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MV-algebras

The concept of MV-algebra as an algebraic axiomatization of
 Lukasiewicz many-valued propositional logic was introduced by
C.C.Chang.

Definition
An MV-algebra is an algebra A = (A,⊕,¬, 0) of type (2, 1, 0)
satisfying the identities:

(M1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

(M2) x ⊕ y = y ⊕ x

(M3) x ⊕ 0 = x

(M4) ¬¬x = x

(M5) x ⊕ ¬0 = ¬0

(M6) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x .



MV-algebras

As known, if A = (A,⊕,¬, 0) as MV-algebra then (A,∨,∧, 1, 0),
where

x ∨ y := ¬(¬x ⊕ y) ⊕ y

x ∧ y := ¬(¬x ∨ ¬y)

1 := ¬0

is a bounded distributive lattice. Induced order is given by:

x ≤ y iff ¬x ⊕ y = 1.

Moreover, the mapping a : [a, 1] → [a, 1] defined by xa = ¬x ⊕ a is
an antitone involution on [a, 1] (i.e. x ≤ y iff ya ≤ xa and
(xa)a = x).



Lattices with Section Antitine Involutions

Definition
A lattice with section antitone involutions is a system
L = (L,∨,∧, (a)a∈L, 0, 1) where (L,∨,∧, 0, 1) is a bounded lattice
such that every principal order filter [a, 1] (called a section)
possesses an antitone involution x 7→ xa.
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Lattice with Section Antitone Involutions

The family (a)a∈L of section antitone involutions being partial
unary operations on L can be equivalently replaced by a single
binary operation → defined by

x → y := (x ∨ y)y .

This easy ”trick” allows one to treate lattices with section antitone
involutions as total algebras (L,∨,∧,→, 0, 1) or even (L,→, 0, 1)
that form a variety (see e.g. [CHK1] or [CE]).
In [CHK1] MV-algebras were characterized as those lattices with
section antitone involutions satysfying the so-called exchange
identity (EI):

x → (y → z) = y → (x → z). (EI )



The Correspondence Theorem

Theorem
(i) Let L = (A,∨,∧, (a)a∈A, 0, 1) be a lattice with section antitone

involutions. Then the assigned algebra A(L) = (L,⊕,¬, 0), where

x ⊕ y := (x0 ∨ y)y and ¬x := x0

satisfies the identites

(A1) x ⊕ 0 = x

(A2) ¬¬x = x

(A3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x

(A4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1.



The Correspondence Theorem

(ii) Conversely, given an algebra A = (A,⊕,¬, 0) satisfying the
identites (A1)-(A4), then for every a ∈ A, the mapping

x 7→ xa := ¬x ⊕ a

is an antitone involution on the section [a, 1], and the structure
L(A) = (A,∨,∧, (a)a∈A, 0, 1) is a lattice with section antitone
involutions.

(iii) The corespondence is one-to-one, i.e. L(A(L)) = L and
A(L(A)) = A.



The Correspondence Theorem

(ii) Conversely, given an algebra A = (A,⊕,¬, 0) satisfying the
identites (A1)-(A4), then for every a ∈ A, the mapping

x 7→ xa := ¬x ⊕ a

is an antitone involution on the section [a, 1], and the structure
L(A) = (A,∨,∧, (a)a∈A, 0, 1) is a lattice with section antitone
involutions.

(iii) The corespondence is one-to-one, i.e. L(A(L)) = L and
A(L(A)) = A.



Basic Algebras

Algebras satisfying the identities (A1)-(A4) are called basic
algebras. Hence, basic algebras form the variety of type 〈2, 1, 0〉.
It has been proved [CHK1] that this variety is arithmetical.

We call a basic algebra A = (A,⊕,¬, 0) commutative if ⊕ is
commutative.

Example

a) Every finite chain is a commutative basic algebra.
b) Every MV-algebra is a commutative basic algebra.
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Commutative basic algebras-theorems

Theorem
Lattices induced by commutative basic algebras are distributive.

