
Normalization of basic algebras

Miroslav Kola řı́k
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Abstract

We consider algebras determined by all normal identities
of basic algebras. For such algebras, we present a
representation based on a q-lattice, i.e. the normalization
of a lattice.



Normal identities, normally presentable variety

Let τ be a similarity type and p,q be n-ary terms of type τ.
If either none of them is a variable or both p,q are the
same variable, we say that the identity
p(x1, . . . ,xn) = q(x1, . . . ,xn) is normal .

Let V be a variety of type τ. Let Id(V ) and IdN(V ) denote
the sets of all identities and of all normal identities,
respectively, valid in V . The variety V is called normally
presentable if Id(V ) = IdN(V ).



Normal identities, normally presentable variety

If Id(V ) 6= IdN(V ) then V is called non-normally
presentable . If this is the case then there is a unary term
v such that the identity v(x) = x belongs to
Id(V )\ IdN(V ), see e.g. [Chajda 1995] for details. As
usual, for any set Σ of identities of type τ, Mod(Σ) stands
for the class of all algebras of type τ that satisfy all
identities from Σ.



Normal identities, normally presentable variety

The following lemma was proved in [Mel’nik 1973].

Lemma
If a non-normally presentable variety V is given by a
system Σ of identities, i.e. V = Mod(Σ), and v(x) = x
belongs to Σ, then there exists a system of normal
identities valid in V , ΣN ⊂ IdN(V ), such that
ΣN ∪{v(x) = x} is equivalent to Σ, i.e.
V = Mod(ΣN ∪{v(x) = x}).

Consequently, w(x) = x is satisfied in V for another unary
term w if and only if the identity v(x) = w(x) belongs to
IdN(V ). So v is determined uniquely up to a normal
identity valid in V , and it will be called the assigned term
of V .



Normalization

A normalization of V (called a nilpotent shift of a
variety in [Chajda 1995, Chajda–Graczyńska 1999,
Mel’nik 1973]) is a variety N(V ) = Mod(IdN(V )). That is,
N(V ) consists of all τ-algebras which satisfy all normal
identities of V . Hence V is a subvariety of N(V ), and
V = N(V ) holds if and only if the variety V is normally
presentable.



Normalization

The next result is taken from
[Chajda–Halaš–Kühr–Vanžurová 2005].

Proposition 1.

Let V be a non-normally presentable variety with an
assigned term v . Let N = Mod(ΞN) be a normally
presentable variety with the system of defining identities
ΞN ⊂ IdN(V ). Then N = N(V ) if and only if all defining
identities of V can be proved from the system
ΞN ∪{v(x) = x}.



Normalization

The following proposition was proved by I. Mel’nik:

Proposition 2.

If V = Mod(ΣN ∪{v(x) = x}) is a variety of type τ with the
set of operation symbols F where ΣN ⊂ IdN(V ) then the
normalization N(V ) is characterized by the identities
ΣN ∪Σv where the set of additional identities is

Σv = {f (x1, . . . ,xn) = v(f (x1, . . . ,xn)),

f (x1, . . . ,xj , . . . ,xn) = f (x1, . . . ,v(xj), . . . ,xn); f ∈F , j = 1, . . . ,n}.



Skeleton

Given a non-normally presentable variety V (of type τ)
with the assigned term v , let A ∈ N(V ). By a skeleton of
A is meant a set SkA = {a ∈ A; vA(a) = a}, and its
elements are called skeletal . Skeletal elements are
exactly the results of term operations. In particular,
SkA = {vA(a); a ∈ A}.

The following lemma was proved in [Chajda 1995].

Lemma
If A ∈ V then SkA is the maximal subalgebra of A
belonging to N(V ).



q-lattices as a normalization of lattices

A quasiorder on a set A is a reflexive and transitive
binary relation � on A, and (A;�) is called a
quasiordered set .

