ALGEBRAS WITH SUPPORTS

Jānis Cīrulis Department of Computer Science University of Latvia

SSAOS 46: Třešť, September 2008

OVERVIEW

- 1. Definitions
- 2. Typical constructions of supported algebras
- 3. Examples
- 4. Categories of locally finite algebras

Initial data:

• (L, \cap) – a meet semilattice

(sometimes – with the greatest element U),

• $L_0 := \{X \in L: (X] \text{ is finite}\} - a \text{ join-dense ideal in } L$

i.e., L_0 is a down-set closed under existing finite joins, and every element of L is the join of some subset of L_0 .

Initial data:

• (L, \cap) – a meet semilattice

(sometimes – with the greatest element U),

• $L_0 := \{X \in L: (X] \text{ is finite}\} - a \text{ join-dense ideal in } L$

i.e., L_0 is a down-set closed under existing finite joins, and every element of L is the join of some subset of L_0 .

The motivating standart example:

 $L-{\rm the}\ {\rm semilattice}\ {\rm of}\ {\rm all}\ {\rm subsets}\ {\rm of}\ {\rm some}\ {\rm set}\ U$

(normally infinite),

 L_0 – the set of all finite subsets of U.

Initial data:

• (L, \cap) – a meet semilattice

(sometimes – with the greatest element U),

• $L_0 := \{X \in L: (X] \text{ is finite}\} - a \text{ join-dense ideal in } L$

i.e., L_0 is a down-set closed under existing finite joins, and every element of L is the join of some subset of L_0 .

The motivating standart example:

 $L-{\rm the}\ {\rm semilattice}\ {\rm of}\ {\rm all}\ {\rm subsets}\ {\rm of}\ {\rm some}\ {\rm set}\ U$

(normally infinite),

 L_0 – the set of all finite subsets of U.

Elements of L belonging to L_0 will be called *finite*.

Initial data:

• (L, \cap) – a meet semilattice

(sometimes – with the greatest element U),

• $L_0 := \{X \in L: (X] \text{ is finite}\} - a \text{ join-dense ideal in } L$

i.e., L_0 is a down-set closed under existing finite joins, and every element of L is the join of some subset of L_0 .

The motivating standart example:

L – the semilattice of all subsets of some set U

(normally infinite),

 L_0 – the set of all finite subsets of U.

Elements of L belonging to L_0 will be called *finite*.

• A – an arbitrary algebra.

A support relation, or supporting, for A is a relation $spp \subseteq L \times A$ such that,

• for every $a \in A$, the set $spp(a) := \{X \in L : X \text{ spp } a\}$ is

an upper set in L, and

• for every $X \in L$, the set $A_X := \{a \in A \colon X \text{ spp } a\}$ is

a subalgebra of A.

A support relation, or supporting, for A is a relation $spp \subseteq L \times A$ such that,

- for every $a \in A$, the set $spp(a) := \{X \in L : X \text{ spp } a\}$ is
 - an upper set in L, and
- for every $X \in L$, the set $A_X := \{a \in A \colon X \text{ spp } a\}$ is

a subalgebra of A.

Then $(A_X: X \in L)$ is a local family of subalgebras, i.e.,

- A_X is a subalgebra of A_Y whenever $X \subseteq Y$, and
- $A = \bigcup (A_X \colon X \in L).$

(If L has the greatest element U, then $A = A_U$.)

A support relation, or supporting, for A is a relation $spp \subseteq L \times A$ such that,

- for every $a \in A$, the set $spp(a) := \{X \in L : X \text{ spp } a\}$ is
 - an upper set in L, and
- for every $X \in L$, the set $A_X := \{a \in A \colon X \text{ spp } a\}$ is a subalgebra of A.

Then $(A_X: X \in L)$ is a local family of subalgebras, i.e.,

• A_X is a subalgebra of A_Y whenever $X \subseteq Y$, and

•
$$A = \bigcup (A_X : X \in L).$$

(If L has the greatest element U, then $A = A_U$.)

The relation spp is *normal* if

- every set spp(a) is actually a semilattice filter or, equivalently,
- if the corresponding local family is *multiplicative*:

 $A_X \cap A_Y = A_{X \cap Y}$ for all $X, Y \in L$.

