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Equality constraint languages

Let φ be a first-order formula over the empty language,
i.e., φ contains no function or relation symbols except =.

E.g. φ(x , y , z) ↔ x = y ∨ (y 6= z ∧ z 6= x).

Definition
φ is called an equality constraint.

Definition
Let Σ be a set of equality constraints.
Σ is called an equality constraint language.
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Equality constraint languages

Let φ be a first-order formula over the empty language,
i.e., φ contains no function or relation symbols except =.

E.g. φ(x , y , z) ↔ x = y ∨ (y 6= z ∧ z 6= x).

Definition
φ is called an equality constraint.

Definition
Let Σ be a set of equality constraints.
Σ is called an equality constraint language.

M. Pinsker (Caen) Many equality constraints SSAOS 2008 / Třešt’ 4 / 17
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Primitive positive definitions and the problem

Definition
φ is pp-definable (primitively positively definable) from Σ ↔
φ is logically equivalent to a formula of the form
∃xj1 . . .∃xjn φ1 ∧ . . . ∧ φm, with φi ∈ Σ ∪ {x = y}.

Definition
Σ0,Σ1 are pp-equivalent ↔
all formulas of Σ0 are pp-definable from Σ1, and vice-versa.

Problem (Formulas)
Are there uncountably many pp-inequivalent equality constraint
languages?
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The problem, strong version

Definition
Σ independent ↔
for all φ ∈ Σ, φ is not pp-definable from Σ \ {φ}.

Problem, strong version
Is there an infinite independent equality constraint language?
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Reducts of relational structures

Γ = (X ,R) . . . relational structure (X infinite).

Problem
Determine the reducts of Γ, i.e.,
all relational structures which are first-order definable from Γ.

Usually done up to first-order interdefinability, i.e.,
structures Γ0, Γ1 equivalent ↔
Γi has a first-order definition in Γ1−i .

Examples

P. J. Cameron: There are 5 reducts of (Q, <) up to
f.o.-interdefinability.
M. Junker and M. Ziegler: There are 116 reducts of (Q, <, 0) up to
f.o.-interdefinability.
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Reducts up to pp-interdefinability

Problem
Given a structure Γ, determine its reducts up to primitive positive
interdefinability.

First step
Try with the simplest structure, Γ := (X ,=).

Observation
Equality constraint languages correspond to reducts of Γ.

Problem (Reducts)
Is the number of reducts of Γ uncountable (up to pp-interdefinability)?
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The Constraint Satisfaction Problem

Reducts of (X ,=) as templates of CSPs.

Fixed structure Γ = (X ,R).

Input: A finite structure ∆.

Question: Is there a homomorphism from ∆ to Γ?

Complexity unchanged if pp-definable relations are added.

Hence the name equality constraint languages.

(Bodirsky – Chen – Kara)
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The Constraint Satisfaction Problem

Reducts of (X ,=) as templates of CSPs.

Fixed structure Γ = (X ,R).

Input: A finite structure ∆.

Question: Is there a homomorphism from ∆ to Γ?

Complexity unchanged if pp-definable relations are added.

Hence the name equality constraint languages.

(Bodirsky – Chen – Kara)

M. Pinsker (Caen) Many equality constraints SSAOS 2008 / Třešt’ 9 / 17
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CSP fanatics in Caen
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pp-definability and operations

Definitions
O . . . set of all finitary operations on X .

Let f ∈ O be n-ary operation and R ⊆ X m relation.
f preserves R ↔ f (r1, . . . , rn) ∈ R for all r1, . . . , rn ∈ R.

Pol(Γ) := {f ∈ O : f preserves all relations of Γ}.
Inv(F) := {R : R is preserved by all f ∈ F} (for F ⊆ O).

Fact
Inv Pol= closure operator on the relational structures
Pol Inv= closure operator on the sets of operations

Theorem (Bodirsky-Nešetřil)
Let Γ be ω-categorical. Then Inv Pol(Γ) = pp(Γ).
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Local clones

Definition
C ⊆ O is a clone ↔

C is closed under composition
I.e. f (g1, . . . , gn) ∈ C for all f , g1, . . . , gn ∈ C, and

C contains the projections
I.e. for all 1 ≤ k ≤ n the operation πn

k (x1, . . . , xn) = xk .

Definition
A clone C is locally closed or local ↔
C is closed in the product topology on X X (where X is discrete)

Fact
The local clones are exactly the Pol Inv-closed subsets of O.

M. Pinsker (Caen) Many equality constraints SSAOS 2008 / Třešt’ 12 / 17
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Local clones and pp-closed reducts

Observations
Via Pol− Inv, the reducts of (X ,=) correspond to local clones.

Those clones contain the group SX of all permutations of X .
Conversely, if a clone contains SX , then it induces a reduct of (X ,=).

More observations
Inv (or Pol) is an antiisomorphism between

the lattice of local clones above SX

and the pp-closed reducts of (X ,=)

Problem (Clones)
Is the number of local clones containing SX uncountable?
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All our problems

Problem (Formulas)
Is the number of pp-inequivalent equality constraint languages
uncountable?

Problem (Structures)
Is the number of pp-closed reducts of (X ,=) uncountable?

Problem (Clones)
Is the number of local clones containing SX uncountable?

Problem (Formulas strong)
Is there an infinite independent equality constraint language?
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Answer to: Formulas (strong)

Problem (Formulas strong)
Is there an infinite independent equality constraint language?

Answer (Formulas strong)
Yes.
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The formulas

For all n ≥ 3, write

δn := x1 6= y1 ∨ . . . ∨ xn 6= yn.

For all A ⊆ {1, . . . , n} with 1 < |A| < n, writing A = {j1, . . . , jr} with
j1 < j2 < . . . < jr , we set

κA := yj1 6= xj2 ∨ yj2 6= xj3 ∨ . . . ∨ yjr 6= xj1 .

Set
φn := δn ∧

∧
A⊆{1,...,n},1<|A|<n

κA.

Theorem (M. Bodirsky, H. Chen, MP 2008)
{φn : n ≥ 3} is independent.
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