Functorial equivalences

Jan Pavlík
Technical University in Brno

The basic problem
(*) Let \mathcal{C}, \mathcal{D} be the categories, let \mathcal{C} and let there be a functor $R: \mathcal{C} \rightarrow \mathcal{D}$. Let $A, B \in \mathrm{ob}(\mathcal{C})$, $R(A) \cong R(B) \stackrel{?}{\Rightarrow} A \cong B$.

We can translate this problem using the category of R-pairs - the category of "possible counterexamples".

$$
R-\text { pair }=\quad \text { objects: } \begin{array}{ll}
& (M, N ; t) \text { such that } M, N \in \mathrm{ob}(\mathcal{C}), \\
& t: R(M) \rightarrow R(N) \text { is an isomorphism } \\
\text { morphisms: } & \text { pairs of morphisms between } \\
& \text { the object components compatible with the isos. }
\end{array}
$$

Universal pairs

Now we can reformulate the problem (we call it pair version of the problem).
(**) Is there an object in R-pair with nonisomorphic object components?
If there is such, then we call it a solution. Exploring the category R-pair will help us to find it, if it exists. Consider the forgetful functor $R-\operatorname{pair} \rightarrow \mathcal{C},(M, N ; t) \mapsto M$. Now we can ask for existence of the free objects. If they exist, they give us a rough description of the objects. Therefore we focus on them and we call them universal pairs.

At first we show how to find the universal pair for a chosen instance of the problem using the algebraic methods.

Instances of the problem

1. Let C be a set, A, B be the sets. $\operatorname{hom}(C, A) \cong \operatorname{nom}(C, B) \stackrel{?}{\Rightarrow} A \cong B$
2. $F, G: \mathcal{S e t} \rightarrow$ Set,

$$
F \times F \cong G \times G \quad \stackrel{?}{\Rightarrow} \quad F \cong G
$$

Considering a functor $H_{2}: \mathcal{S e t}^{\mathcal{S} e t} \rightarrow \mathcal{S e t}^{\text {Set }}$ such that for every $P:$ Set \rightarrow Set holds $H_{2}(P)=P \times P$, and for every natural transformation $\phi: P \rightarrow Q$ between the set functors we have $H_{2}(\phi)=(\phi, \phi)$, then the question is:

$$
H_{2}(F) \cong H_{2}(G) \quad \stackrel{?}{\Rightarrow} \quad F \cong G
$$

3. $F, G:$ Set \rightarrow Set, let there be an isomorphism $t: \operatorname{Id} \times F \rightarrow \operatorname{Id} \times G$ such that the diagram commutes.

Does it imply $F \cong G$?

How to solve the problems?

The problem 1 is easy to solve. Since $\operatorname{hom}(C, A)=A^{C}$, then the answer depends on the cardinality of C. If C is nonempty finite set, then the answer is positive and its pair version has empty solution. If C is empty or infinite, then the answer is negative, the solution contains e.g. the pair $(2,3 ; \gamma)$, where $\gamma: 2^{C} \rightarrow 3^{C}$ is an isomorphism.

The problem 2 is similar to 1 for the case $C=2$, but it is extended up to the category of set functors. More precisely $H_{2}(F)=$ hom $(2,-) \circ F$. To solve it is much more difficult. In fact, during this talk we will not find the answer. We can just approach to it using the universal pair.

The problem 3 is actually instance of (*) such that $R: \mathcal{S e t}^{\text {Set }} \rightarrow \mathcal{W}$, $\mathcal{W}=\quad$ objects: $(M, m), M:$ Set \rightarrow Set, $m: M \rightarrow$ Id morphisms: the natural transformations between functor-components compatible with the transformations to Id
$R(F)=\left(\mathrm{Id} \times F, p_{\mathrm{Id}}^{F}\right)$. In this case we will find the answer. We show the result at the end of this presentation.