A supported algebra is a pair (A, spp) , where spp is a supporting for A.

Elements of spp(a) are said to be supports of a.

The subalgebras A_X are called *components* of A.

A *supported algebra* is a pair (A, spp) , where spp is a supporting for A.

Elements of spp(a) are said to be supports of a. The subalgebras A_X are called components of A.

A component A_X is *finite-dimensional*, if X is finite. The union of all such components is a subalgebra of A. The algebra A is said to be *locally finite-dimensional*, or just *locally finite*, if it coincides with this union. A supported algebra is a pair (A, spp) , where spp is a supporting for A.

Elements of spp(a) are said to be *supports* of a. The subalgebras A_X are called *components* of A.

A component A_X is *finite-dimensional*, if X is finite. The union of all such components is a subalgebra of A. The algebra A is said to be *locally finite-dimensional*, or just *locally finite*, if it coincides with this union.

This is the case if and only if every element of A has a finite support.

More generally:

The signature of A may be related to L and depend on the size of this set in some way. Then a component A_X usually is not similar to A, but may be, for example, a subreduct of A (and of A_Y , if $X \subseteq Y$).

More generally:

The signature of A may be related to L and depend on the size of this set in some way. Then a component A_X usually is not similar to A, but may be, for example, a subreduct of A (and of A_Y , if $X \subseteq Y$).

Then a "natural" support relation for A can frequently be defined in terms of operations of A.

Supports by local families:

A – an algebra.

A local family $(A_X: X \in L)$ of subalgebras of A

i.e.,

- $A_X \subseteq A_Y$ whenever $X \subseteq Y$, and
- $\bigcup (A_X \colon X \in L) = A.$

Supports by local families:

A – an algebra.

A local family $(A_X: X \in L)$ of subalgebras of A

i.e.,

- $A_X \subseteq A_Y$ whenever $X \subseteq Y$, and
- $\bigcup (A_X \colon X \in L) = A.$

If it is the case, and if $X \operatorname{spp} a :\equiv a \in A_X$, then spp is a supporting for A, which is normal iff the family is multiplicative i.e., if $A_{X \cap Y} = A_X \cap A_Y$.

Supports by local families:

A – an algebra.

A local family $(A_X: X \in L)$ of subalgebras of A

i.e.,

- $A_X \subseteq A_Y$ whenever $X \subseteq Y$, and
- $\bigcup (A_X \colon X \in L) = A.$

If it is the case, and if $X \operatorname{spp} a :\equiv a \in A_X$, then spp is a supporting for A, which is normal iff the family is multiplicative i.e., if $A_{X \cap Y} = A_X \cap A_Y$.

Conversely, components of a supported algebra form a local family. This correspondence between support relations for A and local families in A is one-to-one.

A *finitary* local family in A is an L_0 -indexed local family.

A *finitary* local family in A is an L_0 -indexed local family.

If $(A_Z: Z \in L_0)$ is such a family, and if, for every $X \in L \setminus L_0$, $A_X = \bigcup (A_Z: Z \in L_0, Z \subseteq X)$,

then

- $(A_X: X \in L)$ is a local *L*-family, and
- the corresponding support relation makes A locally finite.

A *finitary* local family in A is an L_0 -indexed local family.

If $(A_Z: Z \in L_0)$ is such a family, and if, for every $X \in L \setminus L_0$, $A_X = \bigcup (A_Z: Z \in L_0, Z \subseteq X)$,

then

- $(A_X: X \in L)$ is a local *L*-family, and
- the corresponding support relation makes A locally finite.

This correspondence between support relations that make A locally finite, and finitary local families in A is also one-to-one.

Supports by independce:

A - an algebra, Var - a set of variables, $L := \mathcal{P}(Var)$ ind - relation in $A \times Var$ such that $\{a: a \text{ ind } x\}$ is an subalgebra of A for every $x \in Var$. (a ind x means that a is "independent" of x)

Supports by independce:

A - an algebra, Var - a set of variables, $L := \mathcal{P}(Var)$ ind - relation in $A \times Var$ such that $\{a: a \text{ ind } x\}$ is an subalgebra of A for every $x \in Var$. (a ind x means that a is "independent" of x)

If $X \operatorname{spp} a$ iff $x \operatorname{ind} a$ for all $x \notin X$, then spp is a normal support relation for A.

