)$ and $CSP(\Gamma')$ are polynomial-time equivalent.

Proof. Obviously, $CSP(\Gamma)$ reduces to $CSP(\Gamma')$.

The other direction. Let $D = \{a_1, \ldots, a_n\}$. Then $R_G \in \langle \Gamma \rangle$ where

$$R_G = \{ (g(a_1), \dots, g(a_n)) \mid g \in G \}.$$

We may assume that $R_G \in \Gamma$ and $=_D \in \Gamma$.

Proof cont'd

Take an instance \mathcal{P}' of $CSP(\Gamma')$ over a set of variables V'and build an equivalent instance \mathcal{P} of $CSP(\Gamma)$ as follows.

- Include all constraints from \mathcal{P}' to \mathcal{P}
- Introduce new variables $y_a, a \in D$
- Replace each constraint of the form x = a with $x = y_a$
- Introduce new constraint $R_G(y_{a_1}, \ldots, y_{a_n})$

Any solution of \mathcal{P}' extends to a solution of \mathcal{P} by $y_{a_i} \mapsto a_i$. If ϕ is a solution to \mathcal{P} then we have $\phi(y_{a_1}, \ldots, y_{a_n}) = (g(a_1), \ldots, g(a_n))$ for some $g \in G$. Then $g^{-1} \circ \phi$ (restricted to V') is a solution to \mathcal{P}' .

Search Problem

Theorem 3 (Bulatov, Jeavons, K, 2005) If the decision problem $CSP(\Gamma)$ is tractable then the corresponding search problem is tractable as well.

Proof. Take an instance \mathcal{P} of $\text{CSP}(\Gamma)$ and build an equivalent instance \mathcal{P}' of $\text{CSP}(f(\Gamma))$ s.t. $Sol(\mathcal{P}') \subseteq Sol(\mathcal{P})$. Remember: $\text{CSP}(f(\Gamma) \cup \{\{a\} \mid a \in f(D)\})$ is tractable.

For all variables x (in order)

for all values $a \in f(D)$ if $\mathcal{P}' \wedge (x = a)$ is satisfiable set $\mathcal{P}' := \mathcal{P}' \wedge (x = a)$ and go to next variable

From CSP to Algebras

Definition 1 A finite algebra is a pair $\mathbf{A} = (D, F)$ where D is a finite set and F is a family of operations on D.

The clone $\langle F \rangle$ is called the clone of term operations of **A**. Two algebras $\mathbf{A}_1 = (D, F_1)$ and $\mathbf{A}_2 = (D, F_2)$ are said to be term equivalent if they have the same clone of term op's.

Definition 2 Let $\mathbf{A} = (D, F)$ be a finite algebra. Let $\operatorname{CSP}(\mathbf{A}) = \{\operatorname{CSP}(\Gamma) \mid \Gamma \subseteq \operatorname{Inv}(F), |\Gamma| < \infty\}.$ We say that \mathbf{A} is tractable if each problem in $\operatorname{CSP}(\mathbf{A})$ is tractable, and \mathbf{A} is **NP**-complete if some problem in $\operatorname{CSP}(\mathbf{A})$ is **NP**-complete.

Note: Term equivalent algebras have the same complexity.

A View on CSP(A)

Fact. Relations from Inv(F) are universes of algebras from $SP_{fin}(\mathbf{A})$ (the so-called subpowers of \mathbf{A}).

Take an instance $\{(\overline{s}_1, R_1), \dots, (\overline{s}_q, R_q)\}$ of a problem in $CSP(\mathbf{A})$, over a set of variables $V = \{x_1, \dots, x_n\}$.

For a constraint (\overline{s}_i, R_i) , consider the following subalgebra \mathbf{A}_i of \mathbf{A}^V : $\{\overline{a} \in D^V \mid \operatorname{pr}_{\overline{s}_i} \overline{a} \in R_i\}.$

Solutions to the instance = elements in $\bigcap_{i=1}^{q} \mathbf{A}_{i}$.

