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1. DEFINITIONS

Initial data:
¦ (L,∩) – a meet semilattice

(sometimes – with the greatest element U),
¦ L0 := {X ∈ L: (X] is finite} – a join-dense ideal in L

i.e., L0 is a down-set closed under existing finite joins, and every

element of L is the join of some subset of L0.
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¦ L0 := {X ∈ L: (X] is finite} – a join-dense ideal in L

i.e., L0 is a down-set closed under existing finite joins, and every

element of L is the join of some subset of L0.

The motivating standart example:

L – the semilattice of all subsets of some set U

(normally infinite),

L0 – the set of all finite subsets of U .
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element of L is the join of some subset of L0.

The motivating standart example:

L – the semilattice of all subsets of some set U

(normally infinite),

L0 – the set of all finite subsets of U .

Elements of L belonging to L0 will be called finite.
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1. DEFINITIONS

Initial data:
¦ (L,∩) – a meet semilattice

(sometimes – with the greatest element U),
¦ L0 := {X ∈ L: (X] is finite} – a join-dense ideal in L

i.e., L0 is a down-set closed under existing finite joins, and every
element of L is the join of some subset of L0.

The motivating standart example:
L – the semilattice of all subsets of some set U

(normally infinite),
L0 – the set of all finite subsets of U .

Elements of L belonging to L0 will be called finite.

¦ A – an arbitrary algebra.
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A support relation, or supporting, for A is a relation spp ⊆ L×A

such that,
¦ for every a ∈ A, the set spp(a) := {X ∈ L: X spp a} is

an upper set in L, and
¦ for every X ∈ L, the set AX := {a ∈ A: X spp a} is

a subalgebra of A.
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A support relation, or supporting, for A is a relation spp ⊆ L×A

such that,
¦ for every a ∈ A, the set spp(a) := {X ∈ L: X spp a} is

an upper set in L, and
¦ for every X ∈ L, the set AX := {a ∈ A: X spp a} is

a subalgebra of A.

Then (AX: X ∈ L) is a local family of subalgebras, i.e.,
¦ AX is a subalgebra of AY whenever X ⊆ Y , and
¦ A =

⋃
(AX: X ∈ L).

(If L has the greatest element U , then A = AU .)
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A support relation, or supporting, for A is a relation spp ⊆ L×A

such that,
¦ for every a ∈ A, the set spp(a) := {X ∈ L: X spp a} is

an upper set in L, and
¦ for every X ∈ L, the set AX := {a ∈ A: X spp a} is

a subalgebra of A.

Then (AX: X ∈ L) is a local family of subalgebras, i.e.,
¦ AX is a subalgebra of AY whenever X ⊆ Y , and
¦ A =

⋃
(AX: X ∈ L).

(If L has the greatest element U , then A = AU .)

The relation spp is normal if
¦ every set spp(a) is actually a semilattice filter
or, equivalently,
¦ if the corresponding local family is multiplicative:

AX ∩AY = AX∩Y for all X, Y ∈ L.
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A supported algebra is a pair (A, spp), where spp is a supporting

for A.

Elements of spp(a) are said to be supports of a.

The subalgebras AX are called components of A.
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A supported algebra is a pair (A, spp), where spp is a supporting

for A.

Elements of spp(a) are said to be supports of a.

The subalgebras AX are called components of A.

A component AX is finite-dimensional, if X is finite.

The union of all such components is a subalgebra of A.

The algebra A is said to be locally finite-dimensional, or just

locally finite, if it coincides with this union.
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A supported algebra is a pair (A, spp), where spp is a supporting

for A.

Elements of spp(a) are said to be supports of a.

The subalgebras AX are called components of A.

A component AX is finite-dimensional, if X is finite.

The union of all such components is a subalgebra of A.

The algebra A is said to be locally finite-dimensional, or just

locally finite, if it coincides with this union.

