Andrei Krokhin - Complexity of Constraint Satisfaction

The Complexity of Constraint Satisfaction Problems

1

Andrei Krokhin Durham University

Tutorial, Part III - Here and Now

Recap from Previous Lectures

- Three forms of CSP: Variable-Value, Sat, and Hom
- Parameterisation: $CSP(\Gamma)$, $CSP(\mathcal{B})$
- Translation into universal algebra, $CSP(\mathbf{A})$
- Algebraic Dichotomy Conjecture
- Hardness results
- Tractability via Few Subpowers

Today

- 1. Constraints and Their Complexity: An introduction
- 2. Universal Algebra for CSP: A general theory
- 3. UA (and a bit of logic) for CSP: A bigger picture
 - Datalog and some fragments
 - Finer complexity classification
 - Some Tame Congruence Theory
 - Hardness/non-expressibility results
 - A private suspicion

Datalog

- A Datalog Program consists of rules, and takes as input a relational structure.
- a typical Datalog rule might look like this one:

 $\theta_1(x,y) \leftarrow \theta_2(w,u,x), \theta_3(x), R_1(x,y,z), R_2(x,w)$

- the relations R_1 and R_2 are basic relations of the input structures (EDB's);
- the relations θ_i are auxiliary relations (IDB's);
- the rule stipulates that if the condition on the righthand side (the body of the rule) holds, then the condition of the left (the head) should also hold.

HORN 3-SAT

Recall: HORN 3-SAT is $CSP(\mathcal{B})$ where $\mathcal{B} = (\{0,1\}; R, \{0\}, \{1\})$ with $R = \{(x, y, z) : (y \land z) \to x\}.$

Here's an unsatisfiable instance:

Datalog Program for HORN 3-SAT

- A Datalog program recursively computes the auxiliary relations (IDBs).
- Intuition: locally derive new constraints, trying to get a contradiction (to certify that there's no solution).

 $\begin{aligned} \lambda(x) &\leftarrow 1(x) \\ \lambda(x) &\leftarrow \lambda(y), \lambda(z), R(x, y, z) \\ \gamma &\leftarrow \lambda(x), 0(x) \end{aligned}$

The 0-ary relation γ is the goal predicate of the program: it "lights up" precisely if the input structure admits NO homomorphism to the target structure \mathcal{B} .

Definability in Datalog

We say that $\operatorname{co-CSP}(\mathcal{B})$ is definable in Datalog if there exists a Datalog program that accepts precisely those structures that do not admit a homomorphism to \mathcal{B} .

In this case, \mathcal{B} is also said to have bounded width.

Theorem 1 If $\operatorname{co-CSP}(\mathcal{B})$ is definable in Datalog then $\operatorname{CSP}(\mathcal{B})$ is in **P**.

Idea: IDBs have bounded arity, so the program can do only polynomially many steps before stabilising.

Theorem 2 (Feder, Vardi '98) If $\mathcal{B} = (Z_p; R, \{1\})$ where $R = \{(x, y, z) : x + y = z\}$ then co-CSP(\mathcal{B}) is not definable in Datalog.

A Fragment: Linear Datalog

A Datalog program is said to be linear if each rule contains at most one occurrence of an IDB in the body.

In other words, each rule looks like this

 $\theta_1(x,y) \leftarrow \theta_2(w,u,x), R_1(x,y,z), R_2(x,w)$

where θ_i 's are the only IDBs in it, or like this

$$\theta_1(x,y) \leftarrow R_1(x,y,z), R_2(x,w).$$

Our program for HORN 3-SAT is non-linear.

Theorem 3 (Afrati,Cosmodakis '89) HORN 3-SAT is not definable in Linear Datalog.

PATH or DIRECTED REACHABILITY

PATH is co-CSP(\mathcal{B}) where $\mathcal{B} = (\{0, 1\}; \leq, \{0\}, \{1\})$. Here's an unsatisfiable instance (and the target) :

A Linear Program for PATH

$$\begin{array}{rcl} \lambda(x) & \leftarrow & 1(x) \\ \lambda(y) & \leftarrow & \lambda(x), R_{\leq}(x,y) \\ \gamma & \leftarrow & \lambda(x), 0(x) \end{array}$$

Expressibility in Linear Datalog

Recall that PATH is **NL**-complete.

Theorem 4 If $\text{co-CSP}(\mathcal{B})$ is definable in Linear Datalog then $\text{CSP}(\mathcal{B})$ is in **NL**.

