Compactly Generated de Morgan Lattices

Jan Paseka and Zdenka Riečanová

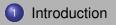
Department of Mathematics and Statistics Masaryk University Brno

Třešť 2008

Summer School on Algebra and Ordered Sets

Compactly generated Archimedean lattice effect algebras

Outline



Compactly generated Archimedean lattice effect algebras

In the Nineties, the Slovak school of quantum structures generalized the concept of MV-algebra with the concept of **D-poset** or equivalently with the concept of **effect algebra**.

Any of the above structures is equipped with a duality operation hence it is a de Morgan poset.

In the Nineties, the Slovak school of quantum structures generalized the concept of MV-algebra with the concept of **D-poset** or equivalently with the concept of **effect algebra**.

Any of the above structures is equipped with a duality operation hence it is a de Morgan poset.

In the Nineties, the Slovak school of quantum structures generalized the concept of MV-algebra with the concept of **D-poset** or equivalently with the concept of **effect algebra**.

Any of the above structures is equipped with a duality operation hence it is a de Morgan poset.

In the Nineties, the Slovak school of quantum structures generalized the concept of MV-algebra with the concept of **D-poset** or equivalently with the concept of **effect algebra**.

Any of the above structures is equipped with a duality operation hence it is a de Morgan poset. The aim of this lecture is to look at various important topologies on compactly generated de Morgan lattices.

A structure $(E \le .')$ is called a *de Morgan poset* if (E, \le) is a poset and ' is a unary operation with properties: (i) $a \le b \Rightarrow b' \le a'$ (ii) a = a''.

In a de Morgan poset we have $a \le b$ iff $b' \le a'$, because $a \le b \Rightarrow b' \le a' \Rightarrow a'' \le b'' \Rightarrow a \le b$.

▲□▶▲@▶▲필▶▲필▶ = _______

A structure $(E \le .')$ is called a *de Morgan poset* if (E, \le) is a poset and ' is a unary operation with properties: (i) $a \le b \Rightarrow b' \le a'$ (ii) a = a''.

In a de Morgan poset we have $a \le b$ iff $b' \le a'$, because $a \le b \Rightarrow b' \le a' \Rightarrow a'' \le b'' \Rightarrow a \le b$.

Outline

Compactly generated Archimedean lattice effect algebras

(1) An element *a* of a lattice *L* is called *compact* iff, for any $D \subseteq L$, $a \leq \bigvee D$ implies $a \leq \bigvee F$ for some finite $F \subseteq D$.

(2) A lattice *L* is called *compactly generated* iff every element of *L* is a join of compact elements.

A *net* $(a_{\alpha})_{\alpha \in \mathscr{E}}$ is a set of elements which have indices from a directed set of indices \mathscr{E} .

Definition

A net $(a_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of the poset *P* is *increasingly directed* if $a_{\alpha} \leq a_{\beta}$ for all $\alpha, \beta \in \mathscr{E}$ such that $\alpha \leq \beta$ and then we write $a_{\alpha} \uparrow$. If moreover $a = \bigvee \{a_{\alpha} \mid \alpha \in \mathscr{E}\}$ we write $a_{\alpha} \uparrow a$ and we called such a net *increasing to a*. The meaning of $a_{\alpha} \downarrow$ and $a_{\alpha} \downarrow a$ is dual (*decreasingly directed* or *filtered*).

A *net* $(a_{\alpha})_{\alpha \in \mathscr{E}}$ is a set of elements which have indices from a directed set of indices \mathscr{E} .

Definition

A net $(a_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of the poset *P* is *increasingly directed* if $a_{\alpha} \leq a_{\beta}$ for all $\alpha, \beta \in \mathscr{E}$ such that $\alpha \leq \beta$ and then we write $a_{\alpha} \uparrow$. If moreover $a = \bigvee \{a_{\alpha} \mid \alpha \in \mathscr{E}\}$ we write $a_{\alpha} \uparrow a$ and we called such a net *increasing to a*. The meaning of $a_{\alpha} \downarrow$ and $a_{\alpha} \downarrow a$ is dual (*decreasingly directed* or *filtered*).

