Many independent equality constraints

Michael Pinsker

jointly with Manuel Bodirsky (Paris) and Hubie Chen (Barcelona)

LMNO Université de Caen Caen, France

SSAOS 2008 / Třešť

Formulas and primitive positive definitions

2 PP-closed relational structures

3 Local clones

M. Pinsker (Caen)

SSAOS 2008 / Třešť 3 / 17

 $\mathsf{E.g.} \ \phi(x,y,z) \leftrightarrow x = y \lor (y \neq z \land z \neq x).$

E.g.
$$\phi(x, y, z) \leftrightarrow x = y \lor (y \neq z \land z \neq x).$$

Definition

 ϕ is called an *equality constraint*.

E.g.
$$\phi(x, y, z) \leftrightarrow x = y \lor (y \neq z \land z \neq x).$$

Definition

 ϕ is called an *equality constraint*.

Definition

Let Σ be a set of equality constraints. Σ is called an *equality constraint language*.

 ϕ is *pp-definable* (*primitively positively definable*) from $\Sigma \leftrightarrow \phi$ is logically equivalent to a formula of the form $\exists x_{j_1} \dots \exists x_{j_n} \phi_1 \wedge \dots \wedge \phi_m$, with $\phi_i \in \Sigma \cup \{x = y\}$.

 ϕ is *pp-definable* (*primitively positively definable*) from $\Sigma \leftrightarrow \phi$ is logically equivalent to a formula of the form $\exists x_{j_1} \dots \exists x_{j_n} \phi_1 \wedge \dots \wedge \phi_m$, with $\phi_i \in \Sigma \cup \{x = y\}$.

Definition

 Σ_0, Σ_1 are *pp-equivalent* \leftrightarrow all formulas of Σ_0 are pp-definable from Σ_1 , and vice-versa.

 ϕ is *pp-definable* (*primitively positively definable*) from $\Sigma \leftrightarrow \phi$ is logically equivalent to a formula of the form $\exists x_{j_1} \dots \exists x_{j_n} \phi_1 \wedge \dots \wedge \phi_m$, with $\phi_i \in \Sigma \cup \{x = y\}$.

Definition

 Σ_0, Σ_1 are *pp-equivalent* \leftrightarrow all formulas of Σ_0 are pp-definable from Σ_1 , and vice-versa.

Problem (Formulas)

Are there uncountably many pp-inequivalent equality constraint languages?

M. Pinsker (Caen)

 Σ independent \leftrightarrow for all $\phi \in \Sigma$, ϕ is not pp-definable from $\Sigma \setminus \{\phi\}$.

 Σ independent \leftrightarrow for all $\phi \in \Sigma$, ϕ is not pp-definable from $\Sigma \setminus \{\phi\}$.

Problem, strong version

Is there an infinite independent equality constraint language?

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure (X infinite).

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure (X infinite).

Problem

Determine the reducts of Γ , i.e., all relational structures which are first-order definable from Γ .

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure (X infinite).

Problem

Determine the reducts of Γ , i.e., all relational structures which are first-order definable from Γ .

Usually done up to first-order interdefinability, i.e., structures Γ_0, Γ_1 equivalent \leftrightarrow Γ_i has a first-order definition in Γ_{1-i} .

 $\Gamma = (X, \mathcal{R}) \dots$ relational structure (X infinite).

Problem

Determine the reducts of Γ , i.e., all relational structures which are first-order definable from Γ .

Usually done up to first-order interdefinability, i.e.,

structures Γ_0, Γ_1 equivalent \leftrightarrow

 Γ_i has a first-order definition in Γ_{1-i} .

Examples

 P. J. Cameron: There are 5 reducts of (Q, <) up to f.o.-interdefinability. $\Gamma = (X, \Re) \dots$ relational structure (X infinite).

Problem

Determine the reducts of Γ , i.e., all relational structures which are first-order definable from Γ .

Usually done up to first-order interdefinability, i.e.,

structures Γ_0, Γ_1 equivalent \leftrightarrow

 Γ_i has a first-order definition in Γ_{1-i} .

Examples

- P. J. Cameron: There are 5 reducts of (Q, <) up to f.o.-interdefinability.
- M. Junker and M. Ziegler: There are 116 reducts of ($\mathbb{Q}, <, 0$) up to f.o.-interdefinability.

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (X, =)$.

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (X, =)$.

Observation

Equality constraint languages correspond to reducts of Γ .

Given a structure Γ , determine its reducts *up to primitive positive interdefinability*.

First step

Try with the simplest structure, $\Gamma := (X, =)$.

Observation

Equality constraint languages correspond to reducts of Γ .

Problem (Reducts)

Is the number of reducts of Γ uncountable (up to pp-interdefinability)?

The Constraint Satisfaction Problem

The Constraint Satisfaction Problem

Reducts of (X, =) as templates of CSPs.

