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1. DEFINITIONS

Initial data:
- (L,N) — a meet semilattice

(sometimes — with the greatest element U),
- Lo :={X € L: (X] is finite} — a join-dense ideal in L

The motivating standart example:
L — the semilattice of all subsets of some set U
(normally infinite),
Lo — the set of all finite subsets of U.

Elements of L belonging to Lo will be called finite.

- A — an arbitrary algebra.
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A support relation, or supporting, for A is a relation spp C L x A
such that,
- for every a € A, the set spp(a) :={X € L: X spp a} is
an upper set in L, and
- for every X € L, the set Ay :={a € A: X spp a} is
a subalgebra of A.

Then (Ax: X € L) is a local family of subalgebras, i.e.,
- Ay is a subalgebra of Ay whenever X C Y, and

- A=J(Ax: X € L).

(If L has the greatest element U, then A = Ay.)

The relation spp is normal if

- every set spp(a) is actually a semilattice filter

or, equivalently,

« if the corresponding local family is multiplicative:
Ax NAy = Axny forall X, Y € L.



A supported algebra is a pair (A,spp), where spp is a supporting
for A.

Elements of spp(a) are said to be supports of a.

The subalgebras Ax are called components of A.
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A supported algebra is a pair (A,spp), where spp is a supporting
for A.

Elements of spp(a) are said to be supports of a.

The subalgebras Ax are called components of A.

A component Ax is finite-dimensional, if X is finite.
The union of all such components is a subalgebra of A.

The algebra A is said to be locally finite-dimensional, or just
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A supported algebra is a pair (A,spp), where spp is a supporting
for A.

Elements of spp(a) are said to be supports of a.

The subalgebras Ax are called components of A.

A component Ax is finite-dimensional, if X is finite.
The union of all such components is a subalgebra of A.

The algebra A is said to be locally finite-dimensional, or just
locally finite, if it coincides with this union.

This is the case if and only if every element of A has a finite
support.
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More generally:

The signature of A may be related to L and depend on the size
of this set in some way. Then a component Ax usually is not
similar to A, but may be, for example, a subreduct of A (and of

Ay, if X CY).
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More generally:

The signature of A may be related to L and depend on the size
of this set in some way. Then a component Ax usually is not
similar to A, but may be, for example, a subreduct of A (and of
Ay, if X CY).

Then a “natural’ support relation for A can frequently be de-
fined in terms of operations of A.
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2. TYPICAL CONSTRUCTIONS OF SUPPORT
RELATIONS
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Ifit is the case, and if X sppa :=a € Ay, then spp is a supporting
for A, which is normal iff the family is multiplicative

17



2. TYPICAL CONSTRUCTIONS OF SUPPORT
RELATIONS

Supports by local families:
A — an algebra.
A local family (Ax: X € L) of subalgebras of A

If it is the case, and if X sppa :=a € Ay, then spp is a supporting
for A, which is normal iff the family is multiplicative

Conversely, components of a supported algebra form a local
family. This correspondence between support relations for A
and local families in A is one-to-one.
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A finitary local family in A is an Lg-indexed local family.
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A finitary local family in A is an Lg-indexed local family.

If (Az: Z € Lg) is such a family, and if, for every X € L\ Lo,
Ax =U(Az: Z € Lo, Z C X),

then

- (Ax: X € L) is a local L-family, and

« the corresponding support relation makes A locally finite.
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A finitary local family in A is an Lg-indexed local family.

If (Az: Z € Lg) is such a family, and if, for every X € L\ Lo,
Ax =U(Az: Z € Lo, Z C X),

then

- (Ax: X € L) is a local L-family, and

« the corresponding support relation makes A locally finite.

This correspondence between support relations that make A lo-
cally finite, and finitary local families in A is also one-to-one.
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Supports by independce:
A — an algebra,
Var — a set of variables,
L :=P(Var)
ind — relation in A x Var such that
{a: a ind x} is an subalgebra of A for every z € Var.
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Supports by independce:
A — an algebra,
Var — a set of variables,
L :=P(Var)
ind — relation in A x Var such that
{a: a ind x} is an subalgebra of A for every z € Var.

If X sppa iffxind a for all x ¢ X, then spp is a normal support
relation for A.

Conversely, if spp is a support relation and

aind z := (Var \ {z}) spp a,
then ind is an independence relation.
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This correspondence is not bijective even between normal sup-
port relations and independence relations.
It /s if and only if only regular support relations are admitted.
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This correspondence is not bijective even between normal sup-
port relations and independence relations.

It /s if and only if only regular support relations are admitted.

A supporting spp for A is regular if every element of A has the
least support.

So, a regular supporting is normal, and every filter spp (a) of L
is then principal.
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This correspondence is not bijective even between normal sup-
port relations and independence relations.
It /s if and only if only regular support relations are admitted.