(o)-convergence I

Zdenka Riečanová, Order-topological lattice effect algebras, Contributions to General Algebra 15, Proceedings of the Klagenfurt Workshop 2003 on General Algebra, Klagenfurt, Austria, June 19-22,2003, pp.151-160.

Definition

We say that a net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of a poset *P* (\mathscr{E} is a directed set) order converges to a point $x \in P$ if there exist nets $(u_{\alpha})_{\alpha \in \mathscr{E}}, (v_{\alpha})_{\alpha \in \mathscr{E}} \subseteq P$ such that $u_{\alpha} \leq x_{\alpha} \leq v_{\alpha}$ for all α and $(u_{\alpha})_{\alpha \in \mathscr{E}}$ is nondecreasing with supremum $x, (v_{\alpha})_{\alpha \in \mathscr{E}}$ is nonincreasing with infimum x. We write $u_{\alpha} \uparrow x$, $v_{\alpha} \downarrow x$ and $x_{\alpha} \xrightarrow{(a)} x$.

The finest (biggest) topology on *P* such that $x_{\alpha} \xrightarrow{(o)} x$ implies topological convergence is called an *order topology on P*, denoted τ_o .

(o)-convergence I

Zdenka Riečanová, Order-topological lattice effect algebras, Contributions to General Algebra 15, Proceedings of the Klagenfurt Workshop 2003 on General Algebra, Klagenfurt, Austria, June 19-22,2003, pp.151-160.

Definition

We say that a net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of a poset *P* (\mathscr{E} is a directed set) order converges to a point $x \in P$ if there exist nets $(u_{\alpha})_{\alpha \in \mathscr{E}}, (v_{\alpha})_{\alpha \in \mathscr{E}} \subseteq P$ such that $u_{\alpha} \leq x_{\alpha} \leq v_{\alpha}$ for all α and $(u_{\alpha})_{\alpha \in \mathscr{E}}$ is nondecreasing with supremum $x, (v_{\alpha})_{\alpha \in \mathscr{E}}$ is nonincreasing with infimum x. We write $u_{\alpha} \uparrow x$, $v_{\alpha} \downarrow x$ and $x_{\alpha} \xrightarrow{(\alpha)} x$.

The finest (biggest) topology on *P* such that $x_{\alpha} \xrightarrow{(o)} x$ implies topological convergence is called an *order topology on P*, denoted τ_o .

Assume that (P, \leq) is a complete lattice. Then for $x_{\alpha} \in P, \alpha \in \mathscr{E}$:

$$x_{\alpha} \xrightarrow{(o)} x, \alpha \in \mathscr{E} \text{ iff } x = \bigvee_{\beta \in \mathscr{E}} \bigwedge_{\alpha \ge \beta} x_{\alpha} = \bigwedge_{\beta \in \mathscr{E}} \bigvee_{\alpha \ge \beta} x_{\alpha}.$$

Theorem

Let (P, \leq) be a poset and $F \subseteq P$. Then F is τ_0 -closed iff for every net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of P:

 $(CS) (x_{\alpha} \in F, \alpha \in \mathscr{E}, x_{\alpha} \xrightarrow{(o)} x) \Rightarrow x \in F.$

Assume that (P, \leq) is a complete lattice. Then for $x_{\alpha} \in P, \alpha \in \mathscr{E}$:

$$x_{\alpha} \stackrel{(o)}{\to} x, \alpha \in \mathscr{E} \text{ iff } x = \bigvee_{\beta \in \mathscr{E}} \bigwedge_{\alpha \ge \beta} x_{\alpha} = \bigwedge_{\beta \in \mathscr{E}} \bigvee_{\alpha \ge \beta} x_{\alpha}$$

Theorem

Let (P, \leq) be a poset and $F \subseteq P$. Then F is τ_0 -closed iff for every net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of P: (CS) $(x_{\alpha} \in F, \alpha \in \mathscr{E}, x_{\alpha} \xrightarrow{(o)} x) \Rightarrow x \in F$.

Let L be a bounded lattice. Then for every $a, b \in L$ with $a \leq b$ the interval [a,b] is τ_0 -closed.

Lemma

Let *E* be a de Morgan poset. Then $a_{\alpha} \uparrow a$ iff $a'_{\alpha} \downarrow a'$ and $a_{\alpha} \xrightarrow{(o)} a$ iff $a'_{\alpha} \xrightarrow{(o)} a'$.