This is the case if and only if every element of A has a finite

support.
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More generally:

The signature of A may be related to L and depend on the size

of this set in some way. Then a component AX usually is not

similar to A, but may be, for example, a subreduct of A (and of

AY , if X ⊆ Y ).
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More generally:

The signature of A may be related to L and depend on the size

of this set in some way. Then a component AX usually is not

similar to A, but may be, for example, a subreduct of A (and of

AY , if X ⊆ Y ).

Then a “natural” support relation for A can frequently be de-

fined in terms of operations of A.
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2. TYPICAL CONSTRUCTIONS OF SUPPORT

RELATIONS
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2. TYPICAL CONSTRUCTIONS OF SUPPORT

RELATIONS

Supports by local families:

A – an algebra.

A local family (AX: X ∈ L) of subalgebras of A

i.e.,
¦ AX ⊆ AY whenever X ⊆ Y , and
¦ ⋃

(AX: X ∈ L) = A.
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2. TYPICAL CONSTRUCTIONS OF SUPPORT

RELATIONS

Supports by local families:

A – an algebra.

A local family (AX: X ∈ L) of subalgebras of A

i.e.,
¦ AX ⊆ AY whenever X ⊆ Y , and
¦ ⋃

(AX: X ∈ L) = A.

If it is the case, and if X spp a :≡ a ∈ AX, then spp is a supporting

for A, which is normal iff the family is multiplicative

i.e., if AX∩Y = AX ∩AY .
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2. TYPICAL CONSTRUCTIONS OF SUPPORT
RELATIONS

Supports by local families:
A – an algebra.
A local family (AX: X ∈ L) of subalgebras of A
i.e.,
¦ AX ⊆ AY whenever X ⊆ Y , and
¦ ⋃

(AX: X ∈ L) = A.

If it is the case, and if X spp a :≡ a ∈ AX, then spp is a supporting
for A, which is normal iff the family is multiplicative
i.e., if AX∩Y = AX ∩AY .

Conversely, components of a supported algebra form a local
family. This correspondence between support relations for A
and local families in A is one-to-one.
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A finitary local family in A is an L0-indexed local family.
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A finitary local family in A is an L0-indexed local family.

If (AZ: Z ∈ L0) is such a family, and if, for every X ∈ L \ L0,

AX =
⋃
(AZ: Z ∈ L0, Z ⊆ X),

then
¦ (AX: X ∈ L) is a local L-family, and
¦ the corresponding support relation makes A locally finite.
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A finitary local family in A is an L0-indexed local family.

If (AZ: Z ∈ L0) is such a family, and if, for every X ∈ L \ L0,

AX =
⋃
(AZ: Z ∈ L0, Z ⊆ X),

then
¦ (AX: X ∈ L) is a local L-family, and
¦ the corresponding support relation makes A locally finite.

This correspondence between support relations that make A lo-

cally finite, and finitary local families in A is also one-to-one.
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Supports by independce:

A – an algebra,

Var – a set of variables,

L := P(Var)

ind – relation in A× Var such that

{a: a ind x} is an subalgebra of A for every x ∈ Var.

(a ind x means that a is “independent” of x)
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Supports by independce:

A – an algebra,

Var – a set of variables,

L := P(Var)

ind – relation in A× Var such that

{a: a ind x} is an subalgebra of A for every x ∈ Var.

(a ind x means that a is “independent” of x)

If X spp a iff x ind a for all x /∈ X, then spp is a normal support

relation for A.
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Supports by independce:

A – an algebra,

Var – a set of variables,

L := P(Var)

ind – relation in A× Var such that

{a: a ind x} is an subalgebra of A for every x ∈ Var.

(a ind x means that a is “independent” of x)

If X spp a iff x ind a for all x /∈ X, then spp is a normal support

relation for A.

Conversely, if spp is a support relation and

a ind x :≡ (Var \ {x}) spp a,

then ind is an independence relation.
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This correspondence is not bijective even between normal sup-

port relations and independence relations.