A supporting spp for A is regular if every element of A has the
least support.

So, a regular supporting is normal, and every filter spp (a) of L
is then principal.

A supporting is regular iff it is induced by an independence re-
lation, which is then unique.
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Supports by projectors:

A — an algebra,

U := the greatest element of L,

P — a homomorphism L — End(A).
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Supports by projectors:

A — an algebra,

U := the greatest element of L,

P — a homomorphism L — End(A).

Py := P(X); so
Pxny = PxPy Py =idy.

The family (ran Pyx: X € L) is a multiplicative local family in A.
The corresponding supporting is given by X spp a iff Py (a) = a.
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Supports by projectors:

A — an algebra,

U := the greatest element of L,

P — a homomorphism L — End(A).

Py := P(X); so
Pxny = PxPy Py = idy.

The family (ran Py: X € L) is a multiplicative local family in A.
The corresponding supporting is given by X spp a iff Py(a) = a.

It goes also for algebras with projectors (A, Px)xer-
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Supports by substitutions:

A — an algebra,

Var — a set of variables,

L :=P(Var),

T = the transformation monoid of Var,
e .= the neutral element of T,

S — a homomorphism T' — End(A).
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Supports by substitutions:

A — an algebra,

Var — a set of variables,

L :=P(Var),

T = the transformation monoid of Var,
e := the neutral element of T,

S — a homomorphism T — End(A).

Sa := S(a); so
SO{B — SaSﬁ, Sg — |dA

If X spp a is defined by
for all o, B8 €T, Sal(a) = Sg(a) whenever a|X = §|X,
then spp is a normal supporting for A.

It goes* also for algebras with substitutions (A, Sa)aeT
(Ax is closed under S, only if « is constant outside X).



3. EXAMPLES

36



3. EXAMPLES

First-order language:
the set of variables: Var,
connectives:. V, A, —,
a quantifier: 4,
the algebra of formulas: (F,V,A,—,3%).cvar-
the algebra of quantifier-free formulas: (Fp, V, A, —).
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3. EXAMPLES

First-order language:
the set of variables: Var,
connectives:. V, A, —,
a quantifier: 4,
the algebra of formulas: (F,V, A, =, 3%).cvar-
the algebra of quantifier-free formulas: (Fp,V, A, ).

Fr(f) := the set of free variables of a formula f,
L :=P(Var).

Independence relation for both F' and Fp:
findx:=x & Fr(f).
The corresponding support relation for both F' and Fp:
X spp f:=Fr(f) CX.
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3. EXAMPLES

First-order language:
the set of variables: Var,
connectives: V, A, —,
a quantifier: 4,
the algebra of formulas: (F,V,A,—,3%),cvar-
the algebra of quantifier-free formulas: (Fp,V, A, ).

Fr(f) := the set of free variables of a formula f,
L = P(Var).

Independence relation for both F' and Fp:
findx: =z & Fr(f).

The corresponding support relation for both F' and Fp:
Xspp f.=Fr(f) CX.

Both algebras are locally finite.
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Cylindric set algebras:
an ordinal « (possibly, infinite),
a set U,
a Boolean algebra B := P(U®),
the k-th cylindrification on B (k < «): ¢i: B — B,
« Cp(b) ;= {p € U*: ¢ differs at most at k£ from some ¢ € b}.
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Cylindric set algebras:
an ordinal « (possibly, infinite),
a set U,
a Boolean algebra B := P(U®),
the k-th cylindrification on B (k < «): ¢i: B — B,
« Cp(b) ;= {p € U*: ¢ differs at most at k£ from some ¢ € b}.

(B,Cr)k<q IS @ (full) “diagonal-free” cylindric set algebra.
L= P(a).

The independence relation for this algebra defined by

bind k := c,(b) =0
gives rise to a regular support relation for it.
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Boolean algebras of (infinitary) relations:

o,U,B:=P(U*),L :=P(x) as above.
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Boolean algebras of (infinitary) relations:
o,U,B:=P(U*),L :=P(x) as above.
A normal but not regular supporting for B:

X sppb =
for all p € U%, ¢ € b whenever p|X = ¥|X for some v € b.
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Boolean algebras of (infinitary) relations:
o,U,B:=P(U*),L :=P(x) as above.

A normal but not regular supporting for B:

X sppb =
for all p € U%, ¢ € b whenever p|X = ¥|X for some v € b.

Hence, it generally differs from that of the preceding example.
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Boolean algebras of (infinitary) relations:
o,U,B:=P(U*),L :=P(x) as above.

A normal but not regular supporting for B:

X sppb =
for all p € U%, ¢ € b whenever p|X = ¥|X for some v € b.

