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Třešt´ 2008

Summer School on Algebra and Ordered Sets



Outline

1 Introduction

2 Compactly generated Archimedean lattice effect algebras



Outline

1 Introduction

2 Compactly generated Archimedean lattice effect algebras



Introduction I

The concept of MV-algebra as an algebraic axiomatization of the
Lukasiewicz many-valued propositional logic was introduced by C.C.
Chang.

In the Nineties, the Slovak school of quantum structures generalized
the concept of MV-algebra with the concept of D-poset or equivalently
with the concept of effect algebra.

Any of the above structures is equipped with a duality operation hence
it is a de Morgan poset.
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Introduction II

The aim of this lecture is to look at various important topologies on
compactly generated de Morgan lattices.



Basic definitions – de Morgan posets

Definition
A structure (E ≤,′ ) is called a de Morgan poset if (E,≤) is a poset and ′

is a unary operation with properties:
(i) a≤ b⇒ b′ ≤ a′

(ii) a = a′′.

In a de Morgan poset we have a≤ b iff b′ ≤ a′, because
a≤ b⇒ b′ ≤ a′⇒ a′′ ≤ b′′⇒ a≤ b.
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Definition - compactly generated lattice

Definition
(1) An element a of a lattice L is called compact iff, for any D⊆ L,
a≤

∨
D implies a≤

∨
F for some finite F ⊆ D.

(2) A lattice L is called compactly generated iff every element of L is a
join of compact elements.



Nets

Definition
A net (aα)α∈E is a set of elements which have indices from a directed
set of indices E .

Definition
A net (aα)α∈E of elements of the poset P is increasingly directed if
aα ≤ aβ for all α,β ∈ E such that α ≤ β and then we write aα ↑. If
moreover a =

∨
{aα | α ∈ E } we write aα ↑ a and we called such a net

increasing to a. The meaning of aα ↓ and aα ↓ a is dual (decreasingly
directed or filtered).
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(o)-convergence I

Zdenka Riečanová, Order-topological lattice effect algebras,
Contributions to General Algebra 15, Proceedings of the Klagenfurt
Workshop 2003 on General Algebra, Klagenfurt, Austria, June
19-22,2003, pp.151-160.

Definition
We say that a net (xα)α∈E of elements of a poset P (E is a directed set)
order converges to a point x ∈ P if there exist nets (uα)α∈E ,(vα)α∈E ⊆ P
such that uα ≤ xα ≤ vα for all α and (uα)α∈E is nondecreasing with
supremum x, (vα)α∈E is nonincreasing with infimum x. We write uα ↑ x,
vα ↓ x and xα

(o)- x.

The finest (biggest) topology on P such that xα

(o)- x implies
topological convergence is called an order topology on P, denoted τo.
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(o)-convergence II

Theorem

Assume that (P,≤) is a complete lattice. Then for xα ∈ P,α ∈ E :

xα

(o)→ x,α ∈ E iff x =
∨

β∈E

∧
α≥β

xα =
∧

β∈E

∨
α≥β

xα .

Theorem

Let (P,≤) be a poset and F ⊆ P. Then F is τ0-closed iff for every net
(xα)α∈E of elements of P:

(CS) (xα ∈ F,α ∈ E ,xα

(o)→ x)⇒ x ∈ F .
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Properties of order topology

Theorem

Let L be a bounded lattice. Then for every a,b ∈ L with a≤ b the
interval [a,b] is τ0-closed.

Lemma

Let E be a de Morgan poset. Then aα ↑ a iff a′α ↓ a′ and aα

(o)→ a iff

a′α
(o)→ a′.
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(o)-continuity

Definition
A lattice L is called (o)-continuous if, for any net (xα)α∈E and any
x,y ∈ L, xα ↑ x implies xα ∧ y ↑ x∧ y.