Supports by independce:

A - an algebra, Var - a set of variables, $L := \mathcal{P}(Var)$ ind - relation in $A \times Var$ such that $\{a: a \text{ ind } x\}$ is an subalgebra of A for every $x \in Var$. (a ind x means that a is "independent" of x)

If $X \operatorname{spp} a$ iff $x \operatorname{ind} a$ for all $x \notin X$, then $\operatorname{spp} is a$ normal support relation for A.

Conversely, if spp is a support relation and $a \operatorname{ind} x :\equiv (Var \setminus \{x\}) \operatorname{spp} a$, then ind is an independence relation.

This correspondence *is not* bijective even between *normal* support relations and independence relations.

It is if and only if only regular support relations are admitted.

This correspondence *is not* bijective even between *normal* support relations and independence relations.

It *is* if and only if only regular support relations are admitted.

A supporting spp for A is *regular* if every element of A has the least support.

So, a regular supporting is normal, and every filter spp (a) of L is then principal.

This correspondence *is not* bijective even between *normal* support relations and independence relations.

It *is* if and only if only regular support relations are admitted.

A supporting spp for A is *regular* if every element of A has the least support.

So, a regular supporting is normal, and every filter spp (a) of L is then principal.

A supporting is regular iff it is induced by an independence relation, which is then unique.

A – an algebra,

U := the greatest element of L,

P – a homomorphism $L \rightarrow End(A)$.

A – an algebra, U := the greatest element of L, P – a homomorphism $L \rightarrow End(A)$.

$$P_X := P(X);$$
 so
 $P_{X \cap Y} = P_X P_Y$ $P_U = \operatorname{id}_A.$

In A: $a \le b :\equiv a = P_X(b)$ for some X.

Then \leq is a partial order, and every P_X is an interior operator on A (a "projector" onto A_X).

A – an algebra, U := the greatest element of L, P – a homomorphism $L \rightarrow End(A)$.

$$P_X := P(X);$$
 so
 $P_{X \cap Y} = P_X P_Y$ $P_U = \operatorname{id}_A.$

In A: $a \le b :\equiv a = P_X(b)$ for some X. Then \le is a partial order, and every P_X is an interior operator on A (a "projector" onto A_X).

The family (ran P_X : $X \in L$) is a multiplicative local family in A. The corresponding supporting is given by $X \operatorname{spp} a$ iff $P_X(a) = a$.

A – an algebra, U := the greatest element of L, P – a homomorphism $L \rightarrow End(A)$.

$$P_X := P(X);$$
 so
 $P_{X \cap Y} = P_X P_Y$ $P_U = \operatorname{id}_A.$

In A: $a \le b :\equiv a = P_X(b)$ for some X. Then \le is a partial order, and every P_X is an interior operator on A (a "projector" onto A_X).

The family (ran P_X : $X \in L$) is a multiplicative local family in A. The corresponding supporting is given by $X \operatorname{spp} a$ iff $P_X(a) = a$.

It goes also for algebras with projectors $(A, P_X)_{X \in L}$.

- A an algebra,
- Var a set of variables,

 $L := \mathcal{P}(Var),$

- T := the transformation monoid of Var,
- $\varepsilon :=$ the neutral element of T,
- S a homomorphism $T \rightarrow End(A)$.

A – an algebra,

Var – a set of variables,

 $L := \mathcal{P}(Var),$

T := the transformation monoid of Var,

 $\varepsilon :=$ the neutral element of T,

S – a homomorphism $T \rightarrow End(A)$.

$$S_{\alpha} := S(\alpha);$$
 so
 $S_{\alpha\beta} = S_{\alpha}S_{\beta}, \quad S_{\varepsilon} = \operatorname{id}_{A}.$

(S_{α} is the "substitution" over A induced by the transformation α .)

A – an algebra,

Var – a set of variables,

 $L := \mathcal{P}(Var),$

T := the transformation monoid of Var,

 $\varepsilon :=$ the neutral element of T,

S – a homomorphism $T \rightarrow End(A)$.

$$S_{\alpha} := S(\alpha);$$
 so
 $S_{\alpha\beta} = S_{\alpha}S_{\beta}, \quad S_{\varepsilon} = \operatorname{id}_{A}.$

(S_{α} is the "substitution" over A induced by the transformation α .)