Construction of the universal pair for the problem (2)

Since $H_{2}(F)=\operatorname{hom}(2,-) \circ F$, it will be sufficient to find the universal pair for the problem 1, where $C=2$. Let there be two sets A, B, such that there is isomorphism $t: A^{2} \rightarrow B^{2}$. Therefore there are mappings $t_{0}, t_{1}: A^{2} \rightarrow B, t_{0}^{\prime}, t_{1}^{\prime}: B^{2} \rightarrow A$ satisfying for $a, b \in A, c, d \in B$

$$
\begin{aligned}
& (a, b) \stackrel{t}{\mapsto}\left(t_{0}(a, b), t_{1}(a, b)\right) \stackrel{t^{-1}-1}{\mapsto}\left(t_{0}^{\prime}\left(t_{0}(a, b), t_{1}(a, b)\right), t_{1}^{\prime}\left(t_{0}(a, b), t_{1}(a, b)\right)\right) \\
& (c, d) \stackrel{t-1}{\mapsto}\left(t_{0}^{\prime}(c, d), t_{1}^{\prime}(c, d)\right) \stackrel{t}{\mapsto}\left(t_{0}\left(t_{0}^{\prime}(c, d), t_{1}^{\prime}(c, d)\right), t_{1}\left(t_{0}^{\prime}(c, d), t_{1}^{\prime}(c, d)\right)\right)
\end{aligned}
$$

Therefore (A, B) has a structure of 2-sorted algebra with the signature $\Sigma=\left\{s_{0}, s_{1}, s_{0}^{\prime}, s_{1}^{\prime}\right\}, s_{0}, s_{1}:(0,0) \rightarrow 1, s_{0}^{\prime}, s_{1}^{\prime}:(1,1) \rightarrow 0$, where $t_{0}, t_{1}, t_{0}^{\prime}, t_{1}^{\prime}$, respectively, are the evaluations of the operation symbols.
Since t^{-1} and t are mutually inverse, the algebra satisfies the duality identities:

$$
\begin{array}{ll}
s_{0}^{\prime}\left(s_{0}(x, y), s_{1}(x, y)\right)=x & s_{1}^{\prime}\left(s_{0}(x, y), s_{1}(x, y)\right)=y \\
s_{0}\left(s_{0}^{\prime}(u, v), s_{1}^{\prime}(u, v)\right)=u & s_{1}\left(s_{0}^{\prime}(u, v), s_{1}^{\prime}(u, v)\right)=v
\end{array}
$$

Conversely, the duality identities yield the isomorphism between the second powers of the supports. Such an algebra will be called square-iso algebra.

The many-sorted algebras behave similarly as the one-sorted, e.g. for every set A and for a chosen item i of the list of algebra supports we can find a free many-sorted algebra over A in the i-labeled support such that A maps canonically to its i-labeled support.

Let A be a set, \mathcal{A} be the free square-iso algebra over A in the 0-labeled support, $(P(A), Q(A))$ be the carrier of \mathcal{A}. Then $P(A)$ is a set of all the "correctly" composed terms in language of Σ with the variables from A and with the most outer symbol being a variable or s_{0}^{\prime} or s_{1}^{\prime} factorized over the duality identities. $Q(A)$ differs from $P(A)$ only in the most outer symbols, here these are s_{0}, or s_{1}.

The sets $P(A), Q(A)$ are defined functorially, hence we have the functors $P, Q: \mathcal{S e t} \rightarrow \mathcal{S e t}$. Since \mathcal{A} is a square-iso algebra, there is an isomorphism $\tau_{A}: P(A)^{2} \rightarrow Q(A)^{2}$ which gives a rise to the natural transformation $\tau: \operatorname{hom}(2,-) \circ P \rightarrow \operatorname{hom}(2,-) \circ Q$. Therefore $\operatorname{hom}(2,-) \circ P \cong \operatorname{hom}(2,-) \circ Q$ and $(P \circ F, Q \circ F ; \tau F)$ is a H_{2}-pair for every F. The freeness is given by $(P(A)$, $Q(A)$) being the carrier of a free algebra. But still do not know, if $P \not \approx Q$.

Adjunction

All three shown instances of the basic problem actually have the same property: the category \mathcal{C} has all colimits and functor R is a right adjoint and preserves the directed colimits (in (1) only if C is finite).