Fixed structure $\Gamma = (X, \mathcal{R})$.

Fixed structure $\Gamma = (X, \mathcal{R})$.

Input: A finite structure Δ .

Fixed structure $\Gamma = (X, \mathcal{R})$.

Input: A finite structure Δ .

Question: Is there a homomorphism from Δ to Γ ?

- Fixed structure $\Gamma = (X, \mathcal{R})$.
- Input: A finite structure Δ .
- Question: Is there a homomorphism from Δ to Γ ?
- Complexity unchanged if pp-definable relations are added.

- Fixed structure $\Gamma = (X, \mathcal{R})$.
- Input: A finite structure Δ .
- Question: Is there a homomorphism from Δ to Γ ?
- Complexity unchanged if pp-definable relations are added.
- Hence the name equality constraint languages.

Fixed structure $\Gamma = (X, \mathcal{R})$.

Input: A finite structure Δ .

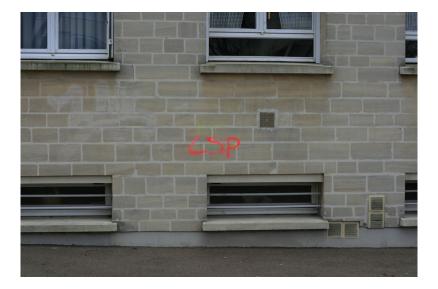
Question: Is there a homomorphism from Δ to Γ ?

Complexity unchanged if pp-definable relations are added.

Hence the name equality constraint languages.

(Bodirsky - Chen - Kara)

CSP fanatics in Caen



M. Pinsker (Caen)

 $0 \dots$ set of all finitary operations on *X*.

 $0 \dots$ set of all finitary operations on *X*.

Let $f \in \mathbb{O}$ be *n*-ary operation and $R \subseteq X^m$ relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

 $0 \dots$ set of all finitary operations on *X*.

Let $f \in \mathbb{O}$ be *n*-ary operation and $R \subseteq X^m$ relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Pol(Γ) := { $f \in \mathbb{O} : f$ preserves all relations of Γ }. Inv(\mathfrak{F}) := {R : R is preserved by all $f \in \mathfrak{F}$ } (for $\mathfrak{F} \subseteq \mathfrak{O}$).

 $0 \dots$ set of all finitary operations on *X*.

Let $f \in \mathbb{O}$ be *n*-ary operation and $R \subseteq X^m$ relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Pol(Γ) := { $f \in \mathbb{O} : f$ preserves all relations of Γ }. Inv(\mathfrak{F}) := {R : R is preserved by all $f \in \mathfrak{F}$ } (for $\mathfrak{F} \subseteq \mathfrak{O}$).

Fact

- Inv Pol= closure operator on the relational structures
- Pol Inv= closure operator on the sets of operations

Definitions

 $0 \dots$ set of all finitary operations on *X*.

Let $f \in \mathbb{O}$ be *n*-ary operation and $R \subseteq X^m$ relation. *f* preserves $R \leftrightarrow f(r_1, \ldots, r_n) \in R$ for all $r_1, \ldots, r_n \in R$.

Pol(Γ) := { $f \in \mathbb{O} : f$ preserves all relations of Γ }. Inv(\mathfrak{F}) := {R : R is preserved by all $f \in \mathfrak{F}$ } (for $\mathfrak{F} \subseteq \mathfrak{O}$).

Fact

- Inv Pol= closure operator on the relational structures
- Pol Inv= closure operator on the sets of operations

Theorem (Bodirsky-Nešetřil)

Let Γ be ω -categorical. Then Inv Pol(Γ) = $pp(\Gamma)$.

M. Pinsker (Caen)

Local clones

Definition

$\mathfrak{C}\subseteq \mathfrak{O} \text{ is a } \textit{clone} \leftrightarrow$

• C is closed under composition

I.e. $f(g_1, \ldots, g_n) \in \mathbb{C}$ for all $f, g_1, \ldots, g_n \in \mathbb{C}$, and

• C contains the projections

I.e. for all $1 \le k \le n$ the operation $\pi_k^n(x_1, \ldots, x_n) = x_k$.

Local clones

Definition

$\mathfrak{C}\subseteq \mathfrak{O} \text{ is a } \textit{clone} \leftrightarrow$

• C is closed under composition

I.e. $f(g_1, \ldots, g_n) \in \mathbb{C}$ for all $f, g_1, \ldots, g_n \in \mathbb{C}$, and

C contains the projections
I.e. for all 1 < k < n the operation πⁿ_k(x₁,..., x_n) = x_k.