It is if and only if only regular support relations are admitted.
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This correspondence is not bijective even between normal sup-

port relations and independence relations.

It is if and only if only regular support relations are admitted.

A supporting spp for A is regular if every element of A has the

least support.

So, a regular supporting is normal, and every filter spp (a) of L

is then principal.
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This correspondence is not bijective even between normal sup-

port relations and independence relations.

It is if and only if only regular support relations are admitted.

A supporting spp for A is regular if every element of A has the

least support.

So, a regular supporting is normal, and every filter spp (a) of L

is then principal.

A supporting is regular iff it is induced by an independence re-

lation, which is then unique.
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Supports by projectors:

A – an algebra,

U := the greatest element of L,

P – a homomorphism L → End(A).
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Supports by projectors:

A – an algebra,

U := the greatest element of L,

P – a homomorphism L → End(A).

PX := P (X); so

PX∩Y = PXPY PU = idA.

In A: a ≤ b :≡ a = PX(b) for some X.

Then ≤ is a partial order, and every PX is an interior operator

on A (a “projector” onto AX).
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Supports by projectors:

A – an algebra,

U := the greatest element of L,

P – a homomorphism L → End(A).

PX := P (X); so

PX∩Y = PXPY PU = idA.

In A: a ≤ b :≡ a = PX(b) for some X.

Then ≤ is a partial order, and every PX is an interior operator

on A (a “projector” onto AX).

The family (ranPX: X ∈ L) is a multiplicative local family in A.

The corresponding supporting is given by X spp a iff PX(a) = a.
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Supports by projectors:

A – an algebra,

U := the greatest element of L,

P – a homomorphism L → End(A).

PX := P (X); so

PX∩Y = PXPY PU = idA.

In A: a ≤ b :≡ a = PX(b) for some X.

Then ≤ is a partial order, and every PX is an interior operator

on A (a “projector” onto AX).

The family (ranPX: X ∈ L) is a multiplicative local family in A.

The corresponding supporting is given by X spp a iff PX(a) = a.

It goes also for algebras with projectors (A, PX)X∈L.
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Supports by substitutions:

A – an algebra,

Var – a set of variables,

L := P(Var),

T := the transformation monoid of Var,

ε := the neutral element of T ,

S – a homomorphism T → End(A).
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Supports by substitutions:

A – an algebra,

Var – a set of variables,

L := P(Var),

T := the transformation monoid of Var,

ε := the neutral element of T ,

S – a homomorphism T → End(A).

Sα := S(α); so

Sαβ = SαSβ, Sε = idA.

(Sα is the “substitution” over A induced by the transformation α.)
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Supports by substitutions:

A – an algebra,

Var – a set of variables,

L := P(Var),

T := the transformation monoid of Var,

ε := the neutral element of T ,

S – a homomorphism T → End(A).

Sα := S(α); so

Sαβ = SαSβ, Sε = idA.

(Sα is the “substitution” over A induced by the transformation α.)

If X spp a is defined by

for all α, β ∈ T , Sα(a) = Sβ(a) whenever α|X = β|X,

then spp is a normal supporting for A.
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Supports by substitutions:
A – an algebra,
Var – a set of variables,
L := P(Var),
T := the transformation monoid of Var,
ε := the neutral element of T ,
S – a homomorphism T → End(A).

Sα := S(α); so
Sαβ = SαSβ, Sε = idA.

(Sα is the “substitution” over A induced by the transformation α.)

If X spp a is defined by
for all α, β ∈ T , Sα(a) = Sβ(a) whenever α|X = β|X,

then spp is a normal supporting for A.

It goes* also for algebras with substitutions (A, Sα)α∈T
(AX is closed under Sα only if α is constant outside X).
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3. EXAMPLES
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3. EXAMPLES

First-order language:

the set of variables: Var,

connectives: ∨,∧,¬,

a quantifier: ∃,
the algebra of formulas: (F,∨,∧,¬,∃x)x∈Var.

the algebra of quantifier-free formulas: (F0,∨,∧,¬).
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3. EXAMPLES

First-order language:

the set of variables: Var,

connectives: ∨,∧,¬,

a quantifier: ∃,
the algebra of formulas: (F,∨,∧,¬,∃x)x∈Var.

the algebra of quantifier-free formulas: (F0,∨,∧,¬).

