
A Cayley Theorem for

distributive lattices and for

algebras with binary and

nullary operations

Ivan Chajda
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Cayley’s Theorem provides a well-known rep-

resentation of groups by means of certain

unary functions (the so-called permutations)

with composition as its binary operation. For

Boolean algebras, a representation via binary

functions (the so-called guard functions) was

settled by Bloom, Ésik and Manes. A simi-

lar approach was used by the first author for

the so-called q-algebras. Here we will firstly

present a representation of distributive lat-

tices by means of binary functions.



First we define an algebra in which we will

embed the distributive lattices.

Definition 1. For every set M let F(M)

denote the algebra (MM2
, ¦, ∗) of type (2,2)

defined by (f ¦ g)(x, y) := f(g(x, y), y) and

(f ∗ g)(x, y) := f(x, g(x, y)) for all f, g ∈ MM2

and x, y ∈ M .

F(M) is not a lattice, but the operations ¦
and ∗ are associative.



Definition 2. For every lattice (L,∨,∧) and

every a ∈ L let fa denote the mapping (x, y) 7→
(a ∨ x) ∧ y from L2 to L and ϕ the mapping

a 7→ fa from L to LL2
.



Now we can state our first result:

Theorem 1. For every distributive lattice

L = (L,∨,∧) the mapping ϕ is an embedding

of L into F(L).

That for a distributive lattice (L,∨,∧) the

algebra (ϕ(L), ¦, ∗) is a lattice follows from

a more general result. In order to be able

to formulate this result in a concise way we

make the following definition:



Definition 3. We call a subuniverse A of

F(M) full if for all f, g ∈ A and x, y, z, u ∈ M

(i) f(x, x) = x,
(ii) f(g(x, y), g(z, u)) = g(f(x, z), f(y, u)),
(iii) f(f(x, g(x, y)), y) = f(x, f(g(x, y), y)) =

= f(x, y).



Now we can prove

Theorem 2. If A is a full subuniverse of

F(L) then (A, ¦, ∗) is a lattice.



That for a distributive lattice (L,∨,∧) the

algebra (ϕ(L), ¦, ∗) is a lattice now follows

from

Theorem 3. If L = (L,∨,∧) is a distributive

lattice then ϕ(L) is a full subuniverse of F(L)

and hence (ϕ(L), ¦, ∗) is a lattice isomorphic

to L.



The Cayley Theorem for monoids (which is

essentially the same as that for groups) is well

known and a Cayley Theorem for distribu-

tive lattices was presented. We will present

a common generalization of both theorems.



In the following let n be an arbitrary, but

fixed positive integer.

Definition 4. Let Vn denote the variety of

all algebras (A, •1, . . . , •n) of type (2, . . . ,2)

satisfying the identities

(. . . ((x •i y) •1 x1) •2 . . .) •n xn =

= (. . . ((((. . . (x •1 x1) •2 . . .) •i−1 xi−1) •i
•i((. . . (y •1 x1) •2 . . .) •n xn)) •i+1

•i+1xi+1) •i+2 . . .) •n xn

for i = 1, . . . , n.



Example 1. V1 is the variety of semigroups.



Example 2. Since an algebra (A,∨,∧) of
type (2,2) belongs to V2 if it satisfies the
identities

((x ∨ y) ∨ z) ∧ u = (x ∨ ((y ∨ z) ∧ u)) ∧ u

((x ∧ y) ∨ z) ∧ u = (x ∨ z) ∧ ((y ∨ z) ∧ u),

V2 includes the variety of distributive lattices
because for arbitrary elements x, y, z, u of a
distributive lattice (A,∨,∧) it holds

((x ∨ y) ∨ z) ∧ u =

= (x ∧ u) ∨ (y ∧ u) ∨ (z ∧ u) =

= (x ∧ u) ∨ ((y ∨ z) ∧ u) =

= (x ∨ ((y ∨ z) ∧ u)) ∧ u

and

((x ∧ y) ∨ z) ∧ u = (x ∨ z) ∧ (y ∨ z) ∧ u =

= (x ∨ z) ∧ ((y ∨ z) ∧ u).