If $X \operatorname{spp} a$ is defined by

for all $\alpha, \beta \in T$, $S_{\alpha}(a) = S_{\beta}(a)$ whenever $\alpha | X = \beta | X$, then spp is a normal supporting for A.

A - an algebra, Var - a set of variables, $L := \mathcal{P}(Var)$, T := the transformation monoid of Var, $\varepsilon :=$ the neutral element of T, S - a homomorphism $T \rightarrow End(A)$.

 $S_{\alpha} := S(\alpha);$ so $S_{\alpha\beta} = S_{\alpha}S_{\beta}, \quad S_{\varepsilon} = \mathrm{id}_{A}.$ (S_{α} is the "substitution" over A induced by the transformation α .)

If $X \operatorname{spp} a$ is defined by

for all $\alpha, \beta \in T$, $S_{\alpha}(a) = S_{\beta}(a)$ whenever $\alpha | X = \beta | X$, then spp is a normal supporting for A.

It goes* also for algebras with substitutions $(A, S_{\alpha})_{\alpha \in T}$ $(A_X \text{ is closed under } S_{\alpha} \text{ only if } \alpha \text{ is constant outside } X).$
First-order language:

the set of variables: Var, connectives: \lor, \land, \neg , a quantifier: \exists , the algebra of formulas: $(F, \lor, \land, \neg, \exists x)_{x \in Var}$. the algebra of quantifier-free formulas: (F_0, \lor, \land, \neg) .

First-order language:

the set of variables: Var, connectives: \lor, \land, \neg , a quantifier: \exists , the algebra of formulas: $(F, \lor, \land, \neg, \exists x)_{x \in Var}$. the algebra of quantifier-free formulas: (F_0, \lor, \land, \neg) .

Fr(f) := the set of free variables of a formula f, $L := \mathcal{P}(Var)$.

First-order language:

the set of variables: *Var*, connectives: \lor, \land, \neg , a quantifier: \exists , the algebra of formulas: $(F, \lor, \land, \neg, \exists x)_{x \in Var}$. the algebra of quantifier-free formulas: (F_0, \lor, \land, \neg) .

Fr(f) := the set of free variables of a formula f, $L := \mathcal{P}(Var)$.

Independence relation for both F and F_0 :

 $f \text{ ind } x \coloneqq x \notin Fr(f).$

The corresponding support relation for both F and F_0 :

 $X \operatorname{spp} f :\equiv Fr(f) \subseteq X.$

First-order language:

the set of variables: Var, connectives: \lor, \land, \neg , a quantifier: \exists , the algebra of formulas: $(F, \lor, \land, \neg, \exists x)_{x \in Var}$. the algebra of quantifier-free formulas: (F_0, \lor, \land, \neg) .

Fr(f) := the set of free variables of a formula f, $L := \mathcal{P}(Var)$.

Independence relation for both F and F_0 :

 $f \text{ ind } x :\equiv x \notin Fr(f).$ The corresponding support relation for both F and F_0 : $X \operatorname{spp} f :\equiv Fr(f) \subseteq X.$

Both algebras are locally finite.

Cylindric set algebras:

- an ordinal α (possibly, infinite),
- a set U,
- a Boolean algebra $B := \mathcal{P}(U^{\alpha})$,
- the k-th cylindrification on B $(k < \alpha)$: c_k : $B \rightarrow B$,
- $c_k(b) := \{ \varphi \in U^{\alpha} : \varphi \text{ differs at most at } k \text{ from some } \psi \in b \}.$

Cylindric set algebras:

- an ordinal α (possibly, infinite),
- a set U,
- a Boolean algebra $B := \mathcal{P}(U^{\alpha})$,
- the k-th cylindrification on B $(k < \alpha)$: c_k : $B \rightarrow B$,
- $c_k(b) := \{ \varphi \in U^{\alpha} : \varphi \text{ differs at most at } k \text{ from some } \psi \in b \}.$

 $(B,c_k)_{k<\alpha}$ is a (full) "diagonal-free" cylindric set algebra. $L := \mathcal{P}(\alpha).$

Cylindric set algebras:

an ordinal α (possibly, infinite), a set U, a Boolean algebra $B := \mathcal{P}(U^{\alpha})$, the k-th cylindrification on B ($k < \alpha$): $c_k : B \to B$, • $c_k(b) := \{\varphi \in U^{\alpha} : \varphi \text{ differs at most at } k \text{ from some } \psi \in b\}.$

 $(B,c_k)_{k<\alpha}$ is a (full) "diagonal-free" cylindric set algebra. $L := \mathcal{P}(\alpha).$

The independence relation for this algebra defined by $b \operatorname{ind} k :\equiv c_k(b) = b$ gives rise to a regular support relation for it.