Hence, $\text{CSP}(\mathbf{A}) = \text{SUBALGEBRA INTERSECTION problem:}$ "given" subalgebras $\mathbf{A}_1, \ldots, \mathbf{A}_q$ of $\mathbf{A}^k, k \ge 1$, is it true that $\bigcap_{i=1}^q \mathbf{A}_i \neq \emptyset$?

Varieties

Definition 3 For a class \mathcal{K} of similar algebras, let

- $H(\mathcal{K})$ be the class of all hom images of algebras from \mathcal{K}
- $S(\mathcal{K})$ be the class of all subalgebras of algebras from \mathcal{K}
- $\mathsf{P}(\mathcal{K})$ and $\mathsf{P}_{fin}(\mathcal{K})$ be the classes of all and all finite, respectively, direct products of algebras from \mathcal{K}

A class of similar algebras that is closed under the operators H, S and P is called a variety.

For an algebra \mathbf{A} , the class $\mathsf{HSP}(\mathbf{A})$ is the variety generated by \mathbf{A} , and is denoted $\operatorname{var}(\mathbf{A})$.

From Algebras to Varieties

Theorem 4 (Bulatov, Jeavons, 2003) If an algebra **A** is tractable then every finite algebra in var(**A**) is tractable. If var(**A**) contains a finite **NP**-complete algebra then **A** is **NP**-complete.

Proof. We know $(\mathsf{HSP}(\mathbf{A}))_{fin} = \mathsf{HSP}_{fin}(\mathbf{A}).$

Let $\mathbf{B} = (B, F_B)$ be a subalgebra or a homomorphic image or a finite direct power of $\mathbf{A} = (D, F_A)$.

Take a finite $\Gamma \subseteq \operatorname{Inv}(F_B)$. We need to reduce $\operatorname{CSP}(\Gamma)$ to $\operatorname{CSP}(\Gamma')$ for some finite $\Gamma' \subseteq \operatorname{Inv}(F_A)$.

If **B** is a subalgebra of **A** then $Inv(F_B) \subseteq Inv(F_A)$, so we can take $\Gamma' = \Gamma$.

Proof: Homomorphic Images

Let $\psi : \mathbf{A} \to \mathbf{B}$ be a surjective homomorphism. For a k-ary relation R on B, let

$$\psi^{-1}(R) = \{(a_1, \dots, a_k) \in D^k \mid (\psi(a_1), \dots, \psi(a_k)) \in R\}$$

Fact. If $R \in \text{Inv}(F_B)$ then $\psi^{-1}(R) \in \text{Inv}(F_A)$.

Take $\Gamma' = \{ \psi^{-1}(R) \mid R \in \Gamma \}.$

The reduction from $\text{CSP}(\Gamma)$ to $\text{CSP}(\Gamma')$ is straightforward: an instance $\bigwedge R_i(\overline{s}_i)$ is transformed into $\bigwedge \psi^{-1}(R_i)(\overline{s}_i)$.

Proof: Finite Direct Powers

Let $\mathbf{B} = \mathbf{A}^k$.

Let R be an m-ary relation on D^k . Form an km-ary relation R' on D as follows: if $((a_{11}, \ldots, a_{1k}), \ldots, (a_{m1}, \ldots, a_{mk})) \in R$ then $(a_{11}, \ldots, a_{1k}, \ldots, a_{m1}, \ldots, a_{mk}) \in R'$. Take $\Gamma' = \{R' \mid R \in \Gamma\}$. We have $\Gamma' \subseteq \text{Inv}(F_A)$. Take instance $\bigwedge R_i(x_1, \ldots, x_{n_i})$ of $\text{CSP}(\Gamma)$. For every variable x_i in it, introduce new variables x_i^1, \ldots, x_i^k . Transform the instance into an equivalent instance

$$\bigwedge R'_i(x_1^1,\ldots,x_1^k,\ldots,x_{n_i}^1,\ldots,x_{n_i}^k).$$

Varieties and Identities

Definition 4 An equational class is a class of all algebras (in a given signature) satisfying a given set of identities.