It is well-known, that lattices have two faces, i.e. they can
be viewed as algebras and simultaneously as ordered
sets. An analogous situation occurs also for algebras
resulting from the normalization of lattices, the so-called
q-lattices. A q-lattice can be introduced by identities, but
can be characterized as well as a lattice-quasiordered set
(with suprema and infima for skeletal elements) endowed
with a choice function, [Chajda 1992].



q-lattices as a normalization of lattices

By a q-lattice (see [Chajda 1992]) we mean an algebra
A = (A;∨,∧) with two binary operations satisfying the
following normal identities of lattices:
commutativity : (C)∨ : x ∨y = y ∨x , (C)∧ : x ∧y = y ∧x ;

associativity : (AS)∨ : (x ∨y)∨z = x ∨ (y ∨z),
(AS)∧ : (x ∧y)∧z = x ∧ (y ∧z);

weak absorption : (WAB)∨ : x ∨ (x ∧y) = x ∨x ,
(WAB)∧ : x ∧ (x ∨y) = x ∧x ;

weak idempotence : (WI)∨ : x ∨y = x ∨ (y ∨y),
(WI)∧ : x ∧y = x ∧ (y ∧y);

equalization : (EQ) : x ∧x = x ∨x .

A q-lattice A is bounded if there exist elements 0 and 1 of
A such that a∧0 = 0 and a∨1 = 1 for each a ∈ A.

Evidently, a q-lattice is a lattice if and only if it satisfies the
idempotency x ∨x = x , i.e. if A is equal to its skeleton.



q-lattices as a normalization of lattices

Proposition 3 [Chajda 1992]

Let A = (A;∨,∧) be a q-lattice. Define
x � y iff x ∨y = y ∨y (iff x ∧y = x ∧x).

Then � is a quasiorder on A such that
(α) for all x ,y ∈ A there exists z ∈ A such that

(i) x ,y � z;
(ii) if w ∈ A such that x ,y � w then z � w ,

the element z will be called a q-supremum of x ,y .
(β ) for all x ,y ∈ A there exists t ∈ A such that

(i)’ t � x ,y ;
(ii)’ if u ∈ A such that u � x ,y then u � t ,

the element t will be called a q-infimum of x ,y .
Conversely, let (A;�) be a quasiordered set satisfying the
conditions (α) and (β ). Define x ∨y = z where z is a
q-supremum of x ,y and x ∧y = t where t is a q-infimum
of x ,y . Then (A;∨,∧) is a q-lattice.



q-lattices as a normalization of lattices

A quasiordered set (A;�) satisfying (α) where x ∨y
denote q-supremum of x ,y is called a join- q-semilattice .



Normalization of basic algebras

A basic algebra (see [Chajda–Halaš–Kühr 2007]) is an
algebra A = (A;⊕,¬,0) of type (2,1,0) satisfying the
identities

(BA1) x ⊕0 = x ;
(BA2) ¬¬x = x ;
(BA3) ¬(¬x ⊕y)⊕y = ¬(¬y ⊕x)⊕x ;
(BA4) ¬(¬(¬(x ⊕y)⊕y)⊕z)⊕ (x ⊕z) = ¬0.

Clearly, also the (normal) identities ¬¬x = x ⊕0 and
¬¬¬x = ¬x hold in every basic algebra.

Let us note that basic algebras serve as a tool for some
investigations of nonclassical logics (including
MV-algebras, orthomodular lattices and their
generalizations).



Normalization of basic algebras

The basic algebras form a variety BA which is not
normally presentable, with v(x) = x ⊕0 as the assigned
term (or equivalently, v(x) = ¬¬x). According to
Proposition 2, the normalization N(BA) has a basis
consisting of the following normal identities:



Normalization of basic algebras

(N1) ¬(¬x ⊕y)⊕y = ¬(¬y ⊕x)⊕x ;
(N2) ¬(¬(¬(x ⊕y)⊕y)⊕z)⊕ (x ⊕z) = ¬0;
(N3) 0⊕0 = 0;
(N4) ¬¬x = x ⊕0;
(N5) x ⊕y = (x ⊕0)⊕y ;
(N6) x ⊕y = x ⊕ (y ⊕0);
(N7) x ⊕¬0 = ¬0;
(N8) ¬0⊕x = ¬0;
(N9) (x ⊕y)⊕0 = x ⊕y ;
(N10) ¬¬¬x = ¬x ;
(N11) ¬(x ⊕0) = ¬x ;
(N12) ¬x ⊕0 = ¬x ;

Thus N(BA) = Mod(IdN(BA)) = Mod({(N1)− (N12)}).
One can show that this axiom system can be reduced.