Fr(f) := the set of free variables of a formula f ,

L := P(Var).
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3. EXAMPLES

First-order language:

the set of variables: Var,

connectives: ∨,∧,¬,

a quantifier: ∃,
the algebra of formulas: (F,∨,∧,¬,∃x)x∈Var.

the algebra of quantifier-free formulas: (F0,∨,∧,¬).

Fr(f) := the set of free variables of a formula f ,

L := P(Var).

Independence relation for both F and F0:

f ind x :≡ x /∈ Fr(f).

The corresponding support relation for both F and F0:

X spp f :≡ Fr(f) ⊆ X.

39



3. EXAMPLES

First-order language:
the set of variables: Var,
connectives: ∨,∧,¬,
a quantifier: ∃,
the algebra of formulas: (F,∨,∧,¬,∃x)x∈Var.
the algebra of quantifier-free formulas: (F0,∨,∧,¬).

Fr(f) := the set of free variables of a formula f ,
L := P(Var).

Independence relation for both F and F0:
f ind x :≡ x /∈ Fr(f).

The corresponding support relation for both F and F0:
X spp f :≡ Fr(f) ⊆ X.

Both algebras are locally finite.
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Cylindric set algebras:

an ordinal α (possibly, infinite),

a set U ,

a Boolean algebra B := P(Uα),

the k-th cylindrification on B (k < α): ck: B → B,
¦ ck(b) := {ϕ ∈ Uα: ϕ differs at most at k from some ψ ∈ b}.
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Cylindric set algebras:

an ordinal α (possibly, infinite),

a set U ,

a Boolean algebra B := P(Uα),

the k-th cylindrification on B (k < α): ck: B → B,
¦ ck(b) := {ϕ ∈ Uα: ϕ differs at most at k from some ψ ∈ b}.

(B,ck)k<α is a (full) “diagonal-free” cylindric set algebra.

L := P(α).
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Cylindric set algebras:

an ordinal α (possibly, infinite),

a set U ,

a Boolean algebra B := P(Uα),

the k-th cylindrification on B (k < α): ck: B → B,
¦ ck(b) := {ϕ ∈ Uα: ϕ differs at most at k from some ψ ∈ b}.

(B,ck)k<α is a (full) “diagonal-free” cylindric set algebra.

L := P(α).

The independence relation for this algebra defined by

b ind k :≡ ck(b) = b

gives rise to a regular support relation for it.
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Boolean algebras of (infinitary) relations:

α, U, B := P(Uα), L := P(α) as above.
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Boolean algebras of (infinitary) relations:

α, U, B := P(Uα), L := P(α) as above.

A normal but not regular supporting for B:

X spp b :≡
for all ϕ ∈ Uα, ϕ ∈ b whenever ϕ|X = ψ|X for some ψ ∈ b.
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Boolean algebras of (infinitary) relations:

α, U, B := P(Uα), L := P(α) as above.

A normal but not regular supporting for B:

X spp b :≡
for all ϕ ∈ Uα, ϕ ∈ b whenever ϕ|X = ψ|X for some ψ ∈ b.

Hence, it generally differs from that of the preceding example.
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Boolean algebras of (infinitary) relations:

α, U, B := P(Uα), L := P(α) as above.

A normal but not regular supporting for B:

X spp b :≡
for all ϕ ∈ Uα, ϕ ∈ b whenever ϕ|X = ψ|X for some ψ ∈ b.

Hence, it generally differs from that of the preceding example.

