An Example of Commutative Basic Algebra which is not an MV-algebra

Michal Botur

Palacký University in Olomouc

5.9.2008

<ロ> < 団> < 団> < 三> < 三> < 三> 三 のへで

MV-algebras

5990

The concept of MV-algebra as an algebraic axiomatization of Łukasiewicz many-valued propositional logic was introduced by C.C.Chang.

Definition

An MV-algebra is an algebra $\mathbf{A} = (A, \oplus, \neg, 0)$ of type (2, 1, 0) satisfying the identities:

(M1)
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

(M2) $x \oplus y = y \oplus x$
(M3) $x \oplus 0 = x$
(M4) $\neg \neg x = x$
(M5) $x \oplus \neg 0 = \neg 0$
(M6) $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x$.

MV-algebras

As known, if $\mathbf{A} = (A, \oplus, \neg, 0)$ as MV-algebra then $(A, \lor, \land, 1, 0)$, where

$$x \lor y := \neg(\neg x \oplus y) \oplus y$$
$$x \land y := \neg(\neg x \lor \neg y)$$
$$1 := \neg 0$$

is a bounded distributive lattice. Induced order is given by:

$$x \leq y$$
 iff $\neg x \oplus y = 1$.

Moreover, the mapping $^{a}:[a,1] \rightarrow [a,1]$ defined by $x^{a} = \neg x \oplus a$ is an antitone involution on [a,1] (i.e. $x \leq y$ iff $y^{a} \leq x^{a}$ and $(x^{a})^{a} = x$).

Lattices with Section Antitine Involutions

Definition

A lattice with section antitone involutions is a system $\mathbf{L} = (L, \lor, \land, (^a)_{a \in L}, 0, 1)$ where $(L, \lor, \land, 0, 1)$ is a bounded lattice such that every principal order filter [a, 1] (called a section) possesses an antitone involution $x \mapsto x^a$.

Example

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Lattices with Section Antitine Involutions

Definition

A lattice with section antitone involutions is a system $\mathbf{L} = (L, \lor, \land, (^a)_{a \in L}, 0, 1)$ where $(L, \lor, \land, 0, 1)$ is a bounded lattice such that every principal order filter [a, 1] (called a section) possesses an antitone involution $x \mapsto x^a$.

Example

Lattice with Section Antitone Involutions

The family $({}^{a})_{a \in L}$ of section antitone involutions being partial unary operations on L can be equivalently replaced by a single binary operation \rightarrow defined by

$$x \to y := (x \lor y)^y.$$

This easy "trick" allows one to treate lattices with section antitone involutions as total algebras $(L, \lor, \land, \rightarrow, 0, 1)$ or even $(L, \rightarrow, 0, 1)$ that form a variety (see e.g. [CHK1] or [CE]). In [CHK1] MV-algebras were characterized as those lattices with section antitone involutions satysfying the so-called exchange identity (EI):

$$x \to (y \to z) = y \to (x \to z).$$
 (EI)

The Correspondence Theorem

Sac

Theorem

(i) Let $\mathbf{L} = (A, \lor, \land, (^{a})_{a \in A}, 0, 1)$ be a lattice with section antitone involutions. Then the assigned algebra $\mathcal{A}(\mathbf{L}) = (L, \oplus, \neg, 0)$, where

$$x\oplus y:=(x^0ee y)^y$$
 and $\neg x:=x^0$

satisfies the identites

(A1)
$$x \oplus 0 = x$$

(A2) $\neg \neg x = x$
(A3) $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x$
(A4) $\neg (\neg (\neg (x \oplus y) \oplus y) \oplus z) \oplus (x \oplus z) = 1.$

The Correspondence Theorem

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ <

(ii) Conversely, given an algebra $\mathbf{A} = (A, \oplus, \neg, 0)$ satisfying the identites (A1)-(A4), then for every $a \in A$, the mapping

$$x\mapsto x^a:=\neg x\oplus a$$

is an antitone involution on the section [a, 1], and the structure $\mathcal{L}(\mathbf{A}) = (A, \lor, \land, (^{a})_{a \in A}, 0, 1)$ is a lattice with section antitone involutions.