Let L be a bounded lattice. Then for every $a, b \in L$ with $a \leq b$ the interval [a,b] is τ_0 -closed.

Lemma

Let *E* be a de Morgan poset. Then $a_{\alpha} \uparrow a$ iff $a'_{\alpha} \downarrow a'$ and $a_{\alpha} \stackrel{(o)}{\rightarrow} a$ iff $a'_{\alpha} \stackrel{(o)}{\rightarrow} a'$.

A lattice *L* is called (*o*)-*continuous* if, for any net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ and any $x, y \in L, x_{\alpha} \uparrow x$ implies $x_{\alpha} \land y \uparrow x \land y$.

If *L* is a (*o*)-continuous de Morgan lattice then for any nets $(x_{\alpha})_{\alpha \in \mathscr{E}}$, $(y_{\alpha})_{\alpha \in \mathscr{E}}$ and any $x, y \in L$, $x_{\alpha} \uparrow x$, $y_{\alpha} \uparrow y$ implies $x_{\alpha} \lor y_{\alpha} \uparrow x \lor y$ and $x_{\alpha} \land y_{\alpha} \uparrow x \land y$.

A lattice *L* is called (*o*)-*continuous* if, for any net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ and any $x, y \in L, x_{\alpha} \uparrow x$ implies $x_{\alpha} \land y \uparrow x \land y$.

If *L* is a (*o*)-continuous de Morgan lattice then for any nets $(x_{\alpha})_{\alpha \in \mathscr{E}}$, $(y_{\alpha})_{\alpha \in \mathscr{E}}$ and any $x, y \in L$, $x_{\alpha} \uparrow x$, $y_{\alpha} \uparrow y$ implies $x_{\alpha} \lor y_{\alpha} \uparrow x \lor y$ and $x_{\alpha} \land y_{\alpha} \uparrow x \land y$.

By a *topological de Morgan lattice* we mean a de Morgan lattice L equipped with a Hausdorff topology τ that makes lattice and duality operations continuous.

Definition

By an *order-topological de Morgan lattice* ((o)-topological, for short) we mean a de Morgan lattice L whose order convergence of nets of elements coincides with convergence in the order topology τ_o and makes lattice and duality operations continuous.

By a *topological de Morgan lattice* we mean a de Morgan lattice L equipped with a Hausdorff topology τ that makes lattice and duality operations continuous.

Definition

By an *order-topological de Morgan lattice* ((o)-topological, for short) we mean a de Morgan lattice L whose order convergence of nets of elements coincides with convergence in the order topology τ_o and makes lattice and duality operations continuous.

A subset \mathscr{U} of a lattice L is *join-dense* if for any two elements $x, z \in L$ with $x \not\leq z$, there is some $u \in \mathscr{U}$ with $u \leq x$ but $u \not\leq z$. Thus \mathscr{U} is join-dense in L iff each element of L is a join of elements from \mathscr{U} . Meet-density is defined dually.

A lattice *L* is compactly generated iff the set of all compact elements is join-dense in *L*.

A subset \mathscr{U} of a lattice L is *join-dense* if for any two elements $x, z \in L$ with $x \not\leq z$, there is some $u \in \mathscr{U}$ with $u \leq x$ but $u \not\leq z$. Thus \mathscr{U} is join-dense in L iff each element of L is a join of elements from \mathscr{U} . Meet-density is defined dually.

A lattice *L* is compactly generated iff the set of all compact elements is join-dense in *L*.

Uniformity and compactly generated lattices I

Let *L* be a lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$ such that for every $x \in L$ we have that

$$x = \bigvee \{ u \in \mathscr{U} \mid u \le x \} = \bigwedge \{ v \in \mathscr{V} \mid x \le v \}.$$

Consider the function family $\psi = \{f_u \mid u \in L, u \in \mathcal{U}\} \cup \{g_v \mid v \in L, v \in \mathcal{V}\},\$ where $f_u, g_v : L \to \{0, 1\}$ are defined by putting

$$f_u(x) = \begin{cases} 1 & \text{iff} \quad u \le x \\ 0 & \text{iff} \quad u \le x \end{cases} \quad \text{and} \quad g_v(y) = \begin{cases} 1 & \text{iff} \quad x \le v \\ 0 & \text{iff} \quad x \le v \end{cases}$$

for all $x, y \in L$.