Idea: by the linearity, the program accepts if and only if there is a derivation path that ends in the goal predicate: this amounts to directed reachability.

Coincidence? For each $CSP(\mathcal{B})$ currently known to be in **NL**, co- $CSP(\mathcal{B})$ is definable in Linear Datalog.

A Fragment: Symmetric Datalog

A Datalog program is said to be symmetric if (i) it is linear and (ii) it is invariant under symmetry of rules.

In other words, if the program contains the rule

 $\theta_1(x,y) \leftarrow \theta_2(w,u,x), R_1(x,y,z), R_2(x,w)$

then it must also contain its symmetric:

$$\theta_2(w, u, x) \leftarrow \theta_1(x, y), R_1(x, y, z), R_2(x, w).$$

Our program for PATH is linear, but not symmetric. **Theorem 5 (Egri,Larose,Tesson '08)** PATH is not definable in Symmetric Datalog.

UNDIRECTED REACHABILITY

This is $\operatorname{co-CSP}(\mathcal{B})$ where $\mathcal{B} = (\{0, 1\}; =, \{0\}, \{1\})$. Here's an unsatisfiable instance (and the target) :

A Symmetric Program for UNDIRECTED Reachability

$$\lambda(x) \leftarrow 1(x)$$

$$\lambda(y) \leftarrow \lambda(x), R_{=}(x, y)$$

$$\lambda(x) \leftarrow \lambda(y), R_{=}(x, y)$$

$$\gamma \leftarrow \lambda(x), 0(x)$$

Expressibility in Symmetric Datalog

Theorem 6 (Reingold'06) UNDIRECTED REACHABILITY is in L.

Theorem 7 (Egri,Larose,Tesson'07) If $co-CSP(\mathcal{B})$ is definable in Symmetric Datalog then $CSP(\mathcal{B})$ is in **L**.

Idea: the program accepts if and only if there is a derivation path that ends in the goal predicate: by the symmetry, this amounts to undirected reachability. Coincidence? For each $CSP(\mathcal{B})$ currently known to be in L, co- $CSP(\mathcal{B})$ is definable in Symmetric Datalog.

Back to Algebra: TCT Types, Vaguely

- to each (finite) algebra **A** is associated a set of types describing the basic "local behaviours" of **A**;
- the possible types are:
 - the unary type, or type 1;
 - the affine type, or type 2;
 - the Boolean type, or type **3**;
 - the lattice type, or type 4;
 - the semilattice type, or type 5.
- the typeset of the variety var(A) is the union of all typesets of all finite algebras in it.

The Ordering of the Types

We shall refer later to the following ordering of types:

1 < 2 < 3 > 4 > 5 > 1

Strictly Simple Algebras

A factor of an algebra is a homomorphic image of a subalgebra.

An algebra is strictly simple if it has no proper factors, i.e. it is simple and has no non-trivial subalgebras.

Every strictly simple idempotent algebra has a unique type associated to it.

Lemma 1 (Valeriote '07) Let A be an idempotent algebra, and suppose type i is in the typeset of var(A). Then A has a strictly simple factor of type $\leq i$.

Strictly Simple Algebras and Types

Á. Szendrei classified strictly simple algebras by types. We need the following four consequences:

Lemma 2 (unary type 1) Let A be a strictly simple idempotent algebra of unary type. Then it is a 2-element algebra, and its basic operations preserve the relation $\{0,1\}^3 \setminus \{(0,0,0), (1,1,1)\}.$ This smells of NAE SAT. Lemma 3 (affine type 2) Let A be a strictly simple idempotent algebra of affine type. Then there exists an Abelian group structure on D such that the basic operations of A preserve the relation $\{(x, y, z) : x + y = z\}$. This smells of LINEAR EQ'S.

Strictly Simple Algebras and Types

Lemma 4 (lattice type 4) Let **A** be a strictly simple idempotent algebra of lattice type. Then it is a 2-element algebra, and its basic operations preserve the usual ordering \leq on $\{0,1\}$. This smells of PATH.

Lemma 5 (semilattice type 5) Let A be a strictly simple idempotent algebra of semilattice type. Then it is isomorphic to a 2-element algebra whose basic operations preserve the relation $\{(x, y, z) : (y \land z) \rightarrow x\}$. This smells of HORN 3-SAT.

