

Localification of variable-basis topological systems

Sergejs Solovjovs

University of Latvia

Summer School on General Algebra and Ordered Sets 2008

Třešť, Czech Republic August 31 - September 6, 2008

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000	000	0000000000	000
Outline					

Motivation

- 2 Algebraic and topological preliminaries
- 3 Variable-basis topological systems
- 4 Spatialization of topological systems
- 5 Localification of topological systems

6 Open problems

Localification of variable-basis topological systems

Motivation ●0000	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification 0000000000	Problems 000
Historical remarks					
Topolog	ical syster	ns			

- 1959 D. Papert and S. Papert construct an adjunction between the categories **Top** (topological spaces) and **Frm**^{op} (the dual of the category **Frm** of frames).
- 1972 J. Isbell uses the name locale for the objects of **Frm**^{op} and considers the category **Loc** (locales) as a substitute for **Top**.
- 1982 P. Johnstone gives a coherent statement to localic theory in his book "Stone Spaces".
- 1989 Using the logic of finite observations S. Vickers introduces the notion of topological system to unite both topological and localic approaches.

Motivation ●0000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification 0000000000	Problems 000
Historical remarks					
Topolog	ical syster	ns			

- 1959 D. Papert and S. Papert construct an adjunction between the categories **Top** (topological spaces) and **Frm**^{op} (the dual of the category **Frm** of frames).
- 1972 J. Isbell uses the name locale for the objects of **Frm**^{op} and considers the category **Loc** (locales) as a substitute for **Top**.
- 1982 P. Johnstone gives a coherent statement to localic theory in his book "Stone Spaces".
- 1989 Using the logic of finite observations S. Vickers introduces the notion of topological system to unite both topological and localic approaches.

Motivation ●0000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification 0000000000	Problems 000
Historical remarks					
Topolog	ical syster	ns			

- 1959 D. Papert and S. Papert construct an adjunction between the categories **Top** (topological spaces) and **Frm**^{op} (the dual of the category **Frm** of frames).
- 1972 J. Isbell uses the name locale for the objects of **Frm**^{op} and considers the category **Loc** (locales) as a substitute for **Top**.
- 1982 P. Johnstone gives a coherent statement to localic theory in his book "Stone Spaces".
- 1989 Using the logic of finite observations S. Vickers introduces the notion of topological system to unite both topological and localic approaches.

Motivation ●0000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification	Problems 000
Historical remarks					
Topolog	ical syster	ns			

- 1959 D. Papert and S. Papert construct an adjunction between the categories **Top** (topological spaces) and **Frm**^{op} (the dual of the category **Frm** of frames).
- 1972 J. Isbell uses the name locale for the objects of **Frm**^{op} and considers the category **Loc** (locales) as a substitute for **Top**.
- 1982 P. Johnstone gives a coherent statement to localic theory in his book "Stone Spaces".
- 1989 Using the logic of finite observations S. Vickers introduces the notion of topological system to unite both topological and localic approaches.

Motivation ○●○○○	Preliminaries 00000000	Topological systems 00000	Spatialization	Localification 0000000000	Problems 000
Historical remarks					
Fuzzy to	pology				

- 1965 L. A. Zadeh introduces fuzzy sets. His approach is generalized by J. A. Goguen in 1967.
- 1968 C. L. Chang introduces fuzzy topological spaces. His approach is generalized by R. Lowen in 1976.
- 1983 S. E. Rodabaugh studies the category FUZZ of variable-basis fuzzy topological spaces. Later on he considers the category C-Top of variable-basis lattice-valued topological spaces.
 - ... Starting from 1983 U. Höhle, S. E. Rodabaugh, A. P. Šostak *et al.* consider fixed- and variable-basis fuzzy topologies and their properties.

Motivation ○●○○○	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification 0000000000	Problems 000
Historical remarks					
Fuzzy to	pology				

- 1965 L. A. Zadeh introduces fuzzy sets. His approach is generalized by J. A. Goguen in 1967.
- 1968 C. L. Chang introduces fuzzy topological spaces. His approach is generalized by R. Lowen in 1976.
- 1983 S. E. Rodabaugh studies the category FUZZ of variable-basis fuzzy topological spaces. Later on he considers the category C-Top of variable-basis lattice-valued topological spaces.
 - ... Starting from 1983 U. Höhle, S. E. Rodabaugh, A. P. Šostak *et al.* consider fixed- and variable-basis fuzzy topologies and their properties.

Motivation ○●○○○	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification 0000000000	Problems 000
Historical remarks					
Fuzzy to	pology				

- 1965 L. A. Zadeh introduces fuzzy sets. His approach is generalized by J. A. Goguen in 1967.
- 1968 C. L. Chang introduces fuzzy topological spaces. His approach is generalized by R. Lowen in 1976.
- 1983 S. E. Rodabaugh studies the category FUZZ of variable-basis fuzzy topological spaces. Later on he considers the category C-Top of variable-basis lattice-valued topological spaces.
 - ... Starting from 1983 U. Höhle, S. E. Rodabaugh, A. P. Šostak *et al.* consider fixed- and variable-basis fuzzy topologies and their properties.

Localification of variable-basis topological systems

Motivation ○●○○○	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification 0000000000	Problems 000
Historical remarks					
Fuzzy to	pology				

- 1965 L. A. Zadeh introduces fuzzy sets. His approach is generalized by J. A. Goguen in 1967.
- 1968 C. L. Chang introduces fuzzy topological spaces. His approach is generalized by R. Lowen in 1976.
- 1983 S. E. Rodabaugh studies the category FUZZ of variable-basis fuzzy topological spaces. Later on he considers the category C-Top of variable-basis lattice-valued topological spaces.
 - ... Starting from 1983 U. Höhle, S. E. Rodabaugh, A. P. Šostak *et al.* consider fixed- and variable-basis fuzzy topologies and their properties.

Motivation 00●00	Preliminaries 00000000	Topological systems 00000	Spatialization	Localification 0000000000	Problems 000
Historical remarks					
Fuzzy to	pology &	Topological s	systems		

2007 J. T. Denniston and S. E. Rodabaugh consider functorial relationships between lattice-valued topology and topological systems.

111 Using fuzzy topological spaces and crisp topological systems they encounter some problems.

Localification of variable-basis topological systems

E		Female start as			
Historical remarks					
Motivation 00●00	Preliminaries 00000000	Topological systems	Spatialization 000	Localification 0000000000	Problems 000

Fuzzy topology & Topological systems

- 2007 J. T. Denniston and S. E. Rodabaugh consider functorial relationships between lattice-valued topology and topological systems.
 - 111 Using fuzzy topological spaces and crisp topological systems they encounter some problems.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000					
Historical remarks					

Variable-basis topological systems

- 2007 S. Solovyov introduces the category of variable-basis topological spaces over an arbitrary variety of algebras generalizing the category **C-Top** of S. E. Rodabaugh.
- 2008 S. Solovyov introduces the category of variable-basis topological systems over an arbitrary variety of algebras generalizing the respective notion of S. Vickers.
 - 111 The latter category provides a single framework in which to treat both variable-basis lattice-valued topological spaces and the respective algebraic structures underlying their topologies.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000					
Historical remarks					

Variable-basis topological systems

- 2007 S. Solovyov introduces the category of variable-basis topological spaces over an arbitrary variety of algebras generalizing the category **C-Top** of S. E. Rodabaugh.
- 2008 S. Solovyov introduces the category of variable-basis topological systems over an arbitrary variety of algebras generalizing the respective notion of S. Vickers.
 - 111 The latter category provides a single framework in which to treat both variable-basis lattice-valued topological spaces and the respective algebraic structures underlying their topologies.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000					
Historical remarks					

Variable-basis topological systems

- 2007 S. Solovyov introduces the category of variable-basis topological spaces over an arbitrary variety of algebras generalizing the category **C-Top** of S. E. Rodabaugh.
- 2008 S. Solovyov introduces the category of variable-basis topological systems over an arbitrary variety of algebras generalizing the respective notion of S. Vickers.
 - 111 The latter category provides a single framework in which to treat both variable-basis lattice-valued topological spaces and the respective algebraic structures underlying their topologies.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
○○○○●	00000000	00000	000	0000000000	000
Current	talk				

- The above-mentioned framework is good on the topological side (spatialization of variable-basis topological systems is possible) and is bad on the algebraic one (the procedure of localification collapses).
- Stimulated by the deficiency we introduced a modified version of the category of variable-basis topological systems.
- It is the purpose of the talk to show that localification is possible in the new setting as well as to provide a relation of the new category to lattice-valued topology.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
○○○○●	00000000	00000	000	0000000000	000
Current	talk				

- The above-mentioned framework is good on the topological side (spatialization of variable-basis topological systems is possible) and is bad on the algebraic one (the procedure of localification collapses).
- Stimulated by the deficiency we introduced a modified version of the category of variable-basis topological systems.
- It is the purpose of the talk to show that localification is possible in the new setting as well as to provide a relation of the new category to lattice-valued topology.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
○○○○●	00000000	00000	000	0000000000	000
Current	talk				

- The above-mentioned framework is good on the topological side (spatialization of variable-basis topological systems is possible) and is bad on the algebraic one (the procedure of localification collapses).
- Stimulated by the deficiency we introduced a modified version of the category of variable-basis topological systems.
- It is the purpose of the talk to show that localification is possible in the new setting as well as to provide a relation of the new category to lattice-valued topology.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	0000000	00000	000	0000000000	
Varieties of alge	bras				

• Let $\Omega = (n_{\lambda})_{\lambda \in \Lambda}$ be a class of cardinal numbers.

Definition 1

- An Ω-algebra is a pair (A, (ω^A_λ)_{λ∈Λ}) (denoted by A), where A is a set and (ω^A_λ)_{λ∈Λ} is a family of maps A^{n_λ} → A.
- An Ω-homomorphism (A, (ω^A_λ)_{λ∈Λ}) ^r→ (B, (ω^B_λ)_{λ∈Λ}) is a map A ^f→ B such that f ∘ ω^B_λ = ω^B_λ ∘ f^{n_λ} for every λ ∈ Λ.

Definition 2

Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms.
 | - | is the forgetful functor to the category Set (sets).

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	0000000	00000	000	0000000000	
Varieties of alge	bras				

• Let $\Omega = (n_{\lambda})_{\lambda \in \Lambda}$ be a class of cardinal numbers.

Definition 1

- An Ω-algebra is a pair (A, (ω^A_λ)_{λ∈Λ}) (denoted by A), where A is a set and (ω^A_λ)_{λ∈Λ} is a family of maps A^{n_λ} → A.
 An Ω-homomorphism (A, (ω^A_λ)_{λ∈Λ}) → (B, (ω^B_λ)_{λ∈Λ}) is a map
 - $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f^{n_{\lambda}}$ for every $\lambda \in \Lambda$.

Definition 2

Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms.
 | - | is the forgetful functor to the category Set (sets).

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Varieties of algebras					

• Let $\Omega = (n_{\lambda})_{\lambda \in \Lambda}$ be a class of cardinal numbers.