Theorem
Finite commutative basic algebras are just finite MV-algebras.

Theorem
Subdirectly irreducible commutative basic algebras are chains.
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Commutative basic algebras

Given a basic algebra A = (A,⊕,¬,0) we use the following derived
operations:

a ⊙ b := ¬(¬a ⊕ ¬b)

a → b := ¬a ⊕ b

Theorem
Commutative basic algebras are residuated structures, i.e. the

adjointness condition

x ⊙ y ≤ z iff x ≤ y → z

holds.

M.B. and R.Halaš presented a (non-associative) fuzzy logic such
that commutative basic algebras are their equivalent algebraic
semantics.



Commutative basic algebras

Given a basic algebra A = (A,⊕,¬,0) we use the following derived
operations:

a ⊙ b := ¬(¬a ⊕ ¬b)

a → b := ¬a ⊕ b

Theorem
Commutative basic algebras are residuated structures, i.e. the

adjointness condition

x ⊙ y ≤ z iff x ≤ y → z

holds.
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Are commutative basic algebras an

MV-algebras?

• Are all commutative basic algebras an MV-algebras?

• Are complete commutative basic algebras an MV-algebras?

In [BoHa1] we have proved:
If there is a complete commutative basic algebra which is not an
MV-algebra then there is a commutative basic algebra (which is
not an MV-algebra) on the interval of reals.
In the following we present a commutative basic algebra on the
interval of reals which is not an MV-algebra.
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Important properties of commutative basic

algebras.

Claim A basic algebra is commutative if and only if satisfies the
contraposition law (x → y = ¬y → ¬x).

Remark We can describe the operation “ →” as follows:

x → y =

{

xy if y ≤ x

1 otherwise.

in any linearly ordered commutative basic algebra.

Theorem (Fixpoint theorem)

If A = (A,⊕,¬, 0) is a complete commutative basic algebra and

x ∈ A then there is a unique x∗ ∈ [x , 1] such that x∗ = x∗ → x.
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Theorem
Any commutative basic algebra A = ([0, a],⊕,¬, 0) is isomorphic

to a commutative basic algebra A′ = ([0, a],⊕′,¬′, 0) such that

¬′x = a − x for any x ∈ [0, a].

Sketch of proof. Let α∗ : [0∗, a] −→ [a/2, a] be any order
isomorphism. Define the mapping

α(x) :=

{

α∗(x) if x ∈ [0∗, a]
12 − α∗(¬x) otherwise.

Putting
x →′ y := α(α−1(x) → α−1(y)),

one can easily prove that for x ⊕′ y := ¬x →′ y ,
A′ = ([0, a],⊕′,¬′, 0) is a commutative basic algebra for which
A′ ∼= A, the isomorphism of which is given by α.



We construct a commutative basic algebra on the interval [0, 12] of
reals. Without lost of generality, we may suppose that the
operation ¬ is defined by ¬x := 12 − x .

Lemma
Let A = ([0, 12],⊕,¬, 0) be a commutative basic algebra. Then

the function f : [0, 12]2 −→ [0, 12], where f (x , y) := x → y is

continuous (in a usual sense) and for all y ∈ [0, 12] and all

x , x1, x2 ∈ [y , 12] we have

(i) f (x , y) = f (¬y ,¬x)

(ii) if x ≥ y then f (f (x , y), y) = x

(iii) if x1 ≤ x2 then f (x1, y) ≥ f (x2, y).



As well-known, the implication →MV on [0, 12] considered as an
MV-algebra is given by stipulation x →MV y := 12 − x + y .
Consider another function f (x , y) of the form:

f (x , y) := 12 − x + y + d(x , y),

where d(x , y) measures the ”difference” of f (x , y) and
”x →MV y”. The idea of constructing a commutative basic
algebra which is not MV-algebra is based on finding the non-zero
function d(x , y). Hence, given f (x , y) as before, we derive the
properties of d(x , y).