Further, consider the family of pseudometrics on *L*: $\Sigma_{\Psi} = \{\rho_u \mid u \in \mathscr{U}\} \cup \{\pi_v \mid v \in \mathscr{V}\}, \text{ where } \rho_u(a,b) = |f_u(a) - f_u(b)| \text{ and } \pi_v(a,b) = |g_v(a) - g_v(b)| \text{ for all } a, b \in L.$

Uniformity and compactly generated lattices I

Let *L* be a lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$ such that for every $x \in L$ we have that

$$x = \bigvee \{ u \in \mathscr{U} \mid u \le x \} = \bigwedge \{ v \in \mathscr{V} \mid x \le v \}.$$

Consider the function family $\psi = \{f_u \mid u \in L, u \in \mathscr{U}\} \cup \{g_v \mid v \in L, v \in \mathscr{V}\},\$ where $f_u, g_v : L \to \{0, 1\}$ are defined by putting

$$f_u(x) = \begin{cases} 1 & \text{iff} \quad u \le x \\ 0 & \text{iff} \quad u \not\le x \end{cases} \quad \text{and} \quad g_v(y) = \begin{cases} 1 & \text{iff} \quad x \le v \\ 0 & \text{iff} \quad x \not\le v \end{cases}$$

for all $x, y \in L$.

Further, consider the family of pseudometrics on *L*: $\Sigma_{\Psi} = \{\rho_u \mid u \in \mathscr{U}\} \cup \{\pi_v \mid v \in \mathscr{V}\}, \text{ where } \rho_u(a,b) = |f_u(a) - f_u(b)| \text{ and } \pi_v(a,b) = |g_v(a) - g_v(b)| \text{ for all } a, b \in L.$

Uniformity and compactly generated lattices I

Let *L* be a lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$ such that for every $x \in L$ we have that

$$x = \bigvee \{ u \in \mathscr{U} \mid u \le x \} = \bigwedge \{ v \in \mathscr{V} \mid x \le v \}.$$

Consider the function family $\psi = \{f_u \mid u \in L, u \in \mathscr{U}\} \cup \{g_v \mid v \in L, v \in \mathscr{V}\},\$ where $f_u, g_v : L \to \{0, 1\}$ are defined by putting

$$f_u(x) = \begin{cases} 1 & \text{iff} \quad u \le x \\ 0 & \text{iff} \quad u \not\le x \end{cases} \quad \text{and} \quad g_v(y) = \begin{cases} 1 & \text{iff} \quad x \le v \\ 0 & \text{iff} \quad x \not\le v \end{cases}$$

for all $x, y \in L$.

Further, consider the family of pseudometrics on *L*: $\Sigma_{\Psi} = \{\rho_u \mid u \in \mathscr{U}\} \cup \{\pi_v \mid v \in \mathscr{V}\}, \text{ where } \rho_u(a,b) = |f_u(a) - f_u(b)| \text{ and } \pi_v(a,b) = |g_v(a) - g_v(b)| \text{ for all } a, b \in L.$ Let us denote by \mathscr{U}_{ψ} the uniformity on *L* induced by the family of pseudometrics Σ_{ψ} . Further denote by τ_{ψ} the topology compatible with the uniformity \mathscr{U}_{ψ} .

Then for every net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of L

$$x_{\alpha} \xrightarrow{\iota_{\psi}} x \text{ iff } f_u(x_{\alpha}) \to f_u(x) \text{ and } g_v(x_{\alpha}) \to g_v(x)$$

for all $u, v \in L, u \in \mathcal{U}, v \in \mathcal{V}$.

This implies, since f_u and g_v is a separating family of functions, that the topology τ_{ψ} is Hausdorff. Moreover, the intervals $[u,v] = [u,1] \cap [0,v] = f_u^{-1}(\{1\}) \cap g_v^{-1}(\{1\})$ are clopen sets in τ_{ψ} . Hence any interval $[\bigvee_{i=1}^n u_i, \bigwedge_{i=1}^n v] = \bigcap_{i=1}^n [u_i, v_i], u_i \in \mathscr{U}, v_i \in \mathscr{V}$ is clopen in τ_{ψ} .