If L is a (o)-continuous de Morgan lattice then for any nets (xα)α∈E ,
(yα)α∈E and any x,y ∈ L, xα ↑ x, yα ↑ y implies xα ∨ yα ↑ x∨ y and
xα ∧ yα ↑ x∧ y.
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order-topological lattice

Definition
By a topological de Morgan lattice we mean a de Morgan lattice L
equipped with a Hausdorff topology τ that makes lattice and duality
operations continuous.

Definition
By an order-topological de Morgan lattice ((o)-topological, for short) we
mean a de Morgan lattice L whose order convergence of nets of
elements coincides with convergence in the order topology τo and
makes lattice and duality operations continuous.
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Join-dense and meet-dense subsets

Definition
A subset U of a lattice L is join-dense if for any two elements x,z ∈ L
with x 6≤ z, there is some u ∈U with u≤ x but u 6≤ z. Thus U is
join-dense in L iff each element of L is a join of elements from U .
Meet-density is defined dually.

A lattice L is compactly generated iff the set of all compact elements is
join-dense in L.
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Uniformity and compactly generated lattices I

Let L be a lattice such that there exists U ,V ⊆ L such that for every
x ∈ L we have that

x =
∨
{u ∈U | u≤ x}=

∧
{v ∈ V | x≤ v}.

Consider the function family ψ = { fu | u ∈ L,u ∈U }∪{gv | v ∈ L,v ∈ V },
where fu,gv : L→{0,1} are defined by putting

fu(x) =
{

1 iff u≤ x
0 iff u 6≤ x

and gv(y) =
{

1 iff x≤ v
0 iff x 6≤ v

for all x,y ∈ L.

Further, consider the family of pseudometrics on L:
Σψ = {ρu | u ∈U }∪{πv | v ∈ V }, where ρu(a,b) = | fu(a)− fu(b)| and
πv(a,b) = |gv(a)−gv(b)| for all a,b ∈ L.
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Uniformity and compactly generated lattices II

Let us denote by Uψ the uniformity on L induced by the family of
pseudometrics Σψ . Further denote by τψ the topology compatible with
the uniformity Uψ .

Then for every net (xα)α∈E of elements of L

xα

τψ- x iff fu(xα)→ fu(x) and gv(xα)→ gv(x)

for all u,v ∈ L,u ∈U ,v ∈ V .

This implies, since fu and gv is a separating family of functions, that the
topology τψ is Hausdorff. Moreover, the intervals
[u,v] = [u,1]∩ [0,v] = f−1

u ({1})∩g−1
v ({1}) are clopen sets in τψ . Hence

any interval [
∨n

i=1 ui,
∧n

i=1 v] =
⋂n

i=1[ui,vi], ui ∈U ,vi ∈ V is clopen in τψ .
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Compactly generated de Morgan lattices I

Lemma

Let L be a de Morgan lattice such that there exists U ,V ⊆ L, U
directed and join-dense in L and V filtered and meet-dense in L. Then
τo ⊆ τψ .

Theorem

Let L be a de Morgan lattice such that there exists U ,V ⊆ L, U
directed and join-dense in L and V filtered and meet-dense in L. Then
the following conditions are equivalent:

1 τo = τψ .
2 Elements of U are compact and elements of V are cocompact.

Hence L is compactly generated by U .
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Compactly generated de Morgan lattices II

Lemma

Let L be a complete de Morgan lattice such that there exists U ,V ⊆ L,
U directed and join-dense in L and V filtered and meet-dense in L.

Then, for any net (xα) of L and any x ∈ L, xα

τψ−→x implies xα

(o)→ x.

Theorem

Let L be a complete de Morgan lattice such that there exists U ,V ⊆ L,
U directed and join-dense in L and V filtered and meet-dense in L.
Then the following conditions are equivalent:

1 For any net (xα) of L and any x ∈ L, xα

τψ−→x if and only if xα

(o)→ x.
2 L is compactly generated by U and cocompactly generated by V .

Moreover (1) or (2) implies the condition (3).

3. L is order topological.
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D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum
logics, Found. Phys. 24 (1994), 1325–1346.
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