An Example of Commutative Basic Algebra which is not an MV－algebra

Michal Botur

Palacký University in Olomouc

5．9．2008

ロ 可 三 ミ ミ 引のく

MV-algebras

The concept of MV-algebra as an algebraic axiomatization of Łukasiewicz many-valued propositional logic was introduced by C.C.Chang.

Definition
An MV-algebra is an algebra $\mathbf{A}=(A, \oplus, \neg, 0)$ of type $(2,1,0)$ satisfying the identities:
$(\mathrm{M} 1) x \oplus(y \oplus z)=(x \oplus y) \oplus z$
(M2) $x \oplus y=y \oplus x$
(M3) $x \oplus 0=x$
(M4) $\neg \neg x=x$
(M5) $x \oplus \neg 0=\neg 0$
(M6) $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.

MV-algebras

As known, if $\mathbf{A}=(A, \oplus, \neg, 0)$ as MV -algebra then $(A, \vee, \wedge, 1,0)$, where

$$
\begin{aligned}
& x \vee y:=\neg(\neg x \oplus y) \oplus y \\
& x \wedge y:=\neg(\neg x \vee \neg y) \\
& 1:=\neg 0
\end{aligned}
$$

is a bounded distributive lattice. Induced order is given by:

$$
x \leq y \text { iff } \neg x \oplus y=1
$$

Moreover, the mapping ${ }^{a}:[a, 1] \rightarrow[a, 1]$ defined by $x^{a}=\neg x \oplus a$ is an antitone involution on $[a, 1]$ (i.e. $x \leq y$ iff $y^{a} \leq x^{a}$ and $\left.\left(x^{a}\right)^{a}=x\right)$.

Lattices with Section Antitine Involutions

Definition

A lattice with section antitone involutions is a system
$\mathbf{L}=\left(L, \vee, \wedge,\left({ }^{a}\right)_{a \in L}, 0,1\right)$ where $(L, \vee, \wedge, 0,1)$ is a bounded lattice such that every principal order filter $[a, 1]$ (called a section) possesses an antitone involution $x \mapsto x^{a}$.

Lattices with Section Antitine Involutions

Definition

A lattice with section antitone involutions is a system
$\mathbf{L}=\left(L, \vee, \wedge,\left({ }^{a}\right)_{a \in L}, 0,1\right)$ where $(L, \vee, \wedge, 0,1)$ is a bounded lattice such that every principal order filter $[a, 1]$（called a section） possesses an antitone involution $x \mapsto x^{a}$ ．

Example

Lattice with Section Antitone Involutions

The family $\left({ }^{a}\right)_{a \in L}$ of section antitone involutions being partial unary operations on L can be equivalently replaced by a single binary operation \rightarrow defined by

$$
x \rightarrow y:=(x \vee y)^{y} .
$$

This easy "trick" allows one to treate lattices with section antitone involutions as total algebras $(L, \vee, \wedge, \rightarrow, 0,1)$ or even $(L, \rightarrow, 0,1)$ that form a variety (see e.g. [CHK1] or [CE]).
In [CHK1] MV-algebras were characterized as those lattices with section antitone involutions satysfying the so-called exchange identity (EI):

$$
\begin{equation*}
x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z) \tag{El}
\end{equation*}
$$

The Correspondence Theorem

Theorem

(i) Let $\mathbf{L}=\left(A, \vee, \wedge,\left({ }^{a}\right)_{a \in A}, 0,1\right)$ be a lattice with section antitone involutions. Then the assigned algebra $\mathcal{A}(\mathbf{L})=(L, \oplus, \neg, 0)$, where

$$
x \oplus y:=\left(x^{0} \vee y\right)^{y} \text { and } \neg x:=x^{0}
$$

satisfies the identites
(A1) $x \oplus 0=x$
(A2) $\neg \neg x=x$
(A3) $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$
(A4) $\neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus(x \oplus z)=1$.

The Correspondence Theorem

(ii) Conversely, given an algebra $\mathbf{A}=(A, \oplus, \neg, 0)$ satisfying the identites (A1)-(A4), then for every $a \in A$, the mapping

$$
x \mapsto x^{a}:=\neg x \oplus a
$$

is an antitone involution on the section $[a, 1]$, and the structure $\mathcal{L}(\mathbf{A})=\left(A, \vee, \wedge,\left({ }^{a}\right)_{a \in A}, 0,1\right)$ is a lattice with section antitone involutions.
(iii) The corespondence is one-to-one, i.e. $\mathcal{L}(\mathcal{A}(\mathbf{L}))=\mathbf{L}$ and $\mathcal{A}(\mathcal{L}(\mathbf{A}))=\mathbf{A}$.

The Correspondence Theorem

(ii) Conversely, given an algebra $\mathbf{A}=(A, \oplus, \neg, 0)$ satisfying the identites (A1)-(A4), then for every $a \in A$, the mapping

$$
x \mapsto x^{a}:=\neg x \oplus a
$$

is an antitone involution on the section $[a, 1]$, and the structure $\mathcal{L}(\mathbf{A})=\left(A, \vee, \wedge,\left({ }^{a}\right)_{a \in A}, 0,1\right)$ is a lattice with section antitone involutions.
(iii) The corespondence is one-to-one, i.e. $\mathcal{L}(\mathcal{A}(\mathbf{L}))=\mathbf{L}$ and $\mathcal{A}(\mathcal{L}(\mathbf{A}))=\mathbf{A}$.

Basic Algebras

Algebras satisfying the identities (A1)-(A4) are called basic algebras. Hence, basic algebras form the variety of type $\langle 2,1,0\rangle$. It has been proved [CHK1] that this variety is arithmetical.

> We call a basic algebra $\mathbf{A}=(A, \oplus, \neg, 0)$ commutative if \oplus is commutative.

Example
a) Every finite chain is a commutative basic algebra.
b) Every MV -algebra is a commutative basic algebra.

Basic Algebras

Algebras satisfying the identities（A1）－（A4）are called basic algebras．Hence，basic algebras form the variety of type $\langle 