More generally, V2 includes the variety so-
called solid semirings. These semirings are
defined as algebras of type (2,2) having the
property that both operations are associative
and distributive with respect to each other.



Next we want to map our algebras homo-

morphically into certain algebras of functions.

For this purpose we define

Definition 5. For all algebras (A, •1, . . . , •n)
of type (2, . . . ,2) and all a ∈ A let fa denote

the mapping from An to A defined by

fa(x1, . . . , xn) := (. . . (a •1 x1) •2 . . .) •n xn

for all x1, . . . , xn ∈ A. For every set A and

every i ∈ {1, . . . , n} let ◦i denote the binary

operation on AAn
defined by the following

composition of mappings

(f ◦i g)(x1, . . . , xn) :=

f(x1, . . . , xi−1, g(x1, . . . , xn), xi+1, . . . , xn)

for all f, g ∈ AAn
and all x1, . . . , xn ∈ A.



Now we can state

Theorem 4. If A = (A, •1, . . . , •n) ∈ Vn

then a 7→ fa is a homomorphism from A to

(AAn
, ◦1, . . . , ◦n).



Remark. It was shown that for distributive

lattices (A,∨,∧) the homomorphism of The-

orem 4 is in fact injective and hence an em-

bedding. Since a, b ∈ A and fa = fb together

imply

a = (a ∨ b) ∧ a = fa(b, a) = fb(b, a) =

= (b ∨ b) ∧ a = b ∧ a = a ∧ b = (a ∨ a) ∧ b =

= fa(a, b) = fb(a, b) = (b ∨ a) ∧ b = b.

Hence we obtain the Cayley Theorem for dis-

tributive lattices already presented.



Definition 6. Let Vn0 denote the variety

of all algebras (A, •1, . . . , •n, e1, . . . , en) of type

(2, . . . ,2,0, . . . ,0) satisfying the identities

(. . . ((x •i y) •1 x1) •2 . . .) •n xn =

(. . . ((((. . . (x •1 x1) •2 . . .) •i−1 xi−1) •i
•i((. . . (y •1 x1) •2 . . .) •n xn)) •i+1

•i+1xi+1) •i+2 . . .) •n xn

for i = 1, . . . , n and the identity

(. . . (x •1 e1) •2 . . .) •n en = x.



Example 3. V10 is the variety of semigroups

having a right unit and hence V10 includes

the variety of monoids.



Example 4. V20 consists of all algebras

(A,∨,∧,0,1) of type (2,2,0,0) satisfying the

identities

((x ∨ y) ∨ z) ∧ u = (x ∨ ((y ∨ z) ∧ u)) ∧ u
((x ∧ y) ∨ z) ∧ u = (x ∨ z) ∧ ((y ∨ z) ∧ u)
(x ∨ 0) ∧ 1 = x.

Since V2 includes the variety of distribu-

tive lattices and for arbitrary elements x of

a bounded distributive lattice (A,∨,∧,0,1) it

holds (x∨0)∧1 = x, V20 includes the variety

of bounded distributive lattices considered as

algebras of the form (A,∨,∧,0,1).



Now we can state and prove the general

Cayley Theorem.

Theorem 5. If A = (A, •1, . . . , •n, e1, . . . , en) ∈
Vn0 then a 7→ fa is an embedding of A into

(AAn
, ◦1, . . . , ◦n, fe1, . . . , fen).



Corollary 1. If (A, •1, . . . , •n, e1, . . . , en) ∈ Vn0

then ({fa | a ∈ A}, ◦1, . . . , ◦n) is isomorphic to

(A, •1, . . . , •n), i.e. it is a functional represen-

tation of (A, •1, . . . , •n).

Corollary 2. In the case n = 1 Theorem 5

implies the Cayley Theorem for monoids.

Corollary 3. In the case n = 2 Theorem 5

implies the Cayley Theorem for bounded dis-

tributive lattices.
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