Let us denote by \mathscr{U}_{ψ} the uniformity on *L* induced by the family of pseudometrics Σ_{ψ} . Further denote by τ_{ψ} the topology compatible with the uniformity \mathscr{U}_{ψ} .

Then for every net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of *L*

$$x_{\alpha} \xrightarrow{\tau_{\psi}} x \text{ iff } f_u(x_{\alpha}) \to f_u(x) \text{ and } g_v(x_{\alpha}) \to g_v(x)$$

for all $u, v \in L, u \in \mathcal{U}, v \in \mathcal{V}$.

This implies, since f_u and g_v is a separating family of functions, that the topology τ_{ψ} is Hausdorff. Moreover, the intervals $[u,v] = [u,1] \cap [0,v] = f_u^{-1}(\{1\}) \cap g_v^{-1}(\{1\})$ are clopen sets in τ_{ψ} . Hence any interval $[\bigvee_{i=1}^n u_i, \bigwedge_{i=1}^n v] = \bigcap_{i=1}^n [u_i, v_i], u_i \in \mathscr{U}, v_i \in \mathscr{V}$ is clopen in τ_{ψ} .

Let us denote by \mathscr{U}_{ψ} the uniformity on *L* induced by the family of pseudometrics Σ_{ψ} . Further denote by τ_{ψ} the topology compatible with the uniformity \mathscr{U}_{ψ} .

Then for every net $(x_{\alpha})_{\alpha \in \mathscr{E}}$ of elements of *L*

$$x_{\alpha} \xrightarrow{\tau_{\psi}} x \text{ iff } f_u(x_{\alpha}) \to f_u(x) \text{ and } g_v(x_{\alpha}) \to g_v(x)$$

for all $u, v \in L, u \in \mathcal{U}, v \in \mathcal{V}$.

This implies, since f_u and g_v is a separating family of functions, that the topology τ_{ψ} is Hausdorff. Moreover, the intervals $[u,v] = [u,1] \cap [0,v] = f_u^{-1}(\{1\}) \cap g_v^{-1}(\{1\})$ are clopen sets in τ_{ψ} . Hence any interval $[\bigvee_{i=1}^n u_i, \bigwedge_{i=1}^n v] = \bigcap_{i=1}^n [u_i, v_i], u_i \in \mathscr{U}, v_i \in \mathscr{V}$ is clopen in τ_{ψ} .

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then $\tau_o \subseteq \tau_{\Psi}$.

Theorem

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

$\quad \bigcirc \ \ \tau_o = \tau_{\psi}.$

Elements of *W* are compact and elements of *V* are cocompact. Hence L is compactly generated by *W*.

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then $\tau_o \subseteq \tau_{\Psi}$.

Theorem

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

1) $au_o = au_{m{\psi}}.$

② Elements of 𝒞 are compact and elements of 𝑘 are cocompact. Hence L is compactly generated by 𝒞.

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then $\tau_o \subseteq \tau_{\Psi}$.

Theorem

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

2 Elements of *U* are compact and elements of *V* are cocompact. Hence L is compactly generated by *U*.

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then $\tau_o \subseteq \tau_{\Psi}$.

Theorem

Let *L* be a de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L, \mathscr{U}$ directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

② Elements of 𝒞 are compact and elements of 𝑘 are cocompact. Hence L is compactly generated by 𝒜.

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then, for any net (x_{α}) of *L* and any $x \in L$, $x_{\alpha} \xrightarrow{\tau_{\psi}} x$ implies $x_{\alpha} \xrightarrow{(o)} x$.

Theorem

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

For any net (x_{α}) of *L* and any $x \in L$, $x_{\alpha} \xrightarrow{w} x$ if and only if $x_{\alpha} \xrightarrow{\omega} x$. L is compactly generated by \mathscr{U} and cocompactly generated by \mathscr{U} . Moreover (1) or (2) implies the condition (3).