Definition

A clone \mathbb{C} is *locally closed* or *local* \leftrightarrow \mathbb{C} is closed in the product topology on X^X (where X is discrete)

Local clones

Definition

$\mathfrak{C}\subseteq \mathfrak{O} \text{ is a } \textit{clone} \leftrightarrow$

• C is closed under composition

I.e. $f(g_1, \ldots, g_n) \in \mathbb{C}$ for all $f, g_1, \ldots, g_n \in \mathbb{C}$, and

C contains the projections
I.e. for all 1 ≤ k ≤ n the operation πⁿ_k(x₁,...,x_n) = x_k.

Definition

A clone \mathcal{C} is *locally closed* or *local* \leftrightarrow \mathcal{C} is closed in the product topology on X^X (where X is discrete)

Fact

The local clones are exactly the Pol Inv-closed subsets of $\ensuremath{\mathbb{O}}.$

Local clones and pp-closed reducts

Observations

Via Pol – Inv, the reducts of (X, =) correspond to local clones.

Via Pol – Inv, the reducts of (X, =) correspond to local clones. Those clones contain the group S_X of all permutations of X.

Via Pol – Inv, the reducts of (X, =) correspond to local clones. Those clones contain the group S_X of all permutations of X. Conversely, if a clone contains S_X , then it induces a reduct of (X, =).

Via Pol – Inv, the reducts of (X, =) correspond to local clones. Those clones contain the group S_X of all permutations of X. Conversely, if a clone contains S_X , then it induces a reduct of (X, =).

More observations

Inv (or Pol) is an antiisomorphism between

- the lattice of local clones above S_X
- and the pp-closed reducts of (X, =)

Via Pol – Inv, the reducts of (X, =) correspond to local clones. Those clones contain the group S_X of all permutations of X. Conversely, if a clone contains S_X , then it induces a reduct of (X, =).

More observations

Inv (or Pol) is an antiisomorphism between

- the lattice of local clones above S_X
- and the pp-closed reducts of (X, =)

Problem (Clones)

Is the number of local clones containing S_X uncountable?

M. Pinsker (Caen)

Is the number of pp-inequivalent equality constraint languages uncountable?

Is the number of pp-inequivalent equality constraint languages uncountable?

Problem (Structures)

Is the number of pp-closed reducts of (X, =) uncountable?

Is the number of pp-inequivalent equality constraint languages uncountable?

Problem (Structures)

Is the number of pp-closed reducts of (X, =) uncountable?

Problem (Clones)

Is the number of local clones containing S_X uncountable?

Is the number of pp-inequivalent equality constraint languages uncountable?

Problem (Structures)

Is the number of pp-closed reducts of (X, =) uncountable?

Problem (Clones)

Is the number of local clones containing S_X uncountable?

Problem (Formulas strong)

Is there an infinite independent equality constraint language?

Problem (Formulas strong)

Is there an infinite independent equality constraint language?

Problem (Formulas strong)

Is there an infinite independent equality constraint language?

Answer (Formulas strong)

Yes.

The formulas

For all $n \ge 3$, write

$$\delta_n := x_1 \neq y_1 \vee \ldots \vee x_n \neq y_n.$$

For all $A \subseteq \{1, ..., n\}$ with 1 < |A| < n, writing $A = \{j_1, ..., j_r\}$ with $j_1 < j_2 < ... < j_r$, we set

$$\kappa_{\mathcal{A}} := \mathbf{y}_{j_1} \neq \mathbf{x}_{j_2} \lor \mathbf{y}_{j_2} \neq \mathbf{x}_{j_3} \lor \ldots \lor \mathbf{y}_{j_r} \neq \mathbf{x}_{j_1}.$$

Set

$$\phi_n := \delta_n \wedge \bigwedge_{A \subseteq \{1, \dots, n\}, 1 < |A| < n} \kappa_A.$$

The formulas

For all $n \ge 3$, write

$$\delta_n := x_1 \neq y_1 \vee \ldots \vee x_n \neq y_n.$$

For all $A \subseteq \{1, \ldots, n\}$ with 1 < |A| < n, writing $A = \{j_1, \ldots, j_r\}$ with $j_1 < j_2 < \ldots < j_r$, we set

$$\kappa_{\mathcal{A}} := \mathbf{y}_{j_1} \neq \mathbf{x}_{j_2} \lor \mathbf{y}_{j_2} \neq \mathbf{x}_{j_3} \lor \ldots \lor \mathbf{y}_{j_r} \neq \mathbf{x}_{j_1}.$$

Set

$$\phi_n := \delta_n \wedge \bigwedge_{A \subseteq \{1, \dots, n\}, 1 < |A| < n} \kappa_A.$$

Theorem (M. Bodirsky, H. Chen, MP 2008)

 $\{\phi_n : n \geq 3\}$ is independent.

M. Bodirsky, H. Chen, M. Pinsker, *The reducts of equality up to primitive positive interdefinability*, Preprint September 15, 2008