Definition 1

- An Ω-algebra is a pair (A, (ω^A_λ)_{λ∈Λ}) (denoted by A), where A is a set and (ω^A_λ)_{λ∈Λ} is a family of maps A^{n_λ} → ^{ω^A_λ}A.
- An <u>Ω-homomorphism</u> $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda}) \xrightarrow{f} (B, (\omega_{\lambda}^{B})_{\lambda \in \Lambda})$ is a map $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f^{n_{\lambda}}$ for every $\lambda \in \Lambda$.

Definition 2

Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms.
 | - | is the forgetful functor to the category Set (sets).

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Varieties of algebras					

• Let $\Omega = (n_{\lambda})_{\lambda \in \Lambda}$ be a class of cardinal numbers.

Definition 1

- An Ω-algebra is a pair (A, (ω^A_λ)_{λ∈Λ}) (denoted by A), where A is a set and (ω^A_λ)_{λ∈Λ} is a family of maps A^{n_λ} → ^{ω^A_λ}A.
- An <u>Ω-homomorphism</u> $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda}) \xrightarrow{f} (B, (\omega_{\lambda}^{B})_{\lambda \in \Lambda})$ is a map $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f^{n_{\lambda}}$ for every $\lambda \in \Lambda$.

Definition 2

• Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms.

• |-| is the forgetful functor to the category **Set** (sets).

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Varieties of algebras					

• Let $\Omega = (n_{\lambda})_{\lambda \in \Lambda}$ be a class of cardinal numbers.

Definition 1

- An Ω-algebra is a pair (A, (ω^A_λ)_{λ∈Λ}) (denoted by A), where A is a set and (ω^A_λ)_{λ∈Λ} is a family of maps A^{n_λ} → ^{ω^A_λ}A.
- An <u> Ω -homomorphism</u> $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda}) \xrightarrow{f} (B, (\omega_{\lambda}^{B})_{\lambda \in \Lambda})$ is a map $A \xrightarrow{f} B$ such that $f \circ \omega_{\lambda}^{A} = \omega_{\lambda}^{B} \circ f^{n_{\lambda}}$ for every $\lambda \in \Lambda$.

Definition 2

- Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms.
- $\bullet \ |-|$ is the forgetful functor to the category Set (sets).

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 0000000	Topological systems 00000	Spatialization 000	Localification	Problems 000
Varieties of alge	bras				
Varietie	es of algebi	ras			

- Let *M* (resp. *E*) be the class of Ω-homomorphisms with injective (resp. surjective) underlying maps.
- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).

• The objects (resp. morphisms) of a variety are called algebras (resp. homomorphisms).

Example 4

The categories **Frm**, **SFrm** and **SQuant** of frames, semiframes and semi-quantales (popular in lattice-valued topology) are varieties.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 0000000	Topological systems 00000	Spatialization 000	Localification 0000000000	Problems 000
Varieties of alge	bras				
Varietie	es of algebr	ras			

- Let *M* (resp. *E*) be the class of Ω-homomorphisms with injective (resp. surjective) underlying maps.
- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).

• The objects (resp. morphisms) of a variety are called algebras (resp. homomorphisms).

Example 4

The categories **Frm**, **SFrm** and **SQuant** of frames, semiframes and semi-quantales (popular in lattice-valued topology) are varieties.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 0000000	Topological systems 00000	Spatialization 000	Localification 0000000000	Problems 000
Varieties of alge	bras				
Varietie	es of algebi	ras			

- Let *M* (resp. *E*) be the class of Ω-homomorphisms with injective (resp. surjective) underlying maps.
- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).
- The objects (resp. morphisms) of a variety are called algebras (resp. homomorphisms).

Example 4

The categories **Frm**, **SFrm** and **SQuant** of frames, semiframes and semi-quantales (popular in lattice-valued topology) are varieties.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 0000000	Topological systems 00000	Spatialization 000	Localification 0000000000	Problems 000
Varieties of alge	bras				
Varietie	es of algebi	ras			

- Let *M* (resp. *E*) be the class of Ω-homomorphisms with injective (resp. surjective) underlying maps.
- A variety of Ω-algebras is a full subcategory of Alg(Ω) closed under the formation of products, *M*-subobjects (subalgebras) and *E*-quotients (homomorphic images).
- The objects (resp. morphisms) of a variety are called algebras (resp. homomorphisms).

Example 4

The categories **Frm**, **SFrm** and **SQuant** of frames, semiframes and semi-quantales (popular in lattice-valued topology) are varieties.

Localification of variable-basis topological systems

Sergejs Solovjovs

University of Latvia

9/43

Motivation 00000	Preliminaries	Topological systems	Spatialization 000	Localification 0000000000	Problems 000
Fixed-basis topolo	gy				
Q-power	rsets				

Definition 5

Given a set X, Q^X is the Q-powerset of X.

• An arbitrary element of Q^X is denoted by p (with indices).

• Q^X is an algebra with operations lifted point-wise from Q by

$$(\omega_{\lambda}^{Q^{X}}(\langle p_{i}\rangle_{n_{\lambda}}))(x) = \omega_{\lambda}^{Q}(\langle p_{i}(x)\rangle_{n_{\lambda}}).$$

Localification of variable-basis topological systems

Motivation 00000	Preliminaries	Topological systems	Spatialization 000	Localification 0000000000	Problems 000			
Fixed-basis topology								
Q-powe	rsets							

Definition 5

Given a set X, Q^X is the Q-powerset of X.

• An arbitrary element of Q^X is denoted by p (with indices).

• Q^X is an algebra with operations lifted point-wise from Q by

$$(\omega_{\lambda}^{Q^{X}}(\langle p_{i}\rangle_{n_{\lambda}}))(x) = \omega_{\lambda}^{Q}(\langle p_{i}(x)\rangle_{n_{\lambda}}).$$

Localification of variable-basis topological systems

Motivation 00000	Preliminaries	Topological systems	Spatialization 000	Localification 0000000000	Problems 000
Fixed-basis topo	logy				
Q-powe	ersets				

Definition 5

Given a set X, Q^X is the Q-powerset of X.

An arbitrary element of Q^X is denoted by p (with indices).
Q^X is an algebra with operations lifted point-wise from Q by

$$(\omega_{\lambda}^{Q^{\chi}}(\langle p_i \rangle_{n_{\lambda}}))(x) = \omega_{\lambda}^{Q}(\langle p_i(x) \rangle_{n_{\lambda}}).$$

Localification of variable-basis topological systems

Motivation 00000	Preliminaries	Topological systems	Spatialization 000	Localification 0000000000	Problems 000			
Fixed-basis topology								
Q-powe	ersets							

Definition 5

Given a set X, Q^X is the Q-powerset of X.

- An arbitrary element of Q^X is denoted by p (with indices).
- Q^X is an algebra with operations lifted point-wise from Q by

$$(\omega_{\lambda}^{Q^{\chi}}(\langle p_i \rangle_{n_{\lambda}}))(x) = \omega_{\lambda}^{Q}(\langle p_i(x) \rangle_{n_{\lambda}}).$$

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	00000000				
Fixed-basis topo	ology				

- Let $X \xrightarrow{f} Y$ be a map and let $A \xrightarrow{g} B$ be a homomorphism.
- There exist:
 - the standard image and preimage operators P(X) → P(Y) and P(Y) → P(X);
 - the Zadeh preimage operator Q^Y → Q^X defined by f⁻_Q(p) = p ∘ f;
 - a map $A^{\chi} \xrightarrow{g_{-}} B^{\chi}$ defined by $g_{-}^{\chi}(p) = g \circ p$.

Lemma 6

For every map $X \xrightarrow{f} Y$ and every homomorphism $A \xrightarrow{g} B$, both $Q^Y \xrightarrow{f_Q^-} Q^X$ and $A^X \xrightarrow{g_{\rightarrow}^X} B^X$ are homomorphisms.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries	Topological systems 00000	Spatialization	Localification	Problems 000
Fixed-basis topolog	у				

- Let $X \xrightarrow{f} Y$ be a map and let $A \xrightarrow{g} B$ be a homomorphism.
- There exist:
 - the standard image and preimage operators $\mathcal{P}(X) \xrightarrow{f^{-}} \mathcal{P}(Y)$ and $\mathcal{P}(Y) \xrightarrow{f^{-}} \mathcal{P}(X)$;
 - the Zadeh preimage operator $Q^Y \xrightarrow{f_Q^-} Q^X$ defined by $f_Q^{\leftarrow}(p) = p \circ f$;

• a map
$$A^X \xrightarrow{g_{\rightarrow}^{\wedge}} B^X$$
 defined by $g_{\rightarrow}^X(p) = g \circ p$.

Lemma 6

For every map $X \xrightarrow{f} Y$ and every homomorphism $A \xrightarrow{g} B$, both $Q^Y \xrightarrow{f_Q^-} Q^X$ and $A^X \xrightarrow{g_{\rightarrow}^X} B^X$ are homomorphisms.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries	Topological systems 00000	Spatialization	Localification	Problems 000
Fixed-basis topolog	у				

- Let $X \xrightarrow{f} Y$ be a map and let $A \xrightarrow{g} B$ be a homomorphism.
- There exist:
 - the standard image and preimage operators $\mathcal{P}(X) \xrightarrow{f^{-}} \mathcal{P}(Y)$ and $\mathcal{P}(Y) \xrightarrow{f^{\leftarrow}} \mathcal{P}(X)$;
 - the Zadeh preimage operator $Q^Y \xrightarrow{f_Q^-} Q^X$ defined by $f_Q^{\leftarrow}(p) = p \circ f$;

• a map $A^X \xrightarrow{g_{\rightarrow}} B^X$ defined by $g_{\rightarrow}^X(p) = g \circ p$.

Lemma 6

For every map $X \xrightarrow{f} Y$ and every homomorphism $A \xrightarrow{g} B$, both $Q^Y \xrightarrow{f_Q^-} Q^X$ and $A^X \xrightarrow{g_{\rightarrow}^X} B^X$ are homomorphisms.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries	Topological systems 00000	Spatialization	Localification	Problems 000
Fixed-basis topolog	у				

- Let $X \xrightarrow{f} Y$ be a map and let $A \xrightarrow{g} B$ be a homomorphism.
- There exist:
 - the standard image and preimage operators $\mathcal{P}(X) \xrightarrow{f^{-}} \mathcal{P}(Y)$ and $\mathcal{P}(Y) \xrightarrow{f^{-}} \mathcal{P}(X)$;
 - the Zadeh preimage operator $Q^Y \xrightarrow{f_Q^-} Q^X$ defined by $f_Q^{\leftarrow}(p) = p \circ f$;

• a map
$$A^X \xrightarrow{g_{\rightarrow}^X} B^X$$
 defined by $g_{\rightarrow}^X(p) = g \circ p$.