If X = k < α, then:

a subset of BX is treated in algebraic first-order logic as a k-ary

relation on U ,

an operation Bk → U may be treated as k-ary operation on U .
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Relatively free algebras:

a relatively free algebra on free generators Var: W ,

the variety generated by W : V(W ).
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Relatively free algebras:

a relatively free algebra on free generators Var: W ,

the variety generated by W : V(W ).

L := P(Var).
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Relatively free algebras:

a relatively free algebra on free generators Var: W ,

the variety generated by W : V(W ).

L := P(Var).

A normal supporting relation for W :

X spp w :≡
for every A ∈ V(W ) and ϕ, ψ ∈ Hom(W, A),

ϕ|X = ψ|X implies ϕ(w) = ψ(w).
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Relatively free algebras:

a relatively free algebra on free generators Var: W ,

the variety generated by W : V(W ).

L := P(Var).

A normal supporting relation for W :

X spp w :≡
for every A ∈ V(W ) and ϕ, ψ ∈ Hom(W, A),

ϕ|X = ψ|X implies ϕ(w) = ψ(w).

If X 6= ∅, then is WX is the subalgebra of W generated by X.

The supported algebra (W, spp) is locally finite.
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Relatively free algebras, II:

Var, W , L as above,

substitution of y for x (x, y ∈ L):

an endomorphism sx
y of W such that

¦ sx
y(x) = y,

¦ sx
y(z) = z, if z 6= x.
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Relatively free algebras, II:

Var, W , L as above,

substitution of y for x (x, y ∈ L):

an endomorphism sx
y of W such that

¦ sx
y(x) = y,

¦ sx
y(z) = z, if z 6= x.

Independence relation for W :

w ind x :≡ for all y ∈ Var, sx
y(w) = w.
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Relatively free algebras, II:

Var, W , L as above,

substitution of y for x (x, y ∈ L):

an endomorphism sx
y of W such that

¦ sx
y(x) = y,

¦ sx
y(z) = z, if z 6= x.

Independence relation for W :

w ind x :≡ for all y ∈ Var, sx
y(w) = w.

The corresponding support relation coincides with that defined

above.

It goes* also for the algebra (W, sx
y)x,y ∈Var

(AX is not closed under sx
y if y /∈ X).
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Algebras of partial functions:

an algebra of partial functions U → V : (F,∪,∩, \),
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Algebras of partial functions:

an algebra of partial functions U → V : (F,∪,∩, \),

L := P(U).

dom f := the domain of f ∈ F ,

f |X := the restriction of f to X ∩ dom f .
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Algebras of partial functions:

an algebra of partial functions U → V : (F,∪,∩, \),

L := P(U).

dom f := the domain of f ∈ F ,

f |X := the restriction of f to X ∩ dom f .

A family of projectors for F :

PX: f 7→ f |X (X ∈ L).

The corresponding support relation:

X spp f :≡ dom f ⊆ X

is regular.
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Function modules:

a ring R,

a set U ,

the module of functions RU .
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Function modules:

a ring R,

a set U ,

the module of functions RU .

L := P(U).

PX := the linear operator on RU defined by

PX(f)(x) :=

{
f(x), if x ∈ X,
0, if x /∈ X.
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Function modules:

a ring R,

a set U ,

the module of functions RU .

L := P(U).

PX := the linear operator on RU defined by

PX(f)(x) :=

{
f(x), if x ∈ X,
0, if x /∈ X.

The family (PX: x ∈ L) is a family of projectors on RU .

The corresponding support relation for RU :

X spp f :≡ f(x) = 0 for all x /∈ X

is regular.
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Menger algebras*:

an ordinal α (possibly, infinite),

an α-dimensional Menger algebra W := (W, ◦, ek)k≤α, where
¦ ◦ is a (1 + α)-ry operation on W (“composition”),
¦ every ek is an element of W (the k-th “selector”),
¦ the following axioms are fulfilled:

¦ w ◦ e = w,
¦ ek ◦ v = vk,
¦ (w ◦ u) ◦ v = w ◦ (u ◦ v).
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Menger algebras*:

an ordinal α (possibly, infinite),

an α-dimensional Menger algebra W := (W, ◦, ek)k≤α, where
¦ ◦ is a (1 + α)-ry operation on W (“composition”),
¦ every ek is an element of W (the k-th “selector”),
¦ the following axioms are fulfilled:

¦ w ◦ e = w,
¦ ek ◦ v = vk,
¦ (w ◦ u) ◦ v = w ◦ (u ◦ v).