(iii) The corespondence is one-to-one, i.e. $\mathcal{L}(\mathcal{A}(L)) = L$ and $\mathcal{A}(\mathcal{L}(A)) = A$.

The Correspondence Theorem

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ <

(ii) Conversely, given an algebra $\mathbf{A} = (A, \oplus, \neg, 0)$ satisfying the identites (A1)-(A4), then for every $a \in A$, the mapping

$$x\mapsto x^a:=\neg x\oplus a$$

is an antitone involution on the section [a, 1], and the structure $\mathcal{L}(\mathbf{A}) = (A, \lor, \land, (^{a})_{a \in A}, 0, 1)$ is a lattice with section antitone involutions.

(iii) The corespondence is one-to-one, i.e. $\mathcal{L}(\mathcal{A}(L)) = L$ and $\mathcal{A}(\mathcal{L}(A)) = A$.

Basic Algebras

Algebras satisfying the identities (A1)-(A4) are called **basic** algebras. Hence, basic algebras form the variety of type $\langle 2, 1, 0 \rangle$. It has been proved [CHK1] that this variety is arithmetical.

We call a basic algebra $\mathbf{A} = (A, \oplus, \neg, 0)$ commutative if \oplus is commutative.

Example

a) Every finite chain is a commutative basic algebra.

b) Every MV-algebra is a commutative basic algebra.

Basic Algebras

Algebras satisfying the identities (A1)-(A4) are called **basic** algebras. Hence, basic algebras form the variety of type $\langle 2, 1, 0 \rangle$. It has been proved [CHK1] that this variety is arithmetical.

We call a basic algebra $\mathbf{A} = (A, \oplus, \neg, 0)$ commutative if \oplus is commutative.

Example

a) Every finite chain is a commutative basic algebra.

b) Every MV-algebra is a commutative basic algebra.

Basic Algebras

(ロ) (同) (三) (三) (三) (0) (0)

Algebras satisfying the identities (A1)-(A4) are called **basic** algebras. Hence, basic algebras form the variety of type $\langle 2, 1, 0 \rangle$. It has been proved [CHK1] that this variety is arithmetical.

We call a basic algebra $\mathbf{A} = (A, \oplus, \neg, 0)$ commutative if \oplus is commutative.

Example

a) Every finite chain is a commutative basic algebra.

b) Every MV-algebra is a commutative basic algebra.

Commutative basic algebras-theorems

Theorem

Lattices induced by commutative basic algebras are distributive.

Theorem

Finite commutative basic algebras are just finite MV-algebras.

Theorem

Subdirectly irreducible commutative basic algebras are chains.

<ロ> (四)、(四)、(三)、(三)

Commutative basic algebras-theorems

Theorem

Lattices induced by commutative basic algebras are distributive.

Theorem Finite commutative basic algebras are just finite MV-algebras.

Theorem

Subdirectly irreducible commutative basic algebras are chains.

Sac

Commutative basic algebras-theorems

Theorem

Lattices induced by commutative basic algebras are distributive.

Theorem

Finite commutative basic algebras are just finite MV-algebras.

Theorem

Subdirectly irreducible commutative basic algebras are chains.

Sac

Commutative basic algebras

Jac.

Given a basic algebra $\mathbf{A} = (\mathbf{A}, \oplus, \neg, \mathbf{0})$ we use the following derived operations:

$$a \odot b := \neg (\neg a \oplus \neg b)$$

 $a \to b := \neg a \oplus b$

Theorem

Commutative basic algebras are residuated structures, i.e. the **adjointness condition**

$$x \odot y \le z$$
 iff $x \le y \to z$

holds.

M.B. and R.Halaš presented a (**non-associative**) fuzzy logic such that commutative basic algebras are their equivalent algebraic semantics.

Commutative basic algebras

Sac

Given a basic algebra $\mathbf{A} = (\mathbf{A}, \oplus, \neg, \mathbf{0})$ we use the following derived operations:

$$a \odot b := \neg (\neg a \oplus \neg b)$$

 $a \to b := \neg a \oplus b$

Theorem

Commutative basic algebras are residuated structures, i.e. the **adjointness condition**

$$x \odot y \le z$$
 iff $x \le y \to z$

holds.