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then, for any net (x_{α}) of *L* and any $x \in L$, $x_{\alpha} \xrightarrow{\tau_{\psi}} x$ implies $x_{\alpha} \xrightarrow{(o)} x$.

Theorem

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

For any net (x_α) of L and any x ∈ L, x_α ^{τ_ψ}→x if and only if x_α ^(o)→x.
L is compactly generated by 𝒞 and cocompactly generated by 𝒞.

Moreover (1) or (2) implies the condition (3).

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then, for any net (x_{α}) of *L* and any $x \in L$, $x_{\alpha} \xrightarrow{\tau_{\psi}} x$ implies $x_{\alpha} \xrightarrow{(o)} x$.

Theorem

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

• For any net (x_{α}) of *L* and any $x \in L$, $x_{\alpha} \xrightarrow{\tau_{\psi}} x$ if and only if $x_{\alpha} \xrightarrow{(o)} x$.

@ L is compactly generated by $\mathscr U$ and cocompactly generated by $\mathscr V$

Moreover (1) or (2) implies the condition (3).

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then, for any net (x_{α}) of *L* and any $x \in L$, $x_{\alpha} \xrightarrow{\tau_{\psi}} x$ implies $x_{\alpha} \xrightarrow{(o)} x$.

Theorem

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

For any net (x_α) of L and any x ∈ L, x_α ^{τ_ψ}→x if and only if x_α ^(o)→x.
L is compactly generated by 𝒞 and cocompactly generated by Ϋ.
Moreover (1) or (2) implies the condition (3).

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then, for any net (x_{α}) of *L* and any $x \in L$, $x_{\alpha} \xrightarrow{\tau_{\psi}} x$ implies $x_{\alpha} \xrightarrow{(o)} x$.

Theorem

Let *L* be a complete de Morgan lattice such that there exists $\mathscr{U}, \mathscr{V} \subseteq L$, \mathscr{U} directed and join-dense in *L* and \mathscr{V} filtered and meet-dense in *L*. Then the following conditions are equivalent:

For any net (x_α) of L and any x ∈ L, x_α → x if and only if x_α → x.
L is compactly generated by 𝒞 and cocompactly generated by 𝒞.

Moreover (1) or (2) implies the condition (3).

- C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490.
- 🔒 A. Császár, General Topology, Akadémiai Kiadó, Budapest (1978).
- D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346.
- Z. Riečanová, Topological and order-topological orthomodular lattices, Bull. Austral. Math. Soc. 47 (1993), 509–518.
- Z. Riečanová, On Order Continuity of Quantum Structures and Their Homomorphisms, Demonstratio Mathematica 29 (1996), 433–443.

- C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490.
- 🔒 A. Császár, General Topology, Akadémiai Kiadó, Budapest (1978).
- D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346.
- Z. Riečanová, Topological and order-topological orthomodular lattices, Bull. Austral. Math. Soc. 47 (1993), 509–518.
- Z. Riečanová, On Order Continuity of Quantum Structures and Their Homomorphisms, Demonstratio Mathematica 29 (1996), 433–443.

- C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490.
- A. Császár, General Topology, Akadémiai Kiadó, Budapest (1978).
- D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346.
- Z. Riečanová, Topological and order-topological orthomodular lattices, Bull. Austral. Math. Soc. 47 (1993), 509–518.
- Z. Riečanová, On Order Continuity of Quantum Structures and Their Homomorphisms, Demonstratio Mathematica 29 (1996), 433–443.

- C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490.
- A. Császár, General Topology, Akadémiai Kiadó, Budapest (1978).
- D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346.
- Z. Riečanová, Topological and order-topological orthomodular lattices, Bull. Austral. Math. Soc. 47 (1993), 509–518.
- Z. Riečanová, On Order Continuity of Quantum Structures and Their Homomorphisms, Demonstratio Mathematica 29 (1996), 433–443.

- C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490.
- 📔 A. Császár, General Topology, Akadémiai Kiadó, Budapest (1978).
- D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346.
- Z. Riečanová, Topological and order-topological orthomodular lattices, Bull. Austral. Math. Soc. 47 (1993), 509–518.
- Z. Riečanová, On Order Continuity of Quantum Structures and Their Homomorphisms, Demonstratio Mathematica 29 (1996), 433–443.