Lemma 6

For every map $X \xrightarrow{f} Y$ and every homomorphism $A \xrightarrow{g} B$, both $Q^Y \xrightarrow{f_Q^-} Q^X$ and $A^X \xrightarrow{g_{\rightarrow}^X} B^X$ are homomorphisms.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Fixed-basis topolog	у				

- Let $X \xrightarrow{f} Y$ be a map and let $A \xrightarrow{g} B$ be a homomorphism.
- There exist:
 - the standard image and preimage operators $\mathcal{P}(X) \xrightarrow{f^{-}} \mathcal{P}(Y)$ and $\mathcal{P}(Y) \xrightarrow{f^{-}} \mathcal{P}(X)$;
 - the Zadeh preimage operator $Q^Y \xrightarrow{f_Q^-} Q^X$ defined by $f_Q^-(p) = p \circ f$;

• a map
$$A^X \xrightarrow{g_{\rightarrow}^{X}} B^X$$
 defined by $g_{\rightarrow}^X(p) = g \circ p$.

Lemma 6

For every map $X \xrightarrow{f} Y$ and every homomorphism $A \xrightarrow{g} B$, both $Q^Y \xrightarrow{f_Q^{\leftarrow}} Q^X$ and $A^X \xrightarrow{g_{\rightarrow}^X} B^X$ are homomorphisms.

Localification of variable-basis topological systems
Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	00000000				
Fixed-basis topolog	y				

Definition 7

- Given a set X, a subset τ of Q^X is a Q-topology on X provided that τ is a subalgebra of Q^X.
- A *Q*-topological space (also called a *Q*-space) is a pair (*X*, *τ*), where *X* is a set and *τ* is a *Q*-topology on *X*.
- A map (X, τ) ^f→ (Y, σ) between Q-spaces is Q-continuous provided that (f_Q[→])[→](σ) ⊆ τ.

Definition 8

Q-Top is the category of Q-spaces and Q-continuous maps.
|-| is the forgetful functor to the category Set.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	00000000				
Fixed-basis topology	/				

Definition 7

- Given a set X, a subset τ of Q^X is a Q-topology on X provided that τ is a subalgebra of Q^X.
- A Q-topological space (also called a Q-space) is a pair (X, τ), where X is a set and τ is a Q-topology on X.
- A map (X, τ) ^t→ (Y, σ) between Q-spaces is Q-continuous provided that (f[←]_Q)→(σ) ⊆ τ.

Definition 8

Q-Top is the category of Q-spaces and Q-continuous maps.
|-| is the forgetful functor to the category Set.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	00000000				
Fixed-basis topology	ý				

Definition 7

- Given a set X, a subset τ of Q^X is a Q-topology on X provided that τ is a subalgebra of Q^X.
- A Q-topological space (also called a Q-space) is a pair (X, τ), where X is a set and τ is a Q-topology on X.
- A map (X, τ) ^f→ (Y, σ) between Q-spaces is Q-continuous provided that (f_Q[←])[→](σ) ⊆ τ.

Definition 8

Q-Top is the category of Q-spaces and Q-continuous maps.
|-| is the forgetful functor to the category Set.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	00000000				
Fixed-basis topolog	y				

Definition 7

- Given a set X, a subset τ of Q^X is a Q-topology on X provided that τ is a subalgebra of Q^X.
- A Q-topological space (also called a Q-space) is a pair (X, τ), where X is a set and τ is a Q-topology on X.
- A map (X, τ) ^f→ (Y, σ) between Q-spaces is Q-continuous provided that (f[←]_Q)→(σ) ⊆ τ.

Definition 8

• Q-Top is the category of Q-spaces and Q-continuous maps.

• |-| is the forgetful functor to the category **Set**.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	00000000				
Fixed-basis topology					

Definition 7

- Given a set X, a subset τ of Q^X is a Q-topology on X provided that τ is a subalgebra of Q^X.
- A Q-topological space (also called a Q-space) is a pair (X, τ), where X is a set and τ is a Q-topology on X.
- A map (X, τ) ^f→ (Y, σ) between Q-spaces is Q-continuous provided that (f[←]_Q)→(σ) ⊆ τ.

Definition 8

- Q-Top is the category of Q-spaces and Q-continuous maps.
- |-| is the forgetful functor to the category **Set**.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries ○○○○○●○○	Topological systems 00000	Spatialization	Localification 0000000000	Problems 000
Variable-basis topol	ogy				
Notation	S				

• From now on introduce the following notations:

- The dual of the category A is denoted by LoA (the "Lo" comes from "localic").
- The objects (resp. morphisms) of **LoA** are called localic algebras (resp. homomorphisms).
- The respective homomorphism of a localic homomorphism f is denoted by f^{op} and vice versa.
- To distinguish between maps and homomorphisms denote them by "f, g" and " φ, ψ " respectively.

Motivation 00000	Preliminaries ○○○○○●○○	Topological systems	Spatialization 000	Localification 0000000000	Problems 000
Variable-basis topol	ogy				
Notation	S				

- From now on introduce the following notations:
- The dual of the category **A** is denoted by **LoA** (the "**Lo**" comes from "localic").
- The objects (resp. morphisms) of **LoA** are called localic algebras (resp. homomorphisms).
- The respective homomorphism of a localic homomorphism *f* is denoted by *f*^{op} and vice versa.
- To distinguish between maps and homomorphisms denote them by "f,g" and " φ,ψ " respectively.

Motivation 00000	Preliminaries ○○○○○●○○	Topological systems	Spatialization 000	Localification 0000000000	Problems 000
Variable-basis topol	ogy				
Notation	s				

- From now on introduce the following notations:
- The dual of the category **A** is denoted by **LoA** (the "**Lo**" comes from "localic").
- The objects (resp. morphisms) of **LoA** are called localic algebras (resp. homomorphisms).
- The respective homomorphism of a localic homomorphism *f* is denoted by *f*^{op} and vice versa.
- To distinguish between maps and homomorphisms denote them by "f,g" and " φ,ψ " respectively.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries ○○○○○●○○	Topological systems	Spatialization 000	Localification 0000000000	Problems 000	
Variable-basis topology						
Notation	s					

- From now on introduce the following notations:
- The dual of the category **A** is denoted by **LoA** (the "**Lo**" comes from "localic").
- The objects (resp. morphisms) of **LoA** are called localic algebras (resp. homomorphisms).
- The respective homomorphism of a localic homomorphism *f* is denoted by *f*^{op} and vice versa.
- To distinguish between maps and homomorphisms denote them by "f,g" and " φ,ψ " respectively.

Motivation 00000	Preliminaries ○○○○○●○○	Topological systems	Spatialization 000	Localification 0000000000	Problems 000	
Variable-basis topology						
Notation	s					

- From now on introduce the following notations:
- The dual of the category **A** is denoted by **LoA** (the "**Lo**" comes from "localic").
- The objects (resp. morphisms) of **LoA** are called localic algebras (resp. homomorphisms).
- The respective homomorphism of a localic homomorphism *f* is denoted by *f*^{op} and vice versa.
- To distinguish between maps and homomorphisms denote them by "f, g" and " φ, ψ " respectively.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	00000000				
Variable-basis topol	ogy				

Variable-basis preimage operator

Definition 9

Given a **Set** × **LoA**-morphism
$$(X, A) \xrightarrow{(f,\varphi)} (Y, B)$$
, there exists the Rodabaugh preimage operator $B^Y \xrightarrow{(f,\varphi)^{\leftarrow}} A^X$ defined by $(f,\varphi)^{\leftarrow}(p) = \varphi^{op} \circ p \circ f$.

Lemma 10

For every **Set** × **LoA**-morphism $(X, A) \xrightarrow{(f, \varphi)} (Y, B)$, the diagram $\begin{array}{c} B^{Y} \xrightarrow{(\varphi^{op})^{Y}} \xrightarrow{\to} A^{Y} \\ f_{B}^{\leftarrow} & (f, \varphi)^{\leftarrow} & \downarrow f_{A}^{\leftarrow} \\ B^{X} \xrightarrow{(\varphi^{op})^{X}} \xrightarrow{\to} A^{X} \end{array}$ commutes and therefore $B^{Y} \xrightarrow{(f, \varphi)^{\leftarrow}} A^{X}$ is a homomorphism

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries	Topological systems 00000	Spatialization	Localification 000000000	Problems 000
Variable-basis topol	ogy				

Variable-basis preimage operator

Definition 9

Given a **Set** × **LoA**-morphism
$$(X, A) \xrightarrow{(f,\varphi)} (Y, B)$$
, there exists the Rodabaugh preimage operator $B^Y \xrightarrow{(f,\varphi)^{\leftarrow}} A^X$ defined by $(f,\varphi)^{\leftarrow}(p) = \varphi^{op} \circ p \circ f$.

Lemma 10

For every Set × LoA-morphism
$$(X, A) \xrightarrow{(f,\varphi)} (Y, B)$$
, the diagram
 $B^{Y} \xrightarrow{(\varphi^{op})^{Y}} \xrightarrow{\to} A^{Y}$
 $f_{B}^{\leftarrow} \downarrow (f,\varphi)^{\leftarrow} \qquad \downarrow f_{A}^{\leftarrow}$
 $B^{X} \xrightarrow{(\varphi^{op})^{X}} \xrightarrow{\to} A^{X}$
commutes and therefore $B^{Y} \xrightarrow{(f,\varphi)^{\leftarrow}} A^{X}$ is a homomorphism.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Variable-basis topolo	ogy				

Definition 11

- Given a subcategory **C** of **LoA**, the category **C**-**Top** comprises the following data:
 - Objects: C-topological spaces or C-spaces (X, A, τ), where (X, A) is a Set × C-object and (X, τ) is an A-space.
 - Morphisms: C-continuous pairs (X, A, τ) (f,φ)/((Y, B, σ), where (f,φ) is a Set × C-morphism and ((f,φ)⁺)[→](σ) ⊆ τ.
- |-| is the forgetful functor to the category **Set** \times **C**.
- **C-Top** generalizes the respective category of S. E. Rodabaugh.
- This talk considers the case **C** = **LoA**.
- Call LoA-spaces by spaces and LoA-continuity by continuity.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Variable-basis topolo	ogy				

Definition 11

- Given a subcategory **C** of **LoA**, the category **C**-**Top** comprises the following data:
 - Objects: **C**-topological spaces or **C**-spaces (X, A, τ) , where (X, A) is a **Set** \times **C**-object and (X, τ) is an *A*-space.
 - Morphisms: C-continuous pairs (X, A, τ) (f,φ)/(Y, B, σ), where (f,φ) is a Set × C-morphism and ((f,φ)[←])[→](σ) ⊆ τ.

• |-| is the forgetful functor to the category **Set** \times **C**.

- C-Top generalizes the respective category of S. E. Rodabaugh.
- This talk considers the case **C** = **LoA**.
- Call LoA-spaces by spaces and LoA-continuity by continuity.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Variable-basis topolo	ogy				

Definition 11

- Given a subcategory **C** of **LoA**, the category **C**-**Top** comprises the following data:
 - Objects: **C**-topological spaces or **C**-spaces (X, A, τ) , where (X, A) is a **Set** \times **C**-object and (X, τ) is an *A*-space.
 - Morphisms: C-continuous pairs $(X, A, \tau) \xrightarrow{(f, \varphi)} (Y, B, \sigma)$, where (f, φ) is a Set × C-morphism and $((f, \varphi)^{\leftarrow})^{\rightarrow}(\sigma) \subseteq \tau$.