 $\alpha, U, B := \mathcal{P}(U^{\alpha}), L := \mathcal{P}(\alpha)$ as above.

 $\alpha, U, B := \mathcal{P}(U^{\alpha}), L := \mathcal{P}(\alpha)$ as above.

A normal but not regular supporting for B:

 $\alpha, U, B := \mathcal{P}(U^{\alpha}), L := \mathcal{P}(\alpha)$ as above.

A normal but not regular supporting for B:

 $\begin{array}{ll} X \ {\rm spp} \ b \ :\equiv \\ \mbox{for all} \ \varphi \in U^{\alpha}, \ \varphi \in b \ {\rm whenever} \ \varphi | X = \psi | X \ {\rm for some} \ \psi \in b. \end{array}$

Hence, it generally differs from that of the preceding example.

 $\alpha, U, B := \mathcal{P}(U^{\alpha}), L := \mathcal{P}(\alpha)$ as above.

A normal but not regular supporting for B:

 $\begin{array}{ll} X \ {\rm spp} \ b \ :\equiv \\ \mbox{for all} \ \varphi \in U^{\alpha}, \ \varphi \in b \ {\rm whenever} \ \varphi | X = \psi | X \ {\rm for \ some} \ \psi \in b. \end{array}$

Hence, it generally differs from that of the preceding example.

If $X = k < \alpha$, then: a subset of B_X is treated in algebraic first-order logic as a k-ary relation on U, an operation $B_k \to U$ may be treated as k-ary operation on U.

a relatively free algebra on free generators Var: W, the variety generated by W: $\mathcal{V}(W)$.

a relatively free algebra on free generators Var: W, the variety generated by W: $\mathcal{V}(W)$.

 $L := \mathcal{P}(Var).$

a relatively free algebra on free generators Var: W, the variety generated by W: $\mathcal{V}(W)$.

 $L := \mathcal{P}(Var).$

A normal supporting relation for W:

 $X \operatorname{spp} w :\equiv$

for every $A \in \mathcal{V}(W)$ and $\varphi, \psi \in Hom(W, A)$, $\varphi|X = \psi|X$ implies $\varphi(w) = \psi(w)$.

a relatively free algebra on free generators Var: W, the variety generated by W: $\mathcal{V}(W)$.

 $L := \mathcal{P}(Var).$

A normal supporting relation for W:

 $X \operatorname{spp} w :\equiv$ for every $A \in \mathcal{V}(W)$ and $\varphi, \psi \in Hom(W, A)$, $\varphi | X = \psi | X$ implies $\varphi(w) = \psi(w)$.

If $X \neq \emptyset$, then is W_X is the subalgebra of W generated by X.

The supported algebra (W, spp) is locally finite.

Var, W, L as above, substitution of y for x $(x, y \in L)$:

an endomorphism s_y^x of W such that

•
$$s_y^x(x) = y$$
,
• $s_y^x(z) = z$, if $z \neq x$.

Var, W, L as above, substitution of y for $x (x, y \in L)$:

an endomorphism s_y^x of W such that

•
$$s_y^x(x) = y$$
,
• $s_y^x(z) = z$, if $z \neq x$.