Normalization of basic algebras

. . . , so N(BA) = Mod({(N1)− (N10)}). Since v(x) = x ⊕0,
the skeleton of a basic algebra M = (M;⊕,¬,0) is
SkM = {a⊕0; a ∈ M}.

It is known (see e.g. [Chajda–Halaš–Kühr 2007]) that
basic algebras form bounded lattices with respect to the
natural order defined by x ≤ y if and only if ¬x ⊕y = ¬0
where x ∨y = ¬(¬x ⊕y)⊕y and x ∧y = ¬(¬x ∨¬y). An
analogous statement can be proved for their
normalizations:

Theorem 1
Let A = (A;⊕,¬,0) ∈ N(BA). Define x � y if and only if
¬x ⊕y = ¬0. Then (A;�) is a bounded q-lattice with
0 � x �¬0 for each x ∈ A and x ∨y = ¬(¬x ⊕y)⊕y and
x ∧y = ¬(¬x ∨¬y).



Normalization of basic algebras; Example 1/4

Example

Let us consider the algebra A = (A;⊕,¬,0) ∈ N(BA),
where A = {0,0′,a,a′,b,1}, and whose operations ⊕ and
¬ are given by the following tables

⊕ 0 0′ a a′ b 1
0 0 0 a a b 1
0′ 0 0 a a b 1
a a a 1 1 b 1
a′ a a 1 1 b 1
b b b a a 1 1
1 1 1 1 1 1 1

x 0 0′ a a′ b 1
¬x 1 1 a a b 0

Note that e.g. a′⊕0 6= a′, ¬¬a′ 6= a′.



Normalization of basic algebras; Example 2/4

Example

By Theorem 1, we can assign to A a bounded q-lattice
Q = (A;∨,∧), where x ∨y = ¬(¬x ⊕y)⊕y and
x ∧y = ¬(¬x ∨¬y) for all x ,y ∈ A. The tables for
operations ∨ and ∧ in Q are as follows

∨ 0 0′ a a′ b 1
0 0 0 a a b 1
0′ 0 0 a a b 1
a a a a a 1 1
a′ a a a a 1 1
b b b 1 1 b 1
1 1 1 1 1 1 1

∧ 0 0′ a a′ b 1
0 0 0 0 0 0 0
0′ 0 0 0 0 0 0
a 0 0 a a 0 a
a′ 0 0 a a 0 a
b 0 0 0 0 b b
1 0 0 a a b 1



Normalization of basic algebras; Example 3/4

Example

One can easily draw the diagram of Q in Fig. 1.
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Remark that 1 = ¬0 is the greatest element of Q, but 0 is
not the least element of Q, since 0 � 0′ and also 0′ � 0.



Normalization of basic algebras; Example 4/4

Example

The Hasse diagram of the skeleton of Q is depicted in
Fig. 2; of course it is a basic algebra.
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q-lattices with sectionally antitone mappings

As usual, under an involution on a set A we mean a map
p : A → A such that app = a for all a ∈ A.

Given a quasiordered set (A;�), a map p : A → A is called
antitone if the implication x � y ⇒ yp � xp holds.