M.B. and R.Halaš presented a (**non-associative**) fuzzy logic such that commutative basic algebras are their equivalent algebraic semantics.

Commutative basic algebras

(ロ) (同) (三) (三) (三) (0) (0)

Given a basic algebra $\mathbf{A} = (\mathbf{A}, \oplus, \neg, \mathbf{0})$ we use the following derived operations:

$$a \odot b := \neg (\neg a \oplus \neg b)$$

 $a \to b := \neg a \oplus b$

Theorem

Commutative basic algebras are residuated structures, i.e. the **adjointness condition**

$$x \odot y \le z$$
 iff $x \le y \to z$

holds.

M.B. and R.Halaš presented a (**non-associative**) fuzzy logic such that commutative basic algebras are their equivalent algebraic semantics.

Are commutative basic algebras an MV-algebras?

- Are all commutative basic algebras an MV-algebras?
- Are complete commutative basic algebras an MV-algebras?

In [BoHa1] we have proved:

If there is a complete commutative basic algebra which is not an MV-algebra then there is a commutative basic algebra (which is not an MV-algebra) on the interval of reals.

In the following we present a commutative basic algebra on the interval of reals which is not an MV-algebra.

Are commutative basic algebras an MV-algebras?

- Are all commutative basic algebras an MV-algebras?
- Are complete commutative basic algebras an MV-algebras?

In [BoHa1] we have proved:

If there is a complete commutative basic algebra which is not an MV-algebra then there is a commutative basic algebra (which is not an MV-algebra) on the interval of reals.

In the following we present a commutative basic algebra on the interval of reals which is not an MV-algebra.

(ロ) (同) (三) (三) (三) (0) (0)

Important properties of commutative basic algebras.

Claim A basic algebra is commutative if and only if satisfies the contraposition law $(x \rightarrow y = \neg y \rightarrow \neg x)$.

Remark We can describe the operation " \rightarrow " as follows:

$$x \to y = \begin{cases} x^y & \text{if} & y \le x\\ 1 & \text{otherwise.} \end{cases}$$

in any linearly ordered commutative basic algebra.

Theorem (Fixpoint theorem)

If $\mathbf{A} = (A, \oplus, \neg, 0)$ is a complete commutative basic algebra and $x \in A$ then there is a unique $x^* \in [x, 1]$ such that $x^* = x^* \to x$.

Important properties of commutative basic algebras.

Claim A basic algebra is commutative if and only if satisfies the contraposition law $(x \rightarrow y = \neg y \rightarrow \neg x)$.

Remark We can describe the operation " \rightarrow " as follows:

$$x \to y = \begin{cases} x^y & \text{if } y \le x \\ 1 & \text{otherwise.} \end{cases}$$

in any linearly ordered commutative basic algebra.

Theorem (Fixpoint theorem)

If $\mathbf{A} = (A, \oplus, \neg, 0)$ is a complete commutative basic algebra and $x \in A$ then there is a unique $x^* \in [x, 1]$ such that $x^* = x^* \to x$.

< ロ > < 個 > < 三 > < 三 > < 三 > < つ > < つ >

Important properties of commutative basic algebras.

Claim A basic algebra is commutative if and only if satisfies the contraposition law $(x \rightarrow y = \neg y \rightarrow \neg x)$.

Remark We can describe the operation " \rightarrow " as follows:

$$x \to y = \begin{cases} x^y & \text{if } y \le x \\ 1 & \text{otherwise.} \end{cases}$$

in any linearly ordered commutative basic algebra.

Theorem (Fixpoint theorem)

If $\mathbf{A} = (A, \oplus, \neg, 0)$ is a complete commutative basic algebra and $x \in A$ then there is a unique $x^* \in [x, 1]$ such that $x^* = x^* \to x$.

Theorem

Any commutative basic algebra $\mathbf{A} = ([0, a], \oplus, \neg, 0)$ is isomorphic to a commutative basic algebra $\mathbf{A}' = ([0, a], \oplus', \neg', 0)$ such that $\neg' x = a - x$ for any $x \in [0, a]$.