A Reduction Lemma

Lemma 6 (Larose, Tesson '07) Let \mathcal{B} be a core and let \mathbf{A} be the (idempotent) algebra associated to \mathcal{B} . Let \mathbf{A}' be a factor of \mathbf{A} , and let \mathcal{B}' be a structure whose basic relations are invariant under the operations of \mathbf{A}' . Then

- there is a logspace reduction from $CSP(\mathcal{B}')$ to $CSP(\mathcal{B})$;
- if co-CSP(B) is definable in (Linear, Symmetric)
 Datalog then so is co-CSP(B').

Hardness and Non-Definability

Corollary 1 (LT'08) For a core structure \mathcal{B} with associated idempotent algebra \mathbf{A} , the following holds.

$var(\mathbf{A})$		$\operatorname{CSP}(\mathcal{B})$	$\operatorname{co-CSP}(\mathcal{B})$
omits	admits	complexity	definability
	1	NP -complete	not Datalog
1	2	$mod_p \mathbf{L}$ -hard ($\exists p$)	not Datalog
1,2	5	P-hard	not Linear Datalog
1,2,5	4	NL-hard	not Symmetric Datalog

Two Conjectures and A Private Suspicion

Strictly for those who believe in beauty ...

Suspicion 1 Let \mathcal{B} be a core and let \mathbf{A} be the idempotent algebra associated to it.

- (BJK) If $var(\mathbf{A})$ omits type **1** then $CSP(\mathcal{B})$ is in **P**;
- (Larose, Zádori) var(A) omits types 1 and 2 iff co-CSP(B) is in Datalog;
- $var(\mathbf{A})$ omits types **1**, **2** and **5** iff $co-CSP(\mathcal{B})$ is in Linear Datalog (bonus: iff $CSP(\mathcal{B})$ in NL);
- var(A) omits types 1, 2, 4 and 5 iff co-CSP(B) is in Symmetric Datalog (bonus: iff CSP(B) in L).

Some Evidence

- Theorem 8 (Larose, Tesson '07) For two-element structures, everything is as suspected.
- Theorem 9 (Bulatov'02-06)
- The Larose-Zádori (bounded width) conjecture holds
 - 1. for all three-element algebras, and
 - 2. for all conservative algebras.

Some More Evidence

Let \mathcal{B} be a core and let \mathbf{A} be its idempotent algebra.

	nec. cond.	sufficient condition
	for $var(\mathbf{A})$	(polymorphism for \mathcal{B})
Datalog	no types	Totally symmetric idemp. (FV'98)
	1 and 2	2-semilattice (Bulatov'06)
		NU (FV'98; JCC'98)
		Jónsson operations (Barto,Kozik'08)
Lin Dat	no 1,2,5	majority (3-ary NU) (Dalmau,K'08)
Sym Dat	no 1,2,4,5	maj. + Mal'tsev (Dalmau,Larose'08)

How to Put a CSP in Datalog, Vaguely

For a $CSP(\mathcal{B})$ instance \mathcal{A} , a partial solution with domain $A' \subseteq A$ is a partial map $A' \to B$ that satisfies all constraints involving only elements in A'.

Say that a winning strategy for $(\mathcal{A}, \mathcal{B})$ is a "consistent" family of partial solutions with domains of bounded size. Fact. For any \mathcal{B} , co-CSP (\mathcal{B}) is definable in Datalog iff we have $\mathcal{A} \to \mathcal{B}$ for each pair $(\mathcal{A}, \mathcal{B})$ with a winning strategy. Show: if \mathcal{B} has property X (e.g., a given polymorphism) then a winning strategy for $(\mathcal{A}, \mathcal{B})$ implies $\mathcal{A} \to \mathcal{B}$.

Summary I: What We've Seen

- 1. Forms of CSP: Var-Val, Sat, and Hom.
- 2. Constraint languages, $CSP(\Gamma)$, $CSP(\mathcal{B})$
- 3. Feder-Vardi (Dichotomy) Conjecture
- 4. Approaches: Graphs, Logic, Algebra
- 5. Reduction to classification of algebras
- 6. Algebraic Dichotomy Conjecture
- 7. Tractability via Few Subpowers and Datalog
- 8. Fragments of Datalog, TCT types, \mathbf{L} and \mathbf{NL}

Summary II: What We Didn't See

- Apologies: There is a lot of very nice (relevant) results that I didn't have time to mention.
- Challenge for UA: further investigate properties of subpowers that might be algorithmically usable (e.g., marry few subpowers and bounded width).
- A look beyond: There exist CSP-related problems where other kind of maths (including other kind of algebra) is naturally used.