Let L = (L;∨,∧,1) be a q-lattice with the greatest
idempotent 1 (i.e. 1 = 1∨1), and let � denote the induced
quasiorder on L. Remember that the skeleton
SkL = {x ∈ L; x ∨x = x} is a lattice. By an interval in L

we understand here the set [a,b] = {x ∈ L; a � x � b},
and under an interval in the skeleton the intersection
Sk[a,b] = SkL∩ [a,b] provided a,b ∈ SkL. For example,
[0,a] = {0,0′,a,a′} and Sk[0,a] = {0,a} for the q-lattice of
Example (see Fig. 1).



q-lattices with sectionally antitone mappings

Remark
For any p ∈ L, let an antitone involution p : x 7→ xp,
x ∈ SkL, be given on the interval Sk[p∨p,1]. The mapping
p with p ∈ L can be extended to a mapping on the whole
interval [p,1] in a natural way as follows. For x ∈ [p,1] we
define xp := (x ∨x)p∨p. Note that in general, x 7→ xp is not
an involution on [p,1] but only on Sk[p∨p,1]. Indeed,
xpp = ((x ∨x)p∨p ∨ (x ∨x)p∨p)p∨p = ((x ∨x)p∨p)p∨p =
x ∨x ∈ SkL, however xpp 6= x for x /∈ SkL.



q-lattices with sectionally antitone mappings

Lemma
Let L = (L;∨,∧,1) be a q-lattice with 1 = 1∨1. For any
p ∈ L, let an antitone mapping p : x 7→ xp, be given on the
interval [p∨p,1] such that its restriction to Sk[p∨p,1] is an
involution. For x ,y ∈ L, let us introduce a binary operation
x ◦y := (x ∨y)y∨y . Then the following identities hold:

(1) x ◦x = 1, x ◦1 = 1;
(2) 1◦ (x ◦y) = x ◦y;
(3) (x ◦y)◦y = (y ◦x)◦x (quasi-commutativity);
(4) (((x ◦y)◦y)◦z)◦ (x ◦z) = 1;
(5) x ◦ ((x ◦y)◦y) = 1.

Moreover,
(6) if x ∨y ∨z = z ∨z then ((x ◦y)◦y)◦z = 1;

(7) if x ∨y = y ∨y then (y ◦z)◦ (x ◦z) = 1.



q-lattices with sectionally antitone mappings

Lemma
Let (A;◦,1) be an algebra of type (2,0) satisfying the
identities (1), (2) and (4). Then the relation � introduced
by

x � y if and only if x ◦y = 1

is a quasiorder on A and for all x ∈ A, we have x � 1.
Moreover, x ◦y = 1 if and only if x ∨y = y ∨y .

The quasiorder � given by x � y ⇔ x ◦y = 1 will be called
the induced quasiorder of (A;◦,1).



q-lattices with sectionally antitone mappings

Theorem 2
Let A = (A;◦,1) be an algebra satisfying (1)–(7). Then
(A;�) is a join-q-semilattice in which x ∨y = (x ◦y)◦y for
all x ,y ∈ A. For each p ∈ A, the interval [p∨p,1] is a
q-lattice with an antitone mapping a 7→ ap = a◦p,
a ∈ [p∨p,1].

Theorem 3
Let A = (A;⊕,¬,0) ∈ N(BA). Define x ◦y := ¬x ⊕y and
1 = ¬0. Further, let ∨, ∧ are defined as in Theorem 1, i.e.
x ∨y = ¬(¬x ⊕y)⊕y and x ∧y = ¬(¬x ∨¬y). Then
L (A) = (A;∨,∧,◦,1,0) is a bounded q-lattice with
sectionally antitone mappings such that their restrictions
to Sk[p∨p,1] are involutions where for each p ∈ A and
x ∈ [p∨p,1] we define xp = x ◦p.



q-lattices with sectionally antitone mappings

Theorem 4
Let L = (L;∨,∧,◦,0,1) be a bounded q-lattice with
sectionally antitone mappings such that their restrictions
to Sk[p∨p,1] are involutions. Define ¬x := x ◦0 and
x ⊕y := (x ◦0)◦y . Then A (L ) = (L;⊕,¬,0) ∈ N(BA).

Theorem 5
Let A = (A;◦,1) be an algebra satisfying (1)–(7) where
x ∨y = (x ◦y)◦y . Let p ∈ A with 1◦p = p and define
¬px := x ◦p, x ⊕p y := (x ◦p)◦y . Then the algebra
([p,1];⊕p,¬p,p) belongs to N(BA).



Thank you for your attention.
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quantum algebras, Algebra Universalis, to appear.
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