Example 1 • Mal'tsev f(x, y, y) = f(y, y, x) = x

- Semilattice $x \cdot x = x$, $x \cdot y = y \cdot x$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- Near-unanimity (NU)

 $f(y, x, \dots, x) = f(x, y, \dots, x) = \dots = f(x, x, \dots, y) = x$

Theorem 5 (Birkhoff) Varieties = equational classes. Thus, identities of \mathbf{A} determine the complexity of $CSP(\mathbf{A})$.

Idempotent Algebras

- We have shown that we only need to consider constraint languages Γ which contain all constant relations $\{a\}$.
- Then all polymorphisms of Γ are idempotent, that is, they satisfy the identity $f(x, \ldots, x) = x$.

Hence, we need to classify only idempotent algebras and idempotent varieties.

NP-complete Algebras: *G*-sets

For a permutation group G on D, a G-set is an algebra all whose operations are of the form $f(x_1, \ldots, x_n) = g(x_i)$ for some $g \in G$ and $1 \leq i \leq n$.

If a G-set is idempotent then g = id and f is a projection.

Lemma 1 If $\mathbf{A} = (D, F)$ is a non-trivial idempotent G-set then \mathbf{A} is **NP**-complete.

Proof. Assume $0, 1 \in D$. Inv(F) is the set of all relations on D. Hence $R = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\} \in Inv(F)$. Recall that $CSP(\{R\})$ is the NOT-ALL-EQUAL SAT problem, it's **NP**-complete.

NP-complete Algebras and Conjecture

Theorem 6 (Bulatov, Jeavons, K, 2005) An idempotent algebra **A** is **NP**-complete if **var**(**A**) contains a G-set.

Proposition 1 For an idempotent algebra \mathbf{A} , $\mathbf{var}(\mathbf{A})$ contains a G-set iff $\mathsf{HS}(\mathbf{A})$ contains a G-set.

All known NP-complete algebras satisfy this condition.

Conjecture 1 (BJK, 2005) (Structure of Dichotomy) An idempotent algebra \mathbf{A} is \mathbf{NP} -complete if $\mathsf{HS}(\mathbf{A})$ contains a G-set, and it is tractable otherwise.

The Mother and The Highlights

Theorem 7 (Schaefer'78)

The dichotomy conjecture holds for $D = \{0, 1\}$.

Schaefer's description perfectly aligns with Conjecture 1. The theorem was one of main arguments for FV conjecture.

Definition 5 An algebra is called conservative if every subset is a subalgebra.

Theorem 8 (Bulatov'02-06) The Structure of Dichotomy conjecture holds

1. for all three-element algebras, and

2. for all conservative algebras.

Taylor Operations

Theorem 9 (Taylor, 1977) For any finite idempotent algebra A, TFAE

- 1. The variety $var(\mathbf{A})$ does not contain a G-set.
- 2. The algebra A has an n-ary (Taylor) term operation f satisfying n identities of the form

$$f(x_{i1}, \dots, x_{in}) = f(y_{i1}, \dots, y_{in}), \quad i = 1, \dots, n$$

where all $x_{ij}, y_{ij} \in \{x, y\}$ and $x_{ii} \neq y_{ii}$.

Ex: Mal'tsev, semilattice, NU operations are all Taylor. NB. For idempotent algebras, no Taylor term \Rightarrow **NPc** and, if the conjecture is true, then Taylor term \Rightarrow **P**.

WNU Operations

An idempotent operation is called weak NU operation if f(y, x, ..., x) = f(x, y, ..., x) = ... = f(x, x, ..., y).Examples: $x_1 \lor ... \lor x_n, \quad x_1 + ... + x_n + x_{n+1} \pmod{n}.$ NB. Any WNU operation is a Taylor operation.

Theorem 10 (Maróti, McKenzie, 2006) For any finite idempotent algebra \mathbf{A} with a Taylor term has an WNU term operation f of some arity ≥ 2 .

NB. For idempotent algebras, no WNU term \Rightarrow **NPc**, and, if the conjecture is true, then WNU term \Rightarrow **P**.