Hence, it generally differs from that of the preceding example.
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Relatively free algebras:
a relatively free algebra on free generators Var:
the variety generated by W: V(W).

w,
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Relatively free algebras:

a relatively free algebra on free generators Var:

the variety generated by W: V(W).
L = P(Var).

A normal supporting relation for W:
X spp w =
for every A € V(W) and p,v € Hom(W, A),
| X = |X implies p(w) = ¢Y(w).
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Relatively free algebras:
a relatively free algebra on free generators Var: W,
the variety generated by W: V(W).

L = P(Var).
A normal supporting relation for W:
X spp w =
for every A e V(W) and p,v € Hom(W, A),
o|X = | X implies p(w) = Y (w).

If X =0, then is Wy is the subalgebra of W generated by X.

The supported algebra (W,spp) is locally finite.
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Relatively free algebras, II:
Var, W, L as above,
substitution of y for x (z,y € L):
an endomorphism SZ of W such that
» sy(x) =y,
rSy(2) =2, iIf 2 #F .
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Relatively free algebras, II:
Var, W, L as above,
substitution of y for x (z,y € L):
an endomorphism SZ of W such that
» sy(x) =y,
rSy(2) =2, iIf 2 #F .

Independence relation for W':
w ind z := for all y € Var, sj(w) = w.
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Relatively free algebras, II:
Var, W, L as above,
substitution of y for x (z,y € L):
an endomorphism sg of W such that
» sy(x) =y,
rSy(2) =2, iIf 2 #F .

Independence relation for W':
w ind z := for all y € Var, sj(w) = w.

The corresponding support relation coincides with that defined
above.

It goes™ also for the algebra (W, sj), 4 cvar
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Algebras of partial functions:
an algebra of partial functions U — V: (F,U,N,\),
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Algebras of partial functions:
an algebra of partial functions U — V: (F,U,N,\),

L:=PU).
dom f := the domain of f € F/,
f|X := the restriction of f to X ndom f.
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Algebras of partial functions:
an algebra of partial functions U — V: (F,U,N,\),

L:=PU).
dom f := the domain of f € F/,
f|X := the restriction of f to X ndom f.

A family of projectors for F':
Px: f— fIX (X €L).

The corresponding support relation:
Xsppf=domfCX
IS regular.
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Function modules:
aring R,
a set U,
the module of functions RVY.
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Function modules:
aring R,
a set U,
the module of functions RVY.

L :=P(U).
Py := the linear operator on RV defined by

Px(f)(z) = { g,(m)’ :: i ; i’
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Function modules:
aring R,
a set U,
the module of functions RVY.

L :=P(U).
Py := the linear operator on RV defined by

Px(f)(z) = { g,(m)’ :: i ; i’

The family (Px: z € L) is a family of projectors on RV.

The corresponding support relation for RU:
Xspp f:=f(x)=0forall x ¢ X
IS regular.
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Menger algebras*:
an ordinal « (possibly, infinite),
an a-dimensional Menger algebra W := (W, 0, e} )<, Where
- o is a (1 4+ «)-ry operation on W ,
- every e is an element of W :
- the following axioms are fulfilled:
s woe=uw,
* €L OV = VL,
- (wou)ov=wo(uov).
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Menger algebras*:
an ordinal « (possibly, infinite),
an a-dimensional Menger algebra W := (W, 0, e} )<, Where

- o is a (1 4+ «)-ry operation on W ,
- every e is an element of W :
- the following axioms are fulfilled:

woe=uw,

* €L OV = VL,

- (wou)ov=wo(uov).

L= P(a).
The support relation defined by
X sppw :=forallu,ve W% wou=wov whenever u|X =v|X.
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Menger algebras*:
an ordinal o (possibly, infinite),
an a-dimensional Menger algebra W := (W, 0, er) <., Where
o is a (1 + a)-ry operation on W Y
- every e is an element of W
- the following axioms are fulfilled:
s woe=uw,

* €L OV = VL,
« (wou)ov=wo(uov).

L= P(a).
The support relation defined by
X sppw :=forallu,veW?® wou=wov whenever u|X = v|X.

Locally finite Menger algebras of dimension w are, essentially,
abstract finitary clones.
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4. CATEGORIES OF LOCALLY FINITE ALGEBRAS
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4. CATEGORIES OF LOCALLY FINITE ALGEBRAS

(A,spp), (A’,spp’) — supported algebras of the same type.

h is @ homomorphism (A, spp) — (A’,spp’) if

- h is @ homomorphism A — A’, and

- X spp a implies X spp’ h(a) for all X € L and a € A.
If, morever, always

. X spp’ h(a) implies X spp ag for some ag € h™1(a)
then the homomorphism h is said to be full.
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YV — a variety of algebras.

sppV = the category of supported algebras from V and
full homomorphisms,
LfsppV — its full subcategory consisting of locally finite algebras.
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)V — a variety of algebras.

sppV = the category of supported algebras from V and
full homomorphisms,
LfsppV — its full subcategory consisting of locally finite algebras.