Recall that $L \dashv R:(\eta, \epsilon): \mathcal{C} \rightarrow \mathcal{D}$ is the adjunction (L is a left adjoint to R and R is a right adjoint to L) iff
$R: \mathcal{C} \rightarrow \mathcal{D}, L: \mathcal{D} \rightarrow \mathcal{C}$ are the functors, $\eta: \mathrm{Id}_{\mathcal{D}} \rightarrow R L, \epsilon: L R \rightarrow \mathrm{Id}_{\mathcal{C}}$ are the natural transformations such that there is one-to-one correspondence between the morphisms $f: A \rightarrow R(B)$ in \mathcal{D} and $\tilde{f}: L(A) \rightarrow B$ in \mathcal{C}, namely

The examples of adjunction appear almost in every part of mathematics, e.g. $(C \times-, \operatorname{hom}(C,-))$ on $\operatorname{Set},\left(P \otimes-, \operatorname{hom}_{R}(P,-)\right)$ on modules over a commutative ring R, (Free $_{\tau}$, Under $_{\tau}$) for a type τ and many similar cases of this kind, (reflexion, embedding) of the reflexive subcategory, etc.

Theorem 1 Let $L \dashv R:(\eta, \epsilon): \mathcal{C} \rightarrow \mathcal{D}$ be the adjunction such that \mathcal{C} has all colimits and R preserves the directed colimits. Then the category of R-pairs has the free objects.

The proof, which will not be fully shown here, is constructive and we sketch the construction.

Construction of the free R-pair.

The adjunction yields the comonad (N, ϵ, ν) such that $N=L \circ R$ and $\nu=L \eta R: N \rightarrow N^{2}, \epsilon: N \rightarrow$ Id are natural transformations given by adjunction. Then we can construct the following diagrams. Let $N_{0}=$ Id, $N_{1}=N$ and let $q_{0}: N N_{0} \rightarrow N_{1}$ be the identity on N. We define N_{2} as a pushout of ϵ and ν, i.e.

Since we already know $N_{0}, N_{1}, N_{2}, q_{0}, q_{1}, v_{0}$ we define recursively for $n \in \mathbf{N}$, $n \geq 3$ the object N_{n} and the morphisms $q_{n-1}: N N_{n-1} \rightarrow N_{n}, v_{n}: N_{n-2} \rightarrow N_{n}$ as the colimit of the diagram drawn by solid lines:

We define the functors N_{S} and N_{L} as the directed colimits in of the chains \mathcal{C} :

$N_{0} \longrightarrow v_{0}$	$N_{2} \xrightarrow[v_{2}]{v_{1}} N_{4}$
$N_{1} \xrightarrow[v_{1}]{ } N_{3} \xrightarrow[v_{3}]{ } N_{5} \longrightarrow$	$>N_{L}$

One can prove, that for every $k \in \omega$ holds $R v_{k}=\tilde{q_{k+1}} \circ \tilde{q_{k}}$. Then R-images of these chains have the same colimit C.

If R preserves the directed colimits, then $R N_{S} \cong C \cong R N_{L}$. Therefore there is an isomorphism $\tau: R N_{S} \rightarrow R N_{L}$ and $\left(N_{S}, N_{L} ; \tau\right)$ is an R-pair.

Construction of the universal pair for the problem (3)

This procedure shown above can be used to find the universal pairs for every instance of problem (*). In case of (3),

$$
\left(N_{S}, N_{L} ; \tau\right) \cong\left(\text { Mon }_{S} \times F, \text { Mon }_{L} \times F ; \tau\right),
$$

where $\operatorname{Mon}_{S}(A), \operatorname{Mon}_{L}(A)$ are the subsets of the free monoid over a set A satisfying literally (i.e. on the variables) the equation

$$
a a=1,
$$

namely $\operatorname{Mon}_{S}(A)$ and $M o n_{L}(A)$ contains all terms of the even and odd "length", respectively.
The transformation $\tau_{F}: \operatorname{Id} \times \mathrm{Mon}_{S} \times F \rightarrow \mathrm{Id} \times \mathrm{Mon}_{S} \times F$ is actually a pair of transformations $\tau_{F}=\left(\sigma, \mathrm{id}_{F}\right)$, where $\sigma: \mathrm{Id} \times \mathrm{Mon}_{S} \rightarrow \mathrm{Id} \times \mathrm{Mon}_{S}$ is an isomorphism defined on a set A as follows:

$$
\tau_{A}(a, x)=(a, a x), \tau_{A}^{-1}(a, y)=(a, a y)
$$

Theorem 2 One can prove that $\mathrm{Mon}_{S} \neq \mathrm{Mon}_{L}$, i.e. the answer for the question 3 is negative.