WNU: Application in Graph Theory

- Recall that, for a digraph \mathcal{H} , \mathcal{H} -COLOURING = $CSP(\mathcal{H})$.
- Assume wlog that \mathcal{H} is a core. If H is a directed cycle then $CSP(\mathcal{H})$ is tractable. Why?
- Same if \mathcal{H} is a disjoint union of directed cycles.

Conjecture 2 (Bang-Jensen, Hell, '90)

If \mathcal{H} is a core digraph without sources or sinks that is not as above then $CSP(\mathcal{H})$ is **NP**-complete.

Theorem 11 (Barto, Kozik, Niven' 08) Let \mathcal{H} be a core digraph without sources or sinks. If \mathcal{H} has a WNU polymorphism then it is a disjoint union of directed cycles. **Corollary 1** Conjecture 2 holds.

How To Prove Tractability

Currently, the two main (systematic) methods are:

- via bounded width (k-minimality or Datalog)
 More on this in tomorrow's lecture
- via small generating sets

More on this now

An Algorithm to Solve CSP(A)

Take a CSP instance $\{(\overline{s}_1, R_1), \dots, (\overline{s}_q, R_q)\}$ of a problem in CSP(**A**), over a set of variables $V = \{x_1, \dots, x_n\}$.

For a constraint (\overline{s}_i, R_i) , consider the following subalgebra \mathbf{A}_i of \mathbf{A}^V : $\{\overline{a} \in D^V \mid \operatorname{pr}_{\overline{s}_i} \overline{a} \in R_i\}.$

Let $\mathbf{A}'_0 = \mathbf{A}^n$ and $\mathbf{A}'_r = \bigcap_{i=1}^r \mathbf{A}_i = \mathbf{A}'_{r-1} \cap \mathbf{A}_r$ for r > 0.

The solutions to the instance = the elements in \mathbf{A}'_q .

Assume that we know a way to represent subpowers of \mathbf{A} , a way to recognise $Rep(\emptyset)$, and an algorithm \mathfrak{A} that takes $Rep(\mathbf{A}'_{r-1})$ and $C_r = (\overline{s}_i, R_i)$ and computes $Rep(\mathbf{A}'_r)$.

This algorithm solves any problem in $CSP(\mathbf{A})$!

Small generating sets

- For \mathfrak{A} to be polynomial, Rep must be "compact".
- One way to represent a subpower is by a generating set.
- For each n, let $g_{\mathbf{A}}(n)$ denote the smallest k such that each subalgebra of \mathbf{A}^n has a generating set of size $\leq k$.
- Assume $g_{\mathbf{A}}(n)$ is bounded by a polynomial function. Can \mathfrak{A} be made polynomial then?

Theorem 12 (Idziak, Marković, McKenzie, Valeriote, Willard) Yes.

Details follow an algorithm that was first used by Dalmau for Mal'tsev algebras and then for GMM, a common generalisation of Mal'tsev and NU.

Few Subpowers

An algebra **A** is said to have few subpowers if the function $s_{\mathbf{A}}(n) = \log_2 |\{\mathbf{B} : \mathbf{B} \leq \mathbf{A}^n\}| \leq p(n)$ for some polynomial p. Examples: NU algebras (Baker-Pixley'74), Mal'tsev alg's. Non-Examples: semilattices.

Theorem 13 (Berman+IMMVW'07) For any algebra \mathbf{A} , the functions $s_{\mathbf{A}}(n)$ and $g_{\mathbf{A}}(n)$ are

- either both bounded by a polynomial from above,
- or both bounded by an exponential function from below.

In particular, few subpowers \Leftrightarrow small generating sets.

Few Subpowers: A Mal'tsev condition

Theorem 14 (Berman+IMMVW'07) A finite algebra has few subpowers iff it has a k-edge term for some k > 1.

A k-edge operation is a (k + 1)-ary operation satisfying

$$t(x, x, y, y, y, \dots, y, y) = y$$

$$t(x, y, x, y, y, \dots, y, y) = y$$

$$t(y, y, y, x, y, \dots, y, y) = y$$

$$t(y, y, y, y, x, \dots, y, y) = y$$

$$\vdots$$

 $t(y, y, y, y, y, \dots, y, x) = y$ NB. 2-edge = Mal'tsev.