L := P(α).

The support relation defined by

X spp w :≡ for all u,v ∈ Wα, w◦u = w◦v whenever u|X = v|X.

The least support of w is the rank of w.
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Menger algebras*:
an ordinal α (possibly, infinite),
an α-dimensional Menger algebra W := (W, ◦, ek)k≤α, where
¦ ◦ is a (1 + α)-ry operation on W (“composition”),
¦ every ek is an element of W (the k-th “selector”),
¦ the following axioms are fulfilled:

¦ w ◦ e = w,
¦ ek ◦ v = vk,
¦ (w ◦ u) ◦ v = w ◦ (u ◦ v).

L := P(α).
The support relation defined by
X spp w :≡ for all u,v ∈ Wα, w◦u = w◦v whenever u|X = v|X.
The least support of w is the rank of w.

Locally finite Menger algebras of dimension ω are, essentially,
abstract finitary clones.
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4. CATEGORIES OF LOCALLY FINITE ALGEBRAS
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4. CATEGORIES OF LOCALLY FINITE ALGEBRAS

(A, spp), (A′, spp′) – supported algebras of the same type.

h is a homomorphism (A, spp) → (A′, spp′) if
¦ h is a homomorphism A → A′, and
¦ X spp a implies X spp′ h(a) for all X ∈ L and a ∈ A.

If, morever, always
¦ X spp′ h(a) implies X spp a0 for some a0 ∈ h−1(a)

then the homomorphism h is said to be full.
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V – a variety of algebras.

sppV := the category of supported algebras from V and

full homomorphisms,

LfsppV – its full subcategory consisting of locally finite algebras.
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V – a variety of algebras.

sppV := the category of supported algebras from V and

full homomorphisms,

LfsppV – its full subcategory consisting of locally finite algebras.

Theorem. Suppose that the set L0 is directed. Then the cate-

gory LfsppV is equivalent to a quasivariety of L0-sorted algebras.
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Sketch of proof:
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Sketch of proof:

L0 – a directed set.

VL0 := the class of direct families (AX , fX
Y )X⊆Y ∈L0

of algebras

from V, where all homomorphisms fX
Y injective.
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Sketch of proof:

L0 – a directed set.

VL0 := the class of direct families (AX , fX
Y )X⊆Y ∈L0

of algebras

from V, where all homomorphisms fX
Y injective.

Such injective families are L0-sorted algebras,

VL0 is a quasivariety.
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Sketch of proof:

L0 – a directed set.

VL0 := the class of direct families (AX , fX
Y )X⊆Y ∈L0

of algebras

from V, where all homomorphisms fX
Y injective.

Such injective families are L0-sorted algebras,

VL0 is a quasivariety.

A∞ := the direct limit of (AX , fX
Y )X⊆Y ∈L0

,

fX∞ := the canonic homomorphism AX → A∞ ,

A∞X := fX∞(AX).

(A∞X: X ∈ L0) is a finitary local family in A∞ .
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Sketch of proof:

L0 – a directed set.

VL0 := the class of direct families (AX , fX
Y )X⊆Y ∈L0

of algebras

from V, where all homomorphisms fX
Y injective.

Such injective families are L0-sorted algebras,

VL0 is a quasivariety.

A∞ := the direct limit of (AX , fX
Y )X⊆Y ∈L0

,

fX∞ := the canonic homomorphism AX → A∞ ,

A∞X := fX∞(AX).