Sketch of proof. Let $\alpha_* : [0_*, a] \longrightarrow [a/2, a]$ be any order isomorphism. Define the mapping

$$\alpha(x) := \begin{cases} \alpha_*(x) & \text{if} \quad x \in [0_*, a] \\ 12 - \alpha_*(\neg x) & \text{otherwise.} \end{cases}$$

Putting

$$x \to ' y := \alpha(\alpha^{-1}(x) \to \alpha^{-1}(y)),$$

(口) (用) (三) (三) (三) (0)

one can easily prove that for $x \oplus' y := \neg x \to' y$, $\mathbf{A}' = ([0, a], \oplus', \neg', 0)$ is a commutative basic algebra for which $\mathbf{A}' \cong \mathbf{A}$, the isomorphism of which is given by α . We construct a commutative basic algebra on the interval [0, 12] of reals. Without lost of generality, we may suppose that the operation \neg is defined by $\neg x := 12 - x$.

Lemma

Let $\mathbf{A} = ([0, 12], \oplus, \neg, 0)$ be a commutative basic algebra. Then the function $f : [0, 12]^2 \longrightarrow [0, 12]$, where $f(x, y) := x \rightarrow y$ is continuous (in a usual sense) and for all $y \in [0, 12]$ and all $x, x_1, x_2 \in [y, 12]$ we have (i) $f(x, y) = f(\neg y, \neg x)$ (ii) if $x \ge y$ then f(f(x, y), y) = x(iii) if $x_1 \le x_2$ then $f(x_1, y) \ge f(x_2, y)$.

(口) (用) (三) (三) (三) (0)

As well-known, the implication \rightarrow_{MV} on [0, 12] considered as an MV-algebra is given by stipulation $x \rightarrow_{MV} y := 12 - x + y$. Consider another function f(x, y) of the form:

$$f(x, y) := 12 - x + y + d(x, y),$$

where d(x, y) measures the "difference" of f(x, y) and " $x \rightarrow_{MV} y$ ". The idea of constructing a commutative basic algebra which is not MV-algebra is based on finding the non-zero function d(x, y). Hence, given f(x, y) as before, we derive the properties of d(x, y).

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ <

Lemma

For all $x, y \in [0, 12]$ with $x \ge y$ we have $d(x, y) = d(\neg y, \neg x) = d(f(x, y), y)$.

Now, consider the following sets:

$$g = \{ \langle x_*, x \rangle | x \in [0, 12] \}, h = \{ \langle 12 - x, 12 - x_* \rangle | x \in [0, 12] \},$$
$$k = \{ \langle x, \neg x \rangle | x \in [6, 12] \}.$$

The continuity of f yields that all g, h, k are the continuous curves. Moreover, they divide the area $\{\langle x, y \rangle \in [0, 12]^2 | x \ge y\}$ into six parts.

イロト イポト イヨト イヨト

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Lemma

For all $x, y \in [0, 12]$ with $x \ge y$ we have $d(x, y) = d(\neg y, \neg x) = d(f(x, y), y).$

Now, consider the following sets:

$$g = \{ \langle x_*, x \rangle | x \in [0, 12] \}, h = \{ \langle 12 - x, 12 - x_* \rangle | x \in [0, 12] \},\$$
$$k = \{ \langle x, \neg x \rangle | x \in [6, 12] \}.$$

The continuity of f yields that all g, h, k are the continuous curves. Moreover, they divide the area $\{\langle x, y \rangle \in [0, 12]^2 | x \ge y\}$ into six parts.

(口) (用) (三) (三) (三) (0)

< ロ > < 回 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following table describes the membership of points into the above areas.

$\langle x, y \rangle$	$\langle \neg y, \neg x \rangle$	$\langle f(x,y),y\rangle$
Ι.	II.	IV.
11.	I.	III.
111.	VI.	II.
IV.	V.	I.
V.	IV.	VI.
VI.	III.	V.

< ロ > < 回 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now we present a commutative basic algebra $\mathbf{A} = ([0, 12], \oplus, \neg, 0)$ by constructing the function f(x, y). Let the curves g, h, k be defined as follows:

- g is an abscissa from [6,0] to [12,12]
- *h* is an abscissa from [0,0] to [6,12]
- k is an abscissa from [6,6] to [12,0].

Thus, the curves g, h, k coincide on the standard MV-algebra on [0, 12]. On the the area I. (see Figure 2.1.) we define the function d(x, y) as a "pyramid" and with vertex in [6, 4] with height 1.8. So, the area I. is splitting into the three subareas M, N, O.

$$d(x,y) := \begin{cases} 0.9x - 0.9y & \text{if} & x \in M \\ 1.8y - 0.9x & \text{if} & x \in N \\ 10.8 - 0.9x - 0.9y & \text{if} & x \in O. \end{cases}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ <

▶ < ≣ > ≣ • এ< ি

< 🗆 🕨

P

	М	N	0
Ι.	[0;0],[6;6],[6;4]	[0;0],[6;4],[8;4]	[6;4],[8;4],[6;6]
II.	[6;6],[8;6],[12;12]	[8;4],[8;6],[12;12]	[8;4],[8;6],[6;6]
.	[12;6],[12;12],[11.8;6]	[8;4],[12;12],[11.8;6]	[8;4],[12;6],[11.8;6]
IV.	[12;0],[11.8;4],[12;6]	[12;0],[8;4],[11.8;4]	[8;4],[12;6],[11.8;4]
V.	[6;0],[12;0],[8;0.2]	[12;0],[8;4],[8;0.2]	[6;0],[8;4],[8;0.2]
VI.	[0;0],[6;0],[6;0.2]	[0;0],[8;4],[6;0.2]	[6;0],[8;4],[6;0.2]

f(x,y)	М	Ν	0
I.	12 - 0.1x + 0.1y	12 - 1.9x + 2.8y	22.8 - 1.9x + 0.1y
II.	12 - 0.1x + 0.1y	22.8 - 2.8x + 1.9y	1.2 - 0.1x + 1.9y
111.	120 - 10x + y	$\frac{12\cdot1.9}{2.8} - \frac{1}{2.8}x + \frac{1.9}{2.8}y$	12 - 10x + 19y
IV.	120 - 10x + y	$\frac{12}{1.9} - \frac{1}{1.9}x + \frac{2.8}{1.9}y$	$12 - \frac{1}{1.9}x + \frac{1}{19}y$
V.	12 - x + 10y	$\frac{12 \cdot 2.8}{1.9} - \frac{2.8}{1.9}x + \frac{1}{1.9}y$	$\frac{12}{1.9} - \frac{1}{19}x + \frac{1}{1.9}y$
VI.	12 - x + 10y	$12 - \frac{1.9}{2.8}x + \frac{1}{2.8}y$	120 - 19x + 10y

• • •

🗗 🕨 🔺 🚍

 $\mathcal{O} \land \mathcal{O}$

∍

Since f(x, y) is piecewise linear, so these are also f(f(x, y), y) and $f(\neg y, \neg x)$. It can be checked that f(f(x, y), y) = x and $f(\neg y, \neg x) = f(x, y)$ on all of the boudaries of areas I.-VI., hence f(x, y) fulfils these identities everywhere. Thus, if we denote

$$x \oplus y = \neg x \to y = f(\neg x, y)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ <

then $\mathbf{A} = ([0, 12], \oplus, \neg, 0)$ is a commutative basic algebra.

Finally, one can compute that $10 \rightarrow (8 \rightarrow 4) = 10 \rightarrow 8 = 10$ whereas $8 \rightarrow (10 \rightarrow 4) \doteq 8 \rightarrow 6.95 \doteq 11.89$. Thus in **A** the exchange identity does not hold and **A** is not an MV-algebra.

(ロ) (同) (三) (三) (三) (0) (0)

References

- M. Botur, R. Halaš: Complete commutative basic algebras, Order,
- M. Botur, R. Halaš: Finite commutative basic algebras are MV-algebras, Multiple Valued Logic and Soft Comp., to appear.
- M.Botur: An example of commutative basic algebra which is naot an MV-algebra, Mathematica Slovaca, submitted
- I. Chajda : Lattices and semilattices having an antitone involution in every upper interval, Comment. Math. Gen. Algebra Appl.. 24, 31-42(2004)
- I. Chajda, R.Halaš, J.Kühr : Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71, 19-33(2005)