Independence relation for W:

 $w \text{ ind } x :\equiv \text{ for all } y \in Var, \, \mathsf{s}_y^x(w) = w.$

Var, W, L as above, substitution of y for x $(x, y \in L)$:

an endomorphism s_y^x of W such that

•
$$s_y^x(x) = y$$
,
• $s_y^x(z) = z$, if $z \neq x$

Independence relation for W:

$$w \text{ ind } x :\equiv \text{ for all } y \in Var, \, \mathsf{s}_y^x(w) = w.$$

The corresponding support relation coincides with that defined above.

```
It goes* also for the algebra (W, s_y^x)_{x,y \in Var}
(A_X \text{ is not closed under } s_y^x \text{ if } y \notin X).
```

Algebras of partial functions:

an algebra of partial functions $U \to V$: $(F, \cup, \cap, \setminus)$,

Algebras of partial functions:

an algebra of partial functions $U \to V$: $(F, \cup, \cap, \setminus)$,

 $L := \mathcal{P}(U).$ dom f := the domain of $f \in F$, f|X := the restriction of f to $X \cap \text{dom } f$.

Algebras of partial functions:

an algebra of partial functions $U \to V$: $(F, \cup, \cap, \setminus)$,

 $L := \mathcal{P}(U).$ dom f := the domain of $f \in F$, f|X := the restriction of f to $X \cap \text{dom } f$.

A family of projectors for F: $P_X: f \mapsto f | X \quad (X \in L).$

The corresponding support relation:

 $X \operatorname{spp} f :\equiv \operatorname{dom} f \subseteq X$ is regular.

Function modules:

a ring R, a set U, the module of functions R^U .

Function modules:

a ring R, a set U, the module of functions R^U .

$$L := \mathcal{P}(U).$$

$$P_X := \text{the linear operator on } R^U \text{ defined by}$$

$$P_X(f)(x) := \begin{cases} f(x), & \text{if } x \in X, \\ 0, & \text{if } x \notin X. \end{cases}$$

Function modules:

```
a ring R,
a set U,
the module of functions R^U.
```

$$\begin{split} L &:= \mathcal{P}(U). \\ P_X &:= \text{the linear operator on } R^U \text{ defined by} \\ P_X(f)(x) &:= \begin{cases} f(x), & \text{if } x \in X, \\ 0, & \text{if } x \notin X. \end{cases} \end{split}$$

The family $(P_X: x \in L)$ is a family of projectors on \mathbb{R}^U .

The corresponding support relation for R^U :

 $X \operatorname{spp} f :\equiv f(x) = 0$ for all $x \notin X$ is regular.

Menger algebras*:

an ordinal α (possibly, infinite),

an α -dimensional Menger algebra $W := (W, \circ, e_k)_{k \leq \alpha}$, where

- \circ is a $(1 + \alpha)$ -ry operation on W ("composition"),
- every e_k is an element of W (the *k*-th "selector"),
- the following axioms are fulfilled:
 - $w \circ \mathbf{e} = w$,

•
$$e_k \circ \mathbf{v} = v_k$$
,

• $(w \circ \mathbf{u}) \circ \mathbf{v} = w \circ (\mathbf{u} \circ \mathbf{v}).$

Menger algebras*:

an ordinal α (possibly, infinite),

an α -dimensional Menger algebra $W := (W, \circ, e_k)_{k \leq \alpha}$, where

- \circ is a $(1 + \alpha)$ -ry operation on W ("composition"),
- every e_k is an element of W (the k-th "selector"),
- the following axioms are fulfilled:
 - $w \circ \mathbf{e} = w$,

•
$$e_k \circ \mathbf{v} = v_k$$
,

• $(w \circ \mathbf{u}) \circ \mathbf{v} = w \circ (\mathbf{u} \circ \mathbf{v}).$

 $L := \mathcal{P}(\alpha).$

The support relation defined by

 $X \operatorname{spp} w :\equiv \text{ for all } \mathbf{u}, \mathbf{v} \in W^{\alpha}, \quad w \circ \mathbf{u} = w \circ \mathbf{v} \text{ whenever } \mathbf{u} | X = \mathbf{v} | X.$ The least support of w is the *rank* of w.