(A∞X: X ∈ L0) is a finitary local family in A∞ .

This passing from an algebra in VL0 to its direct limit is functo-

rial, i.e., gives rise to a functor D: VL0 → LfsppV.
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Conversely, every locally finite supported algebra is (isomorphic

to) the direct limit of the family of its finite-dimensional com-

ponents:
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Conversely, every locally finite supported algebra is (isomorphic

to) the direct limit of the family of its finite-dimensional com-

ponents:

(A, spp) – a locally finite supported algebra,

for X ⊆ Y ∈ L0, fX
Y := the embedding of AX into AY .

Then (AX , fX
Y )X⊆Y ∈L0

is a direct family, and A is its direct limit

with the canonic embeddings AX → A.
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Conversely, every locally finite supported algebra is (isomorphic

to) the direct limit of the family of its finite-dimensional com-

ponents:

(A, spp) – a locally finite supported algebra,

for X ⊆ Y ∈ L0, fX
Y := the embedding of AX into AY .

Then (AX , fX
Y )X⊆Y ∈L0

is a direct family, and A is its direct limit

with the canonic embeddings AX → A.

This transformation of locally finite algebras into direct families

of their components is functorial, i.e., gives rise to a functor

E: LfsppV → VL0.

The functors D and E are mutually inverse up to isomorphisms

and establish equivalence of VL0 and LfsppV. ¤
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Conversely, every locally finite supported algebra is (isomorphic
to) the direct limit of the family of its finite-dimensional com-
ponents:

(A, spp) – a locally finite supported algebra,
for X ⊆ Y ∈ L0, fX

Y := the embedding of AX into AY .

Then (AX , fX
Y )X⊆Y ∈L0

is a direct family, and A is its direct limit
with the canonic embeddings AX → A.

This transformation of locally finite algebras into direct families
of their components is functorial, i.e., gives rise to a functor
E: LfsppV → VL0.

The functors D and E are mutually inverse up to isomorphisms
and establish equivalence of VL0 and LfsppV. ¤

(L, L0 fixed) Study of locally finite algebras is equivalent to study
of algebras with a selected finitary local family of subalgebras.
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In general, the support relation for A∞ induced by a direct family

(AX , fX
Y )X⊂Y ∈L0

is normal iff,

for all X, Y ⊂ Z ∈ L0 and a1 ∈ AX, a2 ∈ AY ,

fX
Z (a1) = fY

Z (a2)

implies

a1 = fX∩Y
X (b) and a2 = fX∩Y

Y (b) for some b ∈ AX∩Y .
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Normal support relations defined by projectors:
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Normal support relations defined by projectors:

L has the greatest element U ,

V – a variety of algebras.

PV := the category of algebras (A, PX)X∈L such that
¦ A ∈ V,
¦ PX∩Y = PXPY for all X, Y ∈ L,
¦ PU = idA.

LfPV – its full subcategory consisting of locally finite algebras.
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Normal support relations defined by projectors:

L has the greatest element U ,

V – a variety of algebras.

PV := the category of algebras (A, PX)X∈L such that
¦ A ∈ V,
¦ PX∩Y = PXPY for all X, Y ∈ L,
¦ PU = idA.

LfPV – its full subcategory consisting of locally finite algebras.

Theorem. Suppose that the set L0 is directed. Then the

category LfpV is equivalent to a variety of L0-sorted algebras.
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The variety consists of algebras (AX , fX
Y , gY

X)X⊆Y ∈L0
, where

¦ AX ∈ V for all X ∈ L0,

¦ (AX , fX
Y )X⊆Y ∈L0

is a direct family,

¦ (AY , gY
X)X⊆Y ∈L0

is an inverse family,

¦ the mappings gY
X: AY → AX satisfy also the condition

gY
XfX

Y = idAX
,

¦ fX∩Y
X gY

X∩Y = gZ
XfY

Z whenever X, Y ⊆ Z.

In particular, always gY
XfX

Y = idAX
.
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