Theorem. Suppose that the set Lg is directed. Then the cate-
gory LfsppV is equivalent to a quasivariety of Lg-sorted algebras.
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Sketch of proof:
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Sketch of proof:
Lo — a directed set.
VLo := the class of direct families (Ax, f{/()ngELo of algebras

from YV, where all homomorphisms f{,( injective.
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from YV, where all homomorphisms f{,( injective.
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VLo is a quasivariety.
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Sketch of proof:
Lo — a directed set.
VLo := the class of direct families (Ax, f{/()ngELO of algebras

from YV, where all homomorphisms f{,( injective.

Such injective families are Lp-sorted algebras,
VLo is a quasivariety.

Aoo := the direct limit of (Ax, f{* ) xcyeL, -
fs i= the canonic homomorphism Ay — Ax ,

Asox = fo)g(AX)

(Aox: X € Lg) is a finitary local family in Ax .
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Sketch of proof:
Lo — a directed set.
VLo := the class of direct families (Ay, f{/()ngELO of algebras

from V, where all homomorphisms f{,( injective.

Such injective families are Lp-sorted algebras,
VLo is a quasivariety.

Aoo := the direct limit of (Ax, f{* ) xcyeLy -
X := the canonic homomorphism Ay — As ,

Asox = fo)g(AX)
(Ao x: X € Lg) is a finitary local family in Axs .

This passing from an algebra in VLo to its direct limit is functo-
rial, i.e., gives rise to a functor D: Vo — Lfg,,V.
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Conversely, every locally finite supported algebra is (isomorphic
to) the direct limit of the family of its finite-dimensional com-
ponents:
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Conversely, every locally finite supported algebra is (isomorphic
to) the direct limit of the family of its finite-dimensional com-

ponents:

(A,spp) — a locally finite supported algebra,
for X CY € Lg, fy = the embedding of Ax into Ay.

Then (AX,fff)ngELo is a direct family, and A is its direct limit
with the canonic embeddings Ay — A.
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Conversely, every locally finite supported algebra is (isomorphic
to) the direct limit of the family of its finite-dimensional com-
ponents:

(A,spp) — a locally finite supported algebra,
for X CY € Lg, fy = the embedding of Ax into Ay.

Then (AX,fff)ngELo is a direct family, and A is its direct limit
with the canonic embeddings Ay — A.

This transformation of locally finite algebras into direct families
of their components is functorial, i.e., gives rise to a functor

The functors D and E are mutually inverse up to isomorphisms
and establish equivalence of VL0 and Lfg,,V. O
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Conversely, every locally finite supported algebra is (isomorphic
to) the direct limit of the family of its finite-dimensional com-
ponents:

(A,spp) — a locally finite supported algebra,
for X CY € Lg, fy = the embedding of Ax into Ay.

Then (Ax, f{f)xcyeL, IS a direct family, and A is its direct limit
with the canonic embeddings Ay — A.

This transformation of locally finite algebras into direct families
of their components is functorial, i.e., gives rise to a functor

The functors D and E are mutually inverse up to isomorphisms
and establish equivalence of V1o and Lfg,,V. O

(L, Lo fixed) Study of locally finite algebras is equivalent to study
of algebras with a selected finitary local family of subalgebras.
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In general, the support relation for Ax induced by a direct family
(Ax, f#f)xcyeLy is normal iff,
forall X, Y CZ &€ Lg and a1 € Ax, a» € Ay,

% (a1) = f2 (ap)
implies

a1 = f£Y(b) and ap = £ (b) for some b€ Axny-.
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Normal support relations defined by projectors:

78



Normal support relations defined by projectors:

L has the greatest element U,
)V — a variety of algebras.

pV = the category of algebras (A, Px)x¢y, such that
- AeV,

- Pxny = Px Py for all X,Y € L,

. Py = idy.

LfpV — its full subcategory consisting of locally finite algebras.
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Normal support relations defined by projectors:

L has the greatest element U,
YV — a variety of algebras.

pV = the category of algebras (A, Px)x¢y, such that
- AcV,

- Pxny = Px Py for all X,Y € L,

. Py = idy.

LfpV — its full subcategory consisting of locally finite algebras.

Theorem. Suppose that the set Lg is directed. Then the
category LfyV is equivalent to a variety of Lg-sorted algebras.
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The variety consists of algebras (Ax, fi*, 9%) xcyer, Where
- Axy €V for all X € Lo,

- (Ax, [{)xcyeL, is a direct family,
- (Ay,gX)xCveLg is an inverse family,

- the mappings g}/(: Ay — Ax satisfy also the condition
g% ff = idy,.,
- gk ny = 94 f, whenever XY C Z.

In particular, always g% fif = id, .
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