Menger algebras*:

an ordinal α (possibly, infinite),

an α -dimensional Menger algebra $W := (W, \circ, e_k)_{k < \alpha}$, where

- \circ is a $(1 + \alpha)$ -ry operation on W ("composition"),
- every e_k is an element of W (the k-th "selector"),
- the following axioms are fulfilled:

•
$$w \circ \mathbf{e} = w$$
,

•
$$e_k \circ \mathbf{v} = v_k$$
,

•
$$(w \circ \mathbf{u}) \circ \mathbf{v} = w \circ (\mathbf{u} \circ \mathbf{v}).$$

$$\begin{split} L &:= \mathcal{P}(\alpha). \\ \text{The support relation defined by} \\ X & \text{spp } w :\equiv \text{for all } \mathbf{u}, \mathbf{v} \in W^{\alpha}, \quad w \circ \mathbf{u} = w \circ \mathbf{v} \text{ whenever } \mathbf{u} | X = \mathbf{v} | X. \\ \text{The least support of } w \text{ is the } rank \text{ of } w. \end{split}$$

Locally finite Menger algebras of dimension ω are, essentially, abstract finitary clones.

4. CATEGORIES OF LOCALLY FINITE ALGEBRAS

4. CATEGORIES OF LOCALLY FINITE ALGEBRAS

 $(A, \operatorname{spp}), (A', \operatorname{spp}')$ – supported algebras of the same type.

- *h* is a *homomorphism* $(A, \operatorname{spp}) \to (A', \operatorname{spp}')$ if
- h is a homomorphism $A \rightarrow A'$, and
- $X \operatorname{spp} a$ implies $X \operatorname{spp}' h(a)$ for all $X \in L$ and $a \in A$. If, morever, always
- $X \operatorname{spp}' h(a)$ implies $X \operatorname{spp} a_0$ for some $a_0 \in h^{-1}(a)$ then the homomorphism h is said to be *full*.

 \mathcal{V} – a variety of algebras.

 $_{spp}\mathcal{V} :=$ the category of supported algebras from \mathcal{V} and full homomorphisms, $Lf_{spp}\mathcal{V}$ – its full subcategory consisting of locally finite algebras. \mathcal{V} – a variety of algebras.

 $_{spp}\mathcal{V} :=$ the category of supported algebras from \mathcal{V} and full homomorphisms, $Lf_{spp}\mathcal{V} -$ its full subcategory consisting of locally finite algebras.

Theorem. Suppose that the set L_0 is directed. Then the category $Lf_{spp}\mathcal{V}$ is equivalent to a quasivariety of L_0 -sorted algebras.

 L_0 – a directed set.

 \mathcal{V}^{L_0} := the class of direct families $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ of algebras

from \mathcal{V} , where all homomorphisms f_Y^X injective.

 L_0 – a directed set.

 \mathcal{V}^{L_0} := the class of direct families $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ of algebras from \mathcal{V} , where all homomorphisms f_Y^X injective.

Such *injective* families are L_0 -sorted algebras, \mathcal{V}^{L_0} is a quasivariety.

 L_0 – a directed set. $\mathcal{V}^{L_0} :=$ the class of direct families $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ of algebras from \mathcal{V} , where all homomorphisms f_Y^X injective.

Such *injective* families are L_0 -sorted algebras, \mathcal{V}^{L_0} is a quasivariety.

$$\begin{split} A_{\infty} &:= \text{the direct limit of } (A_X, f_Y^X)_{X \subseteq Y \in L_0} \text{,} \\ f_{\infty}^X &:= \text{the canonic homomorphism } A_X \to A_{\infty} \text{,} \\ A_{\infty X} &:= f_{\infty}^X (A_X). \end{split}$$

 $(A_{\infty X}: X \in L_0)$ is a finitary local family in A_∞ .
Sketch of proof:

 L_0 – a directed set.

 \mathcal{V}^{L_0} := the class of direct families $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ of algebras from \mathcal{V} , where all homomorphisms f_Y^X injective.

Such *injective* families are L_0 -sorted algebras, \mathcal{V}^{L_0} is a quasivariety.

$$\begin{array}{l} A_{\infty} := \mbox{the direct limit of } (A_X, f_Y^X)_{X \subseteq Y \in L_0} \ , \\ f_{\infty}^X := \mbox{the canonic homomorphism } A_X \to A_{\infty} \ , \\ A_{\infty X} := f_{\infty}^X (A_X). \end{array}$$

 $(A_{\infty X}: X \in L_0)$ is a finitary local family in A_∞ .

This passing from an algebra in \mathcal{V}^{L_0} to its direct limit is functorial, i.e., gives rise to a functor $D: \mathcal{V}^{L_0} \to Lf_{spp}\mathcal{V}$.