• |-| is the forgetful functor to the category **Set** \times **C**.

- C-Top generalizes the respective category of S. E. Rodabaugh.
- This talk considers the case **C** = **LoA**.
- Call LoA-spaces by spaces and LoA-continuity by continuity.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Variable-basis topolo	ogy				

Definition 11

- Given a subcategory **C** of **LoA**, the category **C**-**Top** comprises the following data:
 - Objects: **C**-topological spaces or **C**-spaces (X, A, τ) , where (X, A) is a **Set** \times **C**-object and (X, τ) is an *A*-space.
 - Morphisms: C-continuous pairs $(X, A, \tau) \xrightarrow{(f, \varphi)} (Y, B, \sigma)$, where (f, φ) is a Set × C-morphism and $((f, \varphi)^{\leftarrow})^{\rightarrow}(\sigma) \subseteq \tau$.
- |-| is the forgetful functor to the category **Set** \times **C**.
- **C-Top** generalizes the respective category of S. E. Rodabaugh.
- This talk considers the case **C** = **LoA**.
- Call LoA-spaces by spaces and LoA-continuity by continuity.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Variable-basis topolo	ogy				

Definition 11

- Given a subcategory **C** of **LoA**, the category **C**-**Top** comprises the following data:
 - Objects: **C**-topological spaces or **C**-spaces (X, A, τ) , where (X, A) is a **Set** \times **C**-object and (X, τ) is an *A*-space.
 - Morphisms: C-continuous pairs $(X, A, \tau) \xrightarrow{(f, \varphi)} (Y, B, \sigma)$, where (f, φ) is a Set × C-morphism and $((f, \varphi)^{\leftarrow})^{\rightarrow}(\sigma) \subseteq \tau$.
- |-| is the forgetful functor to the category Set \times C.
- C-Top generalizes the respective category of S. E. Rodabaugh.
- This talk considers the case **C** = **LoA**.
- Call LoA-spaces by spaces and LoA-continuity by continuity.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Variable-basis topolo	ogy				

Definition 11

- Given a subcategory **C** of **LoA**, the category **C**-**Top** comprises the following data:
 - Objects: **C**-topological spaces or **C**-spaces (X, A, τ) , where (X, A) is a **Set** \times **C**-object and (X, τ) is an *A*-space.
 - Morphisms: C-continuous pairs $(X, A, \tau) \xrightarrow{(f, \varphi)} (Y, B, \sigma)$, where (f, φ) is a Set × C-morphism and $((f, \varphi)^{\leftarrow})^{\rightarrow}(\sigma) \subseteq \tau$.
- |-| is the forgetful functor to the category **Set** \times **C**.
- C-Top generalizes the respective category of S. E. Rodabaugh.
- This talk considers the case $\mathbf{C} = \mathbf{LoA}$.
- Call LoA-spaces by spaces and LoA-continuity by continuity.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
	0000000				
Variable-basis topolo	ogy				

Definition 11

- Given a subcategory **C** of **LoA**, the category **C**-**Top** comprises the following data:
 - Objects: **C**-topological spaces or **C**-spaces (X, A, τ) , where (X, A) is a **Set** \times **C**-object and (X, τ) is an *A*-space.
 - Morphisms: C-continuous pairs (X, A, τ) (f,φ)/((Y, B, σ), where (f,φ) is a Set × C-morphism and ((f,φ)[←])[→](σ) ⊆ τ.
- |-| is the forgetful functor to the category Set \times C.
- C-Top generalizes the respective category of S. E. Rodabaugh.
- This talk considers the case $\mathbf{C} = \mathbf{LoA}$.
- Call LoA-spaces by spaces and LoA-continuity by continuity.

Motivation 00000	Preliminaries 00000000	Topological systems ●0000	Spatialization 000	Localification	Problems 000
Topological syst	ems of S. Vickers				
Satisfac	stion relati	on			

Let X be a set and A be a frame. Then $X \xrightarrow{\models} A$ is a satisfaction relation on (X, A) if \models is a binary relation from X to A satisfying the following join interchange law and meet interchange law: • For any family $\{a_i\}_{i\in I}$ of elements of A, $x \models \bigvee_{i\in I} a_i$ iff $x \models a_i$ for at least one $i \in I$. • For any finite family $\{a_i\}_{i\in I}$ of elements of A, $x \models \bigwedge_{i\in I} a_i$ iff $x \models a_i$ for every $i \in I$.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems ●0000	Spatialization 000	Localification	Problems 000
Topological syst	ems of S. Vickers				
Satisfac	stion relati	on			

Let X be a set and A be a frame. Then $X \xrightarrow{\models} A$ is a satisfaction relation on (X, A) if \models is a binary relation from X to A satisfying the following join interchange law and meet interchange law:

• For any family
$$\{a_i\}_{i\in I}$$
 of elements of A ,

$$x \models \bigvee_{i \in I} a_i$$
 iff $x \models a_i$ for at least one $i \in I$.

• For any finite family $\{a_i\}_{i \in I}$ of elements of A,

$$x \models \bigwedge_{i \in I} a_i$$
 iff $x \models a_i$ for every $i \in I$.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems ●0000	Spatialization 000	Localification	Problems 000
Topological syst	ems of S. Vickers				
Satisfac	stion relati	on			

Let X be a set and A be a frame. Then $X \xrightarrow{\models} A$ is a satisfaction relation on (X, A) if \models is a binary relation from X to A satisfying the following join interchange law and meet interchange law:

• For any family
$$\{a_i\}_{i \in I}$$
 of elements of A ,

$$x \models \bigvee_{i \in I} a_i$$
 iff $x \models a_i$ for at least one $i \in I$.

• For any finite family $\{a_i\}_{i \in I}$ of elements of A,

$$x \models \bigwedge_{i \in I} a_i$$
 iff $x \models a_i$ for every $i \in I$.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems ○●○○○	Spatialization 000	Localification	Problems 000
Topological syst	tems of S. Vickers				
Topolo	gical syster	ms			

- A topological system is a triple (X, A, ⊨), where (X, A) is a Set × Loc-object and ⊨ is a satisfaction relation on (X, A).
- Elements of X are points and elements of A are opens.
- The category **TopSys** comprises the following data:
 - Objects: topological systems (X, A, \models)
 - Morphisms: continuous maps

 $(X, A, \models_1) \xrightarrow{f = (pt f_1(\Omega^f)^{p_1})} (Y, B, \models_2),$ where f is a Set × Loc-morphism and for every $x \in X, b \in B,$ pt $f(x) \models_2 b$ iff $x \models_1 \Omega f(b).$

Motivation 00000	Preliminaries 00000000	Topological systems ○●○○○	Spatialization 000	Localification	Problems 000
Topological syst	tems of S. Vickers				
Topolo	gical syster	ms			

- A topological system is a triple (X, A, ⊨), where (X, A) is a Set × Loc-object and ⊨ is a satisfaction relation on (X, A).
- Elements of X are points and elements of A are opens.
- The category **TopSys** comprises the following data:
 - Objects: topological systems (X, A, \models)
 - Morphisms: continuous maps

 $\begin{array}{l} (X, A, \models_1) \xrightarrow{Y = (\mu + 1, (\mu + 1), (\mu + 1$

Motivation 00000	Preliminaries 00000000	Topological systems ○●○○○	Spatialization 000	Localification	Problems 000
Topological syst	tems of S. Vickers				
Topolo	gical syster	ms			

- A topological system is a triple (X, A, ⊨), where (X, A) is a Set × Loc-object and ⊨ is a satisfaction relation on (X, A).
- Elements of X are points and elements of A are opens.
- The category **TopSys** comprises the following data:
 - Objects: topological systems (X, A, \models) .
 - Morphisms: continuous maps

 $(X, A, \models_1) \xrightarrow{f = (\operatorname{pt} f, (\Omega f)^{\circ p})} (Y, B, \models_2),$

where f is a **Set** × **Loc**-morphism and for every $x \in X$, $b \in B$, pt $f(x) \models_2 b$ iff $x \models_1 \Omega f(b)$.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems ○●○○○	Spatialization 000	Localification	Problems 000
Topological syst	tems of S. Vickers				
T	at a star second				

l'opological systems

Definition 13

- A topological system is a triple (X, A, ⊨), where (X, A) is a Set × Loc-object and ⊨ is a satisfaction relation on (X, A).
- Elements of X are points and elements of A are opens.
- The category **TopSys** comprises the following data:
 - Objects: topological systems (X, A, \models) .
 - Morphisms: continuous maps

 $(X, A, \models_1) \xrightarrow{f = (\mathsf{pt} f, (\Omega f)^{\mathsf{pr}})} (Y, B, \models_2),$ where f is a **Set** × **Loc**-morphism and for every $x \in X, b \in B$, pt $f(x) \models_2 b$ iff $x \models_1 \Omega f(b)$.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems ○●○○○	Spatialization 000	Localification 0000000000	Problems 000	
Topological systems of S. Vickers						
	2010 B. C.					

Topological systems

Definition 13

- A topological system is a triple (X, A, ⊨), where (X, A) is a Set × Loc-object and ⊨ is a satisfaction relation on (X, A).
- Elements of X are points and elements of A are opens.
- The category **TopSys** comprises the following data:
 - Objects: topological systems (X, A, \models) .
 - Morphisms: continuous maps

$$(X, A, \models_1) \xrightarrow{f = (\operatorname{pt} f, (\Omega f)^{\operatorname{op}})} (Y, B, \models_2),$$

where f is a **Set** × **Loc**-morphism and for every $x \in X$, $b \in B$, pt $f(x) \models_2 b$ iff $x \models_1 \Omega f(b)$.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	ach				

Definition 14

- Given a subcategory **C** of **LoA**, the category **C**-**TopSys** comprises the following data:
 - Objects: C-topological systems or C-systems (X, A, B, ⊨), where (X, A, B) is a Set × C × C-object and X × B ⊨ A is a map (satisfaction relation) such that for every x ∈ X, B ⊨(x,-) A is a homomorphism.
- Morphisms: C-continuous maps
 (X, A, B, ⊨₁) f=(pt f,(Σf)^{op},(Ωf)^{op})</sup> (Y, C, D, ⊨₂),
 where f is a Set × C × C-morphism and for every x ∈ X, d ∈ D,
 Σf(⊨₂(pt f(x), d)) = ⊨₁(x, Ωf(d)).

 | - | is the forgetful functor to the category Set × C × C.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	ach				

Definition 14

- Given a subcategory **C** of **LoA**, the category **C**-**TopSys** comprises the following data:
 - Objects: **C**-topological systems or **C**-systems (X, A, B, \models) ,

where (X, A, B) is a **Set** \times **C** \times **C**-object and $X \times B \xrightarrow{\models} A$ is a map (satisfaction relation) such that for every $x \in X$,

$$B \xrightarrow{\models(x,-)} A \text{ is a homomorphism.}$$

• Morphisms: C-continuous maps

 $(X, A, B, \models_1) \xrightarrow{(X, Y, X)} (Y, C, D, \models_2),$ where f is a **Set** × **C** × **C**-morphism and for every $x \in X$, $d \in D$, $\Sigma f(\models_2(\operatorname{pt} f(x), d)) = \models_1(x, \Omega f(d)).$

• |-| is the forgetful functor to the category Set \times C \times C.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	ach				

Definition 14

- Given a subcategory **C** of **LoA**, the category **C**-**TopSys** comprises the following data:
 - Objects: **C**-topological systems or **C**-systems (X, A, B, \models) , where (X, A, B) is a **Set** \times **C** while the and $X \times B \stackrel{\models}{\to} A^{\ddagger}$

where (X, A, B) is a **Set** \times **C** \times **C**-object and $X \times B \xrightarrow{\models} A$ is a map (satisfaction relation) such that for every $x \in X$,

 $B \xrightarrow{\models(x,-)} A$ is a homomorphism.