Lemma
For all x , y ∈ [0, 12] with x ≥ y we have

d(x , y) = d(¬y ,¬x) = d(f (x , y), y).

Now, consider the following sets:

g = {〈x∗, x〉| x ∈ [0, 12]}, h = {〈12 − x , 12 − x∗〉|x ∈ [0, 12]},

k = {〈x ,¬x〉|x ∈ [6, 12]}.

The continuity of f yields that all g , h, k are the continuous
curves. Moreover, they divide the area {〈x , y〉 ∈ [0, 12]2|x ≥ y}
into six parts.
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The following table describes the membership of points into the
above areas.

〈x , y〉 〈¬y ,¬x〉 〈f (x , y), y〉

I. II. IV.

II. I. III.

III. VI. II.

IV. V. I.

V. IV. VI.

VI. III. V.





Now we present a commutative basic algebra A = ([0, 12],⊕,¬, 0)
by constructing the function f (x , y). Let the curves g , h, k be
defined as follows:

• g is an abscissa from [6, 0] to [12, 12]

• h is an abscissa from [0, 0] to [6, 12]

• k is an abscissa from [6, 6] to [12, 0].

Thus, the curves g , h, k coincide on the standard MV-algebra on
[0, 12]. On the the area I. (see Figure 2.1.) we define the function
d(x , y) as a ”pyramid” and with vertex in [6, 4] with height 1.8.
So, the area I. is splitting into the three subareas M, N, O.

d(x , y) :=







0.9x − 0.9y if x ∈ M

1.8y − 0.9x if x ∈ N

10.8 − 0.9x − 0.9y if x ∈ O.





M N O

I. [0;0],[6;6],[6;4] [0;0],[6;4],[8;4] [6;4],[8;4],[6;6]

II. [6;6],[8;6],[12;12] [8;4],[8;6],[12;12] [8;4],[8;6],[6;6]

III. [12;6],[12;12],[11.8;6] [8;4],[12;12],[11.8;6] [8;4],[12;6],[11.8;6]

IV. [12;0],[11.8;4],[12;6] [12;0],[8;4],[11.8;4] [8;4],[12;6],[11.8;4]

V. [6;0],[12;0],[8;0.2] [12;0],[8;4],[8;0.2] [6;0],[8;4],[8;0.2]

VI. [0;0],[6;0],[6;0.2] [0;0],[8;4],[6;0.2] [6;0],[8;4],[6;0.2]



f (x , y) M N O

I. 12 − 0.1x + 0.1y 12 − 1.9x + 2.8y 22.8 − 1.9x + 0.1y

II. 12 − 0.1x + 0.1y 22.8 − 2.8x + 1.9y 1.2 − 0.1x + 1.9y

III. 120 − 10x + y 12·1.9
2.8

− 1
2.8

x + 1.9
2.8

y 12 − 10x + 19y

IV. 120 − 10x + y 12
1.9

− 1
1.9

x + 2.8
1.9

y 12 − 1
1.9

x + 1
19

y

V. 12 − x + 10y 12·2.8
1.9

− 2.8
1.9

x + 1
1.9

y 12
1.9

− 1
19

x + 1
1.9

y

VI. 12 − x + 10y 12 − 1.9
2.8

x + 1
2.8

y 120 − 19x + 10y





Since f (x , y) is piecewise linear, so these are also f (f (x , y), y) and
f (¬y ,¬x). It can be checked that f (f (x , y), y) = x and
f (¬y ,¬x) = f (x , y) on all of the boudaries of areas I.-VI., hence
f (x , y) fulfils these identities everywhere. Thus, if we denote

x ⊕ y = ¬x → y = f (¬x , y)

then A = ([0, 12],⊕,¬, 0) is a commutative basic algebra.



Finally, one can compute that 10 → (8 → 4) = 10 → 8 = 10
whereas 8 → (10 → 4)

.
= 8 → 6.95

.
= 11.89. Thus in A the

exchange identity does not hold and A is not an MV-algebra.
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