 (A, spp) – a locally finite supported algebra, for $X \subseteq Y \in L_0$, $f_Y^X :=$ the embedding of A_X into A_Y .

Then $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ is a direct family, and A is its direct limit with the canonic embeddings $A_X \to A$.

 (A, spp) – a locally finite supported algebra, for $X \subseteq Y \in L_0$, $f_Y^X :=$ the embedding of A_X into A_Y .

Then $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ is a direct family, and A is its direct limit with the canonic embeddings $A_X \to A$.

This transformation of locally finite algebras into direct families of their components is functorial, i.e., gives rise to a functor $E: Lf_{spp} \mathcal{V} \to \mathcal{V}^{L_0}.$

The functors D and E are mutually inverse up to isomorphisms and establish equivalence of \mathcal{V}^{L_0} and $Lf_{spp}\mathcal{V}$. \Box

 (A, spp) – a locally finite supported algebra, for $X \subseteq Y \in L_0$, $f_Y^X :=$ the embedding of A_X into A_Y .

Then $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ is a direct family, and A is its direct limit with the canonic embeddings $A_X \to A$.

This transformation of locally finite algebras into direct families of their components is functorial, i.e., gives rise to a functor $E: Lf_{spp} \mathcal{V} \to \mathcal{V}^{L_0}.$

The functors D and E are mutually inverse up to isomorphisms and establish equivalence of \mathcal{V}^{L_0} and $Lf_{spp}\mathcal{V}$. \Box

 $(L, L_0 \text{ fixed})$ Study of locally finite algebras is equivalent to study of algebras with a selected finitary local family of subalgebras.

In general, the support relation for A_{∞} induced by a direct family $(A_X, f_Y^X)_{X \subset Y \in L_0}$ is normal iff,

for all $X, Y \subset Z \in L_0$ and $a_1 \in A_X$, $a_2 \in A_Y$, $f_Z^X(a_1) = f_Z^Y(a_2)$ implies

 $a_1 = f_X^{X \cap Y}(b)$ and $a_2 = f_Y^{X \cap Y}(b)$ for some $b \in A_{X \cap Y}$.

Normal support relations defined by projectors:

Normal support relations defined by projectors:

 \boldsymbol{L} has the greatest element $\boldsymbol{U}\text{,}$

 \mathcal{V} – a variety of algebras.

 $_{P}\mathcal{V} :=$ the category of algebras $(A, P_{X})_{X \in L}$ such that $\bullet A \in \mathcal{V}$,

•
$$P_{X \cap Y} = P_X P_Y$$
 for all $X, Y \in L$,

• $P_U = \operatorname{id}_A$.

 $Lf_P V$ – its full subcategory consisting of locally finite algebras.

Normal support relations defined by projectors:

 \boldsymbol{L} has the greatest element $\boldsymbol{U}\text{,}$

 \mathcal{V} – a variety of algebras.

 $_{P}\mathcal{V} :=$ the category of algebras $(A, P_{X})_{X \in L}$ such that $\bullet A \in \mathcal{V}$,

•
$$P_{X \cap Y} = P_X P_Y$$
 for all $X, Y \in L$,

• $P_U = \operatorname{id}_A$.

 $Lf_P V$ – its full subcategory consisting of locally finite algebras.

Theorem. Suppose that the set L_0 is directed. Then the category $Lf_p\mathcal{V}$ is equivalent to a variety of L_0 -sorted algebras.

The variety consists of algebras $(A_X, f_Y^X, g_X^Y)_{X \subseteq Y \in L_0}$, where

- $A_X \in \mathcal{V}$ for all $X \in L_0$,
- $(A_X, f_Y^X)_{X \subseteq Y \in L_0}$ is a direct family,
- $(A_Y, g_X^Y)_{X \subseteq Y \in L_0}$ is an inverse family,
- the mappings g_X^Y : $A_Y \to A_X$ satisfy also the condition

$$\begin{split} g_X^Y f_Y^X &= \operatorname{id}_{A_X}, \\ \bullet \ f_X^{X \cap Y} g_{X \cap Y}^Y = g_X^Z f_Z^Y \text{ whenever } X, Y \subseteq Z. \end{split}$$

In particular, always $g_X^Y f_Y^X = \mathrm{id}_{A_X}$.