• Morphisms: C-continuous maps

 $\begin{array}{l} (X, A, B, \models_1) \xrightarrow{f = (\operatorname{pt} f, (\Sigma f)^{op}, (\Omega f)^{op})} (Y, C, D, \models_2), \\ \text{where } f \text{ is a } \mathbf{Set} \times \mathbf{C} \times \mathbf{C} \text{-morphism and for every } x \in X, \ d \in D, \\ \Sigma f(\models_2(\operatorname{pt} f(x), d)) = \models_1(x, \Omega f(d)). \end{array}$

• |-| is the forgetful functor to the category **Set** \times **C** \times **C**.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	ach				

Definition 14

- Given a subcategory **C** of **LoA**, the category **C**-**TopSys** comprises the following data:
 - Objects: C-topological systems or C-systems (X, A, B, ⊨),
 where (X, A, B) is a Set × C × C-object and X × B ⊨ A is a

where (X, A, B) is a **Set** \times **C** \times **C**-object and $X \times B \longrightarrow A$ is a map (satisfaction relation) such that for every $x \in X$,

 $B \xrightarrow{\models(x,-)} A$ is a homomorphism.

• Morphisms: C-continuous maps

$$\begin{array}{l} (X,A,B,\models_1) \xrightarrow{f=(\operatorname{pt} f,(\Sigma f)^{\operatorname{op}},(\Omega f)^{\operatorname{op}})} (Y,C,D,\models_2),\\ \text{where } f \text{ is a } \mathbf{Set} \times \mathbf{C} \times \mathbf{C}\text{-morphism and for every } x \in X, \ d \in D,\\ \Sigma f(\models_2(\operatorname{pt} f(x),d)) = \models_1(x,\Omega f(d)). \end{array}$$

 $\bullet ~|-|$ is the forgetful functor to the category $\textbf{Set} \times \textbf{C} \times \textbf{C}.$

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	ach				

Definition 15

For a C-object Q, Q-TopSys is the subcategory of C-TopSys of all C-systems (X, Q, B, ⊨) with basis Q and all continuous f such that Σf = 1_Q.

• |-| is the forgetful functor to the category $\mathsf{Set} imes \mathsf{C}$.

_emma 16

The subcategory Q-TopSys is full iff C(Q, Q) = {1_Q}.
 If Q is an initial (terminal) object in A, then Q-TopSys is full.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	ach				

Definition 15

- For a C-object Q, Q-TopSys is the subcategory of C-TopSys of all C-systems (X, Q, B, ⊨) with basis Q and all continuous f such that Σf = 1_Q.
- |-| is the forgetful functor to the category **Set** \times **C**.

_emma 16

The subcategory Q-TopSys is full iff C(Q, Q) = {1_Q}.
 If Q is an initial (terminal) object in A, then Q-TopSys is full.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	bach				

Definition 15

- For a C-object Q, Q-TopSys is the subcategory of C-TopSys of all C-systems (X, Q, B, ⊨) with basis Q and all continuous f such that Σf = 1_Q.
- |-| is the forgetful functor to the category Set \times C.

Lemma 16

• The subcategory Q-TopSys is full iff $C(Q, Q) = \{1_Q\}$.

• If Q is an initial (terminal) object in **A**, then Q-**TopSys** is full.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
		00000			
Variable-basis appro	bach				

Definition 15

- For a C-object Q, Q-TopSys is the subcategory of C-TopSys of all C-systems (X, Q, B, ⊨) with basis Q and all continuous f such that Σf = 1_Q.
- |-| is the forgetful functor to the category Set \times C.

Lemma 16

- The subcategory Q-TopSys is full iff $C(Q, Q) = \{1_Q\}$.
- If Q is an initial (terminal) object in A, then Q-TopSys is full.

Motivation 00000	Preliminaries 00000000	Topological systems ○○○○●	Spatialization	Localification 0000000000	Problems 000
Variable-basis appro	bach				
Examples	5				

Example 17

 $2 = \{\bot, \top\}$ is initial in **Frm**. The full subcategory 2-**TopSys** of **Loc-TopSys** is isomorphic to the category **TopSys** of S. Vickers.

Example 18

Given a set K, the subcategory K-**TopSys** of **LoSet**-**TopSys** is isomorphic to the category Chu(**Set**, K) of **Chu spaces** over K. K-**TopSys** is full iff K is the empty set or a singleton.

The following considers the category LoA-TopSys.
Call LoA-systems by systems and LoA-continuity by continuity.

Localification of variable-basis topological systems

Sergejs Solovjovs
Motivation 00000	Preliminaries 00000000	Topological systems ○○○○●	Spatialization	Localification 0000000000	Problems 000		
Variable-basis approach							
Examples	5						

Example 17

 $2 = \{\bot, \top\}$ is initial in **Frm**. The full subcategory 2-**TopSys** of **Loc-TopSys** is isomorphic to the category **TopSys** of S. Vickers.

Example 18

Given a set K, the subcategory K-**TopSys** of **LoSet-TopSys** is isomorphic to the category Chu(**Set**, K) of **Chu spaces** over K. K-**TopSys** is full iff K is the empty set or a singleton.

The following considers the category LoA-TopSys.
Call LoA-systems by systems and LoA-continuity by continuity.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems ○○○○●	Spatialization	Localification 0000000000	Problems 000			
Variable-basis approach								
Examples	5							

Example 17

 $2 = \{\bot, \top\}$ is initial in **Frm**. The full subcategory 2-**TopSys** of **Loc-TopSys** is isomorphic to the category **TopSys** of S. Vickers.

Example 18

Given a set K, the subcategory K-**TopSys** of **LoSet-TopSys** is isomorphic to the category Chu(**Set**, K) of **Chu spaces** over K. K-**TopSys** is full iff K is the empty set or a singleton.

• The following considers the category LoA-TopSys.

• Call **LoA**-systems by systems and **LoA**-continuity by continuity.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems ○○○○●	Spatialization	Localification 0000000000	Problems 000		
Variable-basis approach							
Examples	5						

Example 17

 $2 = \{\bot, \top\}$ is initial in **Frm**. The full subcategory 2-**TopSys** of **Loc-TopSys** is isomorphic to the category **TopSys** of S. Vickers.

Example 18

Given a set K, the subcategory K-**TopSys** of **LoSet**-**TopSys** is isomorphic to the category Chu(**Set**, K) of **Chu spaces** over K. K-**TopSys** is full iff K is the empty set or a singleton.

- The following considers the category LoA-TopSys.
- Call LoA-systems by systems and LoA-continuity by continuity.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000	•00		000
Topological spaces	versus topological syste	ems			

From spaces to systems

Lemma 19

There exists a full embedding LoA-Top $\xrightarrow{E_T}$ LoA-TopSys with $E_T((X, A, \tau) \xrightarrow{(f, \varphi)} (Y, B, \sigma)) =$ $(X, A, \tau, \models_1) \xrightarrow{(f, \varphi, ((f, \varphi)^{-})^{op})} (Y, B, \sigma, \models_2)$

where $\models_i(z, p) = p(z)$.

Proof.

As an example show that $E_T(f, \varphi)$ is in **LoA-TopSys**:

$$\models_1(x, (f, \varphi)^{\leftarrow}(p)) = \models_1(x, \varphi^{op} \circ p \circ f) = \varphi^{op} \circ p \circ f(x) = \varphi^{op}(\models_2(f(x), p)).$$

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000	•00		000
Topological spaces	versus topological syste	ems			

From spaces to systems

Lemma 19

There exists a full embedding LoA-Top $\xrightarrow{E_T}$ LoA-TopSys with $E_T((X, A, \tau) \xrightarrow{(f, \varphi)} (Y, B, \sigma)) =$ $(X, A, \tau, \models_1) \xrightarrow{(f, \varphi, ((f, \varphi)^{\leftarrow})^{op})} (Y, B, \sigma, \models_2)$

where $\models_i(z, p) = p(z)$.

Proof.

As an example show that $E_T(f, \varphi)$ is in **LoA-TopSys**:

$$\models_1(x, (f, \varphi)^{\leftarrow}(p)) = \models_1(x, \varphi^{op} \circ p \circ f) = \varphi^{op} \circ p \circ f(x) = \varphi^{op}(\models_2(f(x), p)).$$

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000	000	0000000000	000
Topological spaces	versus topological syste	ems			

From systems to spaces: spatialization

Lemma 20

There exists a functor LoA-TopSys \xrightarrow{Spat} LoA-Top defined by

$$\begin{aligned} \mathsf{Spat}((X, A, B, \models_1) \xrightarrow{f} (Y, C, D, \models_2)) &= \\ (X, A, \tau) \xrightarrow{(\mathsf{pt}\, f, (\Sigma f)^{op})} (Y, C, \sigma) \end{aligned}$$

where $\tau = \{\models_1(-, b) \mid b \in B\}$ ($\models_1(-, b)$ is the extent of b).

Proof.

As an example show that Spat(f) is in **LoA-Top**:

 $((\operatorname{pt} f, (\Sigma f)^{op})^{\leftarrow}(\models_2(-, d)))(x) = \Sigma f \circ \models_2(-, d) \circ \operatorname{pt} f(x) = \Sigma f(\models_2(\operatorname{pt} f(x), d)) = \models_1(x, \Omega f(d)) = (\models_1(-, \Omega f(d)))(x).$

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
			000		
Topological space	s versus topological s	vstems			

From systems to spaces: spatialization

Lemma 20

There exists a functor LoA-TopSys \xrightarrow{Spat} LoA-Top defined by

$$\begin{aligned} \mathsf{Spat}((X, A, B, \models_1) \xrightarrow{f} (Y, C, D, \models_2)) &= \\ (X, A, \tau) \xrightarrow{(\mathsf{pt}\, f, (\Sigma f)^{op})} (Y, C, \sigma) \end{aligned}$$

where $\tau = \{\models_1(-, b) \mid b \in B\}$ ($\models_1(-, b)$ is the extent of b).

Proof.

As an example show that Spat(f) is in **LoA-Top**:

$$((\operatorname{pt} f, (\Sigma f)^{op})^{\leftarrow}(\models_2(-, d)))(x) = \Sigma f \circ \models_2(-, d) \circ \operatorname{pt} f(x) = \Sigma f(\models_2(\operatorname{pt} f(x), d)) = \models_1(x, \Omega f(d)) = (\models_1(-, \Omega f(d)))(x).$$

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization	Localification 0000000000	Problems 000				
Topological spaces versus topological systems									
E_T and	Spat form	n an adjoint p	air						

Theorem 21

Spat is a right-adjoint-left-inverse of E_T .

Proof.

 Given a system (X, A, B, ⊨), E_T Spat(X, A, B, ⊨) (1_X,1_A,Φ^φ) (X, A, B, ⊨) with Φ(b) = ⊨(−, b) provides an E_T-(co-universal) map.
 Straightforward computations show that Spat E_T = 1 → a T_T

Corollary 22

LoA-Top is isomorphic to a full (regular mono)-coreflective subcategory of **LoA-TopSys**.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization 00●	Localification 0000000000	Problems 000			
Topological spaces versus topological systems								
E_T and	Spat form	n an adjoint p	air					

Theorem 21

Spat is a right-adjoint-left-inverse of E_T .

Proof.

• Given a system
$$(X, A, B, \models)$$
,
 $E_T \operatorname{Spat}(X, A, B, \models) \xrightarrow{(1_X, 1_A, \Phi^{op})} (X, A, B, \models)$
with $\Phi(b) = \models (-, b)$ provides an E_T -(co-universal) map.

• Straightforward computations show that Spat $E_T = 1_{LoA-Top}$.

Corollary 22

LoA-Top is isomorphic to a full (regular mono)-coreflective subcategory of **LoA-TopSys**.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization 00●	Localification 0000000000	Problems 000			
Topological spaces versus topological systems								
E_T and	Spat form	n an adjoint p	air					

Theorem 21

Spat is a right-adjoint-left-inverse of E_T .

Proof.

• Given a system
$$(X, A, B, \models)$$
,
 $E_T \operatorname{Spat}(X, A, B, \models) \xrightarrow{(1_X, 1_A, \Phi^{op})} (X, A, B, \models)$
with $\Phi(b) = \models (-, b)$ provides an E_T -(co-universal) map.

• Straightforward computations show that Spat $E_T = 1_{LoA-Top}$.

Corollary 22

LoA-Top is isomorphic to a full (regular mono)-coreflective subcategory of **LoA-TopSys**.

Localification of variable-basis topological systems

Sergejs Solovjovs

–		10.00					
Topological spa	000 0000000 00000 000 000 00000000 000 pological spaces versus topological systems						
Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization 00●	Localification 000000000	Problems 000		

E_T and Spat form an adjoint pair

Theorem 21

Spat is a right-adjoint-left-inverse of E_T .

Proof.

• Given a system
$$(X, A, B, \models)$$
,
 $E_T \operatorname{Spat}(X, A, B, \models) \xrightarrow{(1_X, 1_A, \Phi^{op})} (X, A, B, \models)$
with $\Phi(b) = \models (-, b)$ provides an E_T -(co-universal) map.

• Straightforward computations show that Spat $E_T = 1_{LoA-Top}$.

Corollary 22

LoA-Top is isomorphic to a full (regular mono)-coreflective subcategory of **LoA-TopSys**.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization	Localification	Problems 000			
Localic algebras versus topological systems								
From loc	alic algebra	as to systems						

Lemma 23

• There exists an embedding $LoA \xrightarrow{E_L^Q} LoA$ -TopSys with

$$\begin{split} E_{L}^{Q}(B \xrightarrow{\varphi} C) &= \\ (\operatorname{Pt}_{Q}(B), Q, B, \models_{1}) \xrightarrow{(|\varphi^{op}|_{Q}^{-}, 1_{Q}, \varphi)} (\operatorname{Pt}_{Q}(C), Q, C, \models_{2}) \\ where \operatorname{Pt}_{Q}(B) &= \operatorname{A}(B, Q) \text{ and } \models_{i}(p, d) = p(d). \\ E_{L}^{Q} \text{ is full iff } \operatorname{A}(Q, Q) &= \{1_{Q}\}. \\ \text{If } Q \text{ is an initial (terminal) object in } \operatorname{A}, \text{ then } E_{L}^{Q} \text{ is full.} \end{split}$$

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization	Localification •000000000	Problems 000		
Localic algebras versus topological systems							
From loo	calic algebr	as to system	S				

Lemma 23

• There exists an embedding $LoA \xrightarrow{E_L^Q} LoA$ -TopSys with

$$\begin{split} E_{L}^{Q}(B \xrightarrow{\varphi} C) &= \\ (\operatorname{Pt}_{Q}(B), Q, B, \models_{1}) \xrightarrow{(|\varphi^{op}|_{Q}^{-}, 1_{Q}, \varphi)} (\operatorname{Pt}_{Q}(C), Q, C, \models_{2}) \\ where \operatorname{Pt}_{Q}(B) &= \mathbf{A}(B, Q) \text{ and } \models_{i}(p, d) = p(d). \\ E_{L}^{Q} \text{ is full iff } \mathbf{A}(Q, Q) &= \{1_{Q}\}. \\ \text{If } Q \text{ is an initial (terminal) object in } \mathbf{A}, \text{ then } E_{L}^{Q} \text{ is full.} \end{split}$$

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification	Problems 000		
Localic algebras versus topological systems							
From lo	calic algeb	oras to system	าร				

Lemma 23

• There exists an embedding $LoA \xrightarrow{E_L^Q} LoA$ -TopSys with

$$E_{L}^{Q}(B \xrightarrow{\varphi} C) =$$

$$(\operatorname{Pt}_{Q}(B), Q, B, \models_{1}) \xrightarrow{(|\varphi^{op}|_{Q}^{\leftarrow}, 1_{Q}, \varphi)} (\operatorname{Pt}_{Q}(C), Q, C, \models_{2})$$

where $\operatorname{Pt}_Q(B) = \mathbf{A}(B, Q)$ and $\models_i(p, d) = p(d)$.

- E_L^Q is full iff $A(Q, Q) = \{1_Q\}.$
- If Q is an initial (terminal) object in \mathbf{A} , then E_{I}^{Q} is full.

Localification of variable-basis topological systems

 Motivation
 Preliminaries
 Topological systems
 Spatialization
 Localification
 Problems

 00000
 00000
 0000
 000
 000
 000
 000

 Localic algebras versus topological systems
 000
 000
 000
 000

From systems to localic algebras: localification

Lemma 24

There exists a functor **LoA-TopSys** $\xrightarrow{\text{Loc}}$ **LoA** defined by $\text{Loc}((X, A, B, \models_1) \xrightarrow{f} (Y, C, D, \models_2)) = B \xrightarrow{(\Omega f)^{op}} D.$

Lemma 25

- Loc is a left inverse of E_1^Q .
- In general E_L^Q has neither left nor right adjoint and therefore Loc is neither left nor right adjoint of E_L^Q.

Localification of variable-basis topological systems

From systems to localic algebras: localification

Lemma 24

There exists a functor LoA-TopSys $\xrightarrow{\text{Loc}}$ LoA defined by $\text{Loc}((X, A, B, \models_1) \xrightarrow{f} (Y, C, D, \models_2)) = B \xrightarrow{(\Omega f)^{op}} D.$

Lemma 25

• Loc is a left inverse of E_L^Q .

 In general E^Q_L has neither left nor right adjoint and therefore Loc is neither left nor right adjoint of E^Q_L.

Localification of variable-basis topological systems

 Motivation
 Preliminaries
 Topological systems
 Spatialization
 Localification
 Problems

 0000
 00000000
 0000
 000
 000
 000
 000

 Localification
 Problems
 000
 000
 000
 000

 Localic algebras versus topological systems
 000
 000
 000
 000

From systems to localic algebras: localification

Lemma 24

There exists a functor LoA-TopSys $\xrightarrow{\text{Loc}}$ LoA defined by $\text{Loc}((X, A, B, \models_1) \xrightarrow{f} (Y, C, D, \models_2)) = B \xrightarrow{(\Omega f)^{op}} D.$

Lemma 25

- Loc is a left inverse of E_L^Q .
- In general E_L^Q has neither left nor right adjoint and therefore Loc is neither left nor right adjoint of E_L^Q.

Localification of variable-basis topological systems

Motivation 00000 Preliminaries

Topological systems

Spatialization

Localification

Problems 000

Localic algebras versus topological systems

E_L^Q has neither left nor right adjoint

Proof.

- If E^Q_L has a left adjoint, then it preserves limits. In particular, it preserves terminal objects. However, 1 is a terminal object in Frm and E²_L(1) = (Pt₂(1), 2, 1, ⊨) = (Ø, 2, 1, ⊨) is not a terminal object in Loc-TopSys.
- If E^Q_L has a right adjoint, then it preserves colimits and, in particular, initial objects. However, 2 is an initial object in Frm and E²_L(2) = (Pt₂(2), 2, 2, ⊨) = (1, 2, 2, ⊨) is not an initial object in Loc-TopSys.

Localification of variable-basis topological systems

Motivation 00000 Preliminarie: 00000000 Topological systems

Spatialization

Localification

Problems 000

Localic algebras versus topological systems

E_L^Q has neither left nor right adjoint

Proof.

- If E^Q_L has a left adjoint, then it preserves limits. In particular, it preserves terminal objects. However, 1 is a terminal object in Frm and E²_L(1) = (Pt₂(1), 2, 1, ⊨) = (Ø, 2, 1, ⊨) is not a terminal object in Loc-TopSys.
- If E^Q_L has a right adjoint, then it preserves colimits and, in particular, initial objects. However, 2 is an initial object in Frm and E²_L(2) = (Pt₂(2), 2, 2, ⊨) = (1, 2, 2, ⊨) is not an initial object in Loc-TopSys.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
				000000000	
Localic algebras ver	sus topological systems				

From localic algebras to systems again

Definition 26

Let $\mathbf{LoA}_i \times \mathbf{LoA}$ be the subcategory of $\mathbf{LoA} \times \mathbf{LoA}$ with the same objects and with (φ, ψ) in $\mathbf{LoA}_i \times \mathbf{LoA}$ iff φ is a \mathbf{LoA} -isomorphism.

_emma 27

There exists an embedding LoA_i × LoA → LoA-TopSys defined by

 $E_{L}^{i}((A, B) \xrightarrow{(\varphi, \psi)} (C, D)) =$ $(\operatorname{Pt}_{A}(B), A, B, \models_{1}) \xrightarrow{((|\psi^{\varphi}|, \varphi^{-1})^{-}, \varphi, \psi)} (\operatorname{Pt}_{C}(D), C, D, \models_{2})$ where $\operatorname{Pt}_{A}(B) = \mathbf{A}(B, A)$ and $\models_{i}(\rho, e) = \rho(e)$.
In general E_{L}^{i} is non-full.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
				000000000	
Localic algebras ver	sus topological systems				

From localic algebras to systems again

Definition 26

Let $\mathbf{LoA}_i \times \mathbf{LoA}$ be the subcategory of $\mathbf{LoA} \times \mathbf{LoA}$ with the same objects and with (φ, ψ) in $\mathbf{LoA}_i \times \mathbf{LoA}$ iff φ is a \mathbf{LoA} -isomorphism.

Lemma 27

• There exists an embedding LoA_i × LoA $\stackrel{E_L^i}{\longrightarrow}$ LoA-TopSys defined by

$$\begin{split} E^{i}_{L}((A,B) \xrightarrow{(\varphi,\psi)} (C,D)) &= \\ (\operatorname{Pt}_{A}(B), A, B, \models_{1}) \xrightarrow{((|\psi^{op}|, \varphi^{-1})^{\leftarrow}, \varphi, \psi)} (\operatorname{Pt}_{C}(D), C, D, \models_{2}) \\ where \operatorname{Pt}_{A}(B) &= \mathbf{A}(B, A) \text{ and } \models_{i}(p, e) = p(e). \\ \bullet \text{ In general } E^{i}_{L} \text{ is non-full.} \end{split}$$

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
				000000000	
Localic algebras ver	sus topological systems				

From localic algebras to systems again

Definition 26

Let $\mathbf{LoA}_i \times \mathbf{LoA}$ be the subcategory of $\mathbf{LoA} \times \mathbf{LoA}$ with the same objects and with (φ, ψ) in $\mathbf{LoA}_i \times \mathbf{LoA}$ iff φ is a \mathbf{LoA} -isomorphism.

Lemma 27

• There exists an embedding LoA_i × LoA $\stackrel{E_L^i}{\longrightarrow}$ LoA-TopSys defined by

$$\begin{split} E^{i}_{L}((A,B) \xrightarrow{(\varphi,\psi)} (C,D)) &= \\ (\operatorname{Pt}_{A}(B), A, B, \models_{1}) \xrightarrow{((|\psi^{op}|, \varphi^{-1})^{\leftarrow}, \varphi, \psi)} (\operatorname{Pt}_{C}(D), C, D, \models_{2}) \\ where \operatorname{Pt}_{A}(B) &= \mathbf{A}(B, A) \text{ and } \models_{i}(p, e) = p(e). \\ \bullet \text{ In general } E^{i}_{L} \text{ is non-full.} \end{split}$$

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification	Problems 000
Modified approach					

Definition 28

- Given a subcategory **C** of **A**, the category **C**-**TopSys** comprises the following data:
 - Objects: C-topological systems or C-systems (X, A, B, ⊨), where (X, A, B) is a Set × C × C^{op}-object and X × B ⊨ A is a map (satisfaction relation) such that for every x ∈ X, B ⊨(x,-) A is a homomorphism.
 - Morphisms: C-continuous maps

 $(X, A, B, \models_1) \xrightarrow{f = (\operatorname{pt} f, \Sigma f, (\Omega f)^{\circ p})} (Y, C, D, \models_2),$ where f is a **Set**×**C**×**C**^{op}-morphism and for every $x \in X, d \in D$, $\models_2(\operatorname{pt} f(x), d) = \Sigma f(\models_1(x, \Omega f(d))).$

• |-| is the forgetful functor to the category $\mathbf{Set} \times \mathbf{C} \times \mathbf{C}^{op}$.

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification	Problems 000
Modified approach					

Definition 28

- Given a subcategory **C** of **A**, the category **C**-**TopSys** comprises the following data:
 - Objects: C-topological systems or C-systems (X, A, B, \models) ,

where (X, A, B) is a **Set** \times **C** \times **C**^{op}-object and $X \times B \xrightarrow{\models} A$ is a map (satisfaction relation) such that for every $x \in X$,

$$B \xrightarrow{\models(x,-)} A \text{ is a homomorphism.}$$

• Morphisms: C-continuous maps

$$(X, A, B, \models_1) \xrightarrow{T = (p(T, ZT, (\Omega T)^+))} (Y, C, D, \models_2),$$

where f is a **Set**×**C**×**C**^{op}-morphism and for every $x \in X, d \in D$
 $\models_2(pt f(x), d) = \Sigma f(\models_1(x, \Omega f(d))).$

• |-| is the forgetful functor to the category $\mathbf{Set} \times \mathbf{C} \times \mathbf{C}^{op}$.

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification	Problems 000
Modified approach					

Definition 28

- Given a subcategory **C** of **A**, the category **C**-**TopSys** comprises the following data:
 - Objects: C-topological systems or C-systems (X, A, B, \models) ,

where (X, A, B) is a **Set** \times **C** \times **C**^{op}-object and $X \times B \xrightarrow{\models} A$ is a map (satisfaction relation) such that for every $x \in X$,

 $B \xrightarrow{\models(x,-)} A$ is a homomorphism.

• Morphisms: C-continuous maps

$$(X, A, B, \models_1) \xrightarrow{f = (\operatorname{pt} f, \Sigma f, (\Omega f)^{op})} (Y, C, D, \models_2),$$

where f is a **Set**×**C**×**C**^{op}-morphism and for every $x \in X, d \in D$,

$$\models_2(\operatorname{pt} f(x), d) = \Sigma f(\models_1(x, \Omega f(d))).$$

• |-| is the forgetful functor to the category **Set** \times **C** \times **C**^{op}.

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification	Problems 000
Modified approach					

Definition 28

- Given a subcategory **C** of **A**, the category **C**-**TopSys** comprises the following data:
 - Objects: C-topological systems or C-systems (X, A, B, \models) ,

where (X, A, B) is a **Set** \times **C** \times **C**^{op}-object and $X \times B \xrightarrow{\models} A$ is a map (satisfaction relation) such that for every $x \in X$,

 $B \xrightarrow{\models(x,-)} A$ is a homomorphism.

• Morphisms: C-continuous maps

$$(X, A, B, \models_1) \xrightarrow{f=(\operatorname{pt} f, \Sigma f, (\Omega f)^{op})} (Y, C, D, \models_2),$$

where f is a **Set**×**C**×**C**^{op}-morphism and for every $x \in X$, $d \in D$, $\models_2(\text{pt } f(x), d) = \Sigma f(\models_1(x, \Omega f(d))).$

• |-| is the forgetful functor to the category $\mathbf{Set} \times \mathbf{C} \times \mathbf{C}^{op}$.

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification	Problems 000
Modified approad	ch				
Some re	emarks				

- Given a subcategory C of A, the categories C^{op}-TopSys and C-TopSys have (eventually) the same objects.
- For a C-object Q, Q-TopSys is (eventually) a subcategory of both C^{op}-TopSys and C-TopSys.
- Let D be the subcategory of C with the same objects and with φ in C iff φ is an isomorphism. Then the categories D^{op}-TopSys and D-TopSys are isomorphic.

The following considers the category A-TopSys.
Call A-systems by systems and A-continuity by continuity.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification	Problems 000
Modified approa	ch				
Some re	emarks				

- Given a subcategory C of A, the categories C^{op}-TopSys and C-TopSys have (eventually) the same objects.
- For a C-object Q, Q-TopSys is (eventually) a subcategory of both C^{op}-TopSys and C-TopSys.
- Let D be the subcategory of C with the same objects and with φ in C iff φ is an isomorphism. Then the categories D^{op}-TopSys and D-TopSys are isomorphic.

The following considers the category A-TopSys.
Call A-systems by systems and A-continuity by continuity.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries	Topological systems	Spatialization 000	Localification	Problems 000
Modified approact	ı				
Some re	marks				

- Given a subcategory C of A, the categories C^{op}-TopSys and C-TopSys have (eventually) the same objects.
- For a C-object Q, Q-TopSys is (eventually) a subcategory of both C^{op}-TopSys and C-TopSys.
- Let D be the subcategory of C with the same objects and with φ in C iff φ is an isomorphism. Then the categories D^{op}-TopSys and D-TopSys are isomorphic.

The following considers the category A-TopSys.
 Call A-systems by systems and A-continuity by continuity.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification	Problems 000
Modified approac	h				
Some re	emarks				

- Given a subcategory C of A, the categories C^{op}-TopSys and C-TopSys have (eventually) the same objects.
- For a C-object Q, Q-TopSys is (eventually) a subcategory of both C^{op}-TopSys and C-TopSys.
- Let D be the subcategory of C with the same objects and with φ in C iff φ is an isomorphism. Then the categories D^{op}-TopSys and D-TopSys are isomorphic.

• The following considers the category **A-TopSys**.

• Call A-systems by systems and A-continuity by continuity.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification	Problems 000
Modified approac	h				
Some re	emarks				

- Given a subcategory C of A, the categories C^{op}-TopSys and C-TopSys have (eventually) the same objects.
- For a C-object Q, Q-TopSys is (eventually) a subcategory of both C^{op}-TopSys and C-TopSys.
- Let D be the subcategory of C with the same objects and with φ in C iff φ is an isomorphism. Then the categories D^{op}-TopSys and D-TopSys are isomorphic.
- The following considers the category **A-TopSys**.
- Call A-systems by systems and A-continuity by continuity.

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification	Problems 000
Modified approach					

From algebras to systems

Lemma 29

There exists a full embedding
$$\mathbf{A} \times \mathbf{LoA} \xrightarrow{E_L} \mathbf{A}$$
-TopSys with
 $E_L((A, B) \xrightarrow{(\varphi, \psi)} (C, D)) =$
 $(\operatorname{Pt}_A(B), A, B, \models_1) \xrightarrow{((|\psi^{op}|, \varphi^{op})^-, \varphi, \psi)} (\operatorname{Pt}_C(D), C, D, \models_2)$
where $\operatorname{Pt}_A(B) = \mathbf{A}(B, A)$ and $\models_i(p, e) = p(e)$.

Proof.

As an example show that $E_L(\varphi, \psi)$ is in **A-TopSys**:

$$\models_2(((|\psi^{op}|,\varphi^{op})^{\leftarrow})(p),d) = \models_2(\varphi \circ p \circ |\psi^{op}|,d) = \varphi \circ p \circ |\psi^{op}|(d) = \varphi(\models_1(p,\psi^{op}(d))).$$

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification	Problems 000
Modified approach	I				

From algebras to systems

Lemma 29

There exists a full embedding
$$\mathbf{A} \times \mathbf{LoA} \xrightarrow{E_L} \mathbf{A}$$
-TopSys with
 $E_L((A, B) \xrightarrow{(\varphi, \psi)} (C, D)) =$
 $(\operatorname{Pt}_A(B), A, B, \models_1) \xrightarrow{((|\psi^{op}|, \varphi^{op})^-, \varphi, \psi)} (\operatorname{Pt}_C(D), C, D, \models_2)$
where $\operatorname{Pt}_A(B) = \mathbf{A}(B, A)$ and $\models_i(p, e) = p(e)$.

Proof.

As an example show that $E_L(\varphi, \psi)$ is in **A-TopSys**:

$$\models_2(((|\psi^{op}|,\varphi^{op})^{\leftarrow})(p),d) = \models_2(\varphi \circ p \circ |\psi^{op}|,d) = \varphi \circ p \circ |\psi^{op}|(d) = \varphi(\models_1(p,\psi^{op}(d))).$$

Localification of variable-basis topological systems

Motivation 00000	Preliminaries	Topological systems	Spatialization 000	Localification	Problems 000
Modified approach					

From systems to algebras: localification

Lemma 30

There exists a functor A-TopSys $\xrightarrow{\text{Loc}}$ A × LoA defined by $\text{Loc}((X, A, B, \models_1) \xrightarrow{f} (Y, C, D, \models_2)) =$ $(A, B) \xrightarrow{(\Sigma f, (\Omega f)^{op})} (C, D).$

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
				0000000000	
Modified approach					

E_L and Loc form an adjoint pair

Theorem 31

Loc is a left-adjoint-left-inverse of E_L .

Proof.

• Given a system (X, A, B, \models) , $(X, A, B, \models) \xrightarrow{(f, 1_A, 1_B)} E_L \operatorname{Loc}(X, A, B, \models)$ with $f(x) = \models (x, -)$ provides an E_L -universal map.

• Straightforward computations show that Loc $E_L = 1_{A \times LoA}$

Corollary 32

A×**LoA** is isomorphic to a full reflective subcategory of **A**-**TopSys** which (in general) is neither mono- nor epi-reflective.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
				0000000000	
Modified approach					

E_L and Loc form an adjoint pair

Theorem 31

Loc is a left-adjoint-left-inverse of E_L .

Proof.

• Given a system
$$(X, A, B, \models)$$
,
 $(X, A, B, \models) \xrightarrow{(f, 1_A, 1_B)} E_L \operatorname{Loc}(X, A, B, \models)$
with $f(x) = \models (x, -)$ provides an E_L -universal map.

• Straightforward computations show that Loc $E_L = 1_{A \times LoA}$.

Corollary 32

A×**LoA** is isomorphic to a full reflective subcategory of **A**-**TopSys** which (in general) is neither mono- nor epi-reflective.

Localification of variable-basis topological systems

Sergejs Solovjovs
Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
				0000000000	
Modified approach					

E_L and Loc form an adjoint pair

Theorem 31

Loc is a left-adjoint-left-inverse of E_L .

Proof.

• Given a system
$$(X, A, B, \models)$$
,
 $(X, A, B, \models) \xrightarrow{(f, 1_A, 1_B)} E_L \operatorname{Loc}(X, A, B, \models)$
with $f(x) = \models (x, -)$ provides an E_L -universal map.

• Straightforward computations show that Loc $E_L = 1_{\mathbf{A} \times \mathbf{LoA}}$.

Corollary 32

A×**LoA** is isomorphic to a full reflective subcategory of **A**-**TopSys** which (in general) is neither mono- nor epi-reflective.

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
				0000000000	
Modified approach					

E_L and Loc form an adjoint pair

Theorem 31

Loc is a left-adjoint-left-inverse of E_L .

Proof.

- Given a system (X, A, B, \models) , $(X, A, B, \models) \xrightarrow{(f, 1_A, 1_B)} E_L \operatorname{Loc}(X, A, B, \models)$ with $f(x) = \models (x, -)$ provides an E_L -universal map.
- Straightforward computations show that Loc $E_L = 1_{\mathbf{A} \times \mathbf{LoA}}$.

Corollary 32

 $A \times LoA$ is isomorphic to a full reflective subcategory of A-TopSys which (in general) is neither mono- nor epi-reflective.

Localification of variable-basis topological systems

Sergejs Solovjovs

Modified approach									
Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification	Problems 000				

From spaces to systems

Definition 33

Let **LoA-Top**_{*i*} be the subcategory of **LoA-Top** with the same objects and with (f, φ) in **LoA-Top**_{*i*} iff φ is a localic isomorphism.

_emma 34

There exists an embedding LoA-Top_i $\xrightarrow{E_T^i}$ A-TopSys with

$$E_T^i((X,A,\tau) \xrightarrow{(f,\varphi)} (Y,B,\sigma)) =$$
$$(X,A,\tau,\models_1) \xrightarrow{(f,(\varphi^{op})^{-1},((f,\varphi)^{-})^{op})} (Y,B,\sigma,\models_2)$$

where $\models_j(z, p) = p(z)$. In general E_T^i is non-full.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems 00000	Spatialization 000	Localification	Problems 000
Modified approa	ich				
From s	paces to sy	/stems			

Definition 33

Let **LoA-Top**_{*i*} be the subcategory of **LoA-Top** with the same objects and with (f, φ) in **LoA-Top**_{*i*} iff φ is a localic isomorphism.

Lemma 34

There exists an embedding LoA-Top_i $\stackrel{E_T^i}{\longrightarrow}$ A-TopSys with

$$E_{T}^{i}((X, A, \tau) \xrightarrow{(f,\varphi)} (Y, B, \sigma)) =$$
$$(X, A, \tau, \models_{1}) \xrightarrow{(f,(\varphi^{op})^{-1}, ((f,\varphi)^{\leftarrow})^{op})} (Y, B, \sigma, \models_{2})$$

where $\models_j(z, p) = p(z)$. In general E_T^i is non-full.

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification 0000000000	Problems ●00
Problem 1					

Spatialization & Localification

Basic functorial relationships

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification 0000000000	Problems ○●○
Problem 1					

A-TopSys versus LoA-TopSys and LoA-Top

Problem 35

How are the categories A-TopSys and LoA-TopSys related?

Problem 36

Are there any non-trivial functorial relationships between A-TopSys and LoA-Top?

Localification of variable-basis topological systems

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification 0000000000	Problems ○●○
Problem 1					

A-TopSys versus LoA-TopSys and LoA-Top

Problem 35

How are the categories A-TopSys and LoA-TopSys related?

Problem 36

Are there any non-trivial functorial relationships between **A-TopSys** and **LoA-Top**?

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
					000
Problem 2					

Algebraic properties of A-TopSys

Lemma 37

The concrete category (LoA-TopSys, |-|) has the following properties:

- | − | creates isomorphisms;
- | − | *is adjoint;*
- LoA-TopSys is (Epi, Mono-Source)-factorizable;

and therefore it is essentially algebraic.

Problem 38

 Is the concrete category (A-TopSys, | - |) essentially algebraic?

• What about algebraicity?

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification 0000000000	Problems ○○●
Problem 2					

Algebraic properties of A-TopSys

Lemma 37

The concrete category (LoA-TopSys, |-|) has the following properties:

- | − | creates isomorphisms;
- | − | *is adjoint;*
- LoA-TopSys is (Epi, Mono-Source)-factorizable;

and therefore it is essentially algebraic.

Problem 38

- Is the concrete category (A-TopSys, | |) essentially algebraic?
- What about algebraicity?

Localification of variable-basis topological systems

Sergejs Solovjovs

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization	Localification 0000000000	Problems ○○●
Problem 2					

Algebraic properties of A-TopSys

Lemma 37

The concrete category (LoA-TopSys, |-|) has the following properties:

- | − | creates isomorphisms;
- |-| is adjoint;
- LoA-TopSys is (Epi, Mono-Source)-factorizable;

and therefore it is essentially algebraic.

Problem 38

- Is the concrete category (A-TopSys, | |) essentially algebraic?
- What about algebraicity?

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000		0000000000	000

References: Category theory & Algebra

- J. Adámek, H. Herrlich, and G. E. Strecker, *Abstract and Concrete Categories: the Joy of Cats*, Repr. Theory Appl. Categ. **2006** (2006), no. 17, 1–507.
- M. Barr, *-Autonomous Categories, Springer-Verlag, 1979.
- P. M. Cohn, *Universal Algebra*, D. Reidel Publ. Comp., 1981.
- E. G. Manes, *Algebraic Theories*, Springer-Verlag, 1976.
- V. Pratt, *Chu spaces*, School on category theory and applications. Lecture notes of courses, Coimbra, Portugal, July 13 - 17, 1999. Coimbra: Univer. de Coimbra, Depart. de Matemática. Textos Mat., Sér. B. 21, 39-100 (1999).

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000	000	0000000000	000

References: Localic theory

- J. R. Isbell, *Atomless parts of spaces*, Math. Scand. **31** (1972), 5–32.
- P. T. Johnstone, *Stone Spaces*, Cambridge Univ. Press, 1986.
- D. Papert and S. Papert, Sur les treillis des ouverts et les paratopologies., Semin. de Topologie et de Geometrie differentielle Ch. Ehresmann 1 (1957/58), No.1, p. 1-9, 1959.
- S. Vickers, *Topology via Logic*, Cambridge Univ. Press, 1989.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000	000	0000000000	000
Referen	Ces: Fuzzy	/ sets			

- J. A. Goguen, *L-fuzzy sets*, J. Math. Anal. Appl. **18** (1967), 145–174.
- S. Solovjovs, On a Categorical Generalization of the Concept of Fuzzy Set: Basic Definitions, Properties, Examples, VDM Verlag Dr. Müller, 2008.
- L. A. Zadeh, *Fuzzy sets*, Inf. Control **8** (1965), 338–365.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000		000	0000000000	000
	_				

References: Fuzzy topology

- C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. 24 (1968), 182–190.
- J. T. Denniston and S. E. Rodabaugh, *Functorial relationships* between lattice-valued topology and topological systems, submitted to Quaest. Math.
- U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis Fuzzy Topology, Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (U. Höhle and S. E. Rodabaugh, eds.), Kluwer Acad. Publ., 1999, pp. 123–272.
 - R. Lowen, *Fuzzy topological spaces and fuzzy compactness*, J. Math. Anal. Appl. **56** (1976), 621–633.

Motivation 00000	Preliminaries 00000000	Topological systems	Spatialization 000	Localification	Problems 000
_					

References: Fuzzy topology

- S. E. Rodabaugh, Categorical Foundations of Variable-Basis Fuzzy Topology, Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (U. Höhle and S. E. Rodabaugh, eds.), Kluwer Acad. Publ., 1999, pp. 273–388.
- S. E. Rodabaugh, *Necessity of Non-Stratified, Anti-Stratified, and Normalized Spaces in Lattice-Valued Topology* submitted to Fuzzy Sets Syst.
- S. E. Rodabaugh, Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics, Int. J. Math. Math. Sci. 2007 (2007), Article ID 43645, 71 pages, doi:10.1155/2007/43645.

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems

References: Fuzzy topology

- S. Solovyov, Categorical frameworks for variable-basis sobriety and spatiality, submitted to Proc. of International Conference on Topological Algebras and their Applications (ICTAA) 2008.
- S. Solovyov, *Sobriety and spatiality in varieties of algebras*, Fuzzy Sets Syst. **159** (2008), no. 19, 2567–2585.
- S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, submitted to Soft Comput.

Localification of variable-basis topological systems

Motivation	Preliminaries	Topological systems	Spatialization	Localification	Problems
00000	00000000	00000	000	000000000	000

Thank you for your attention!

Localification of variable-basis topological systems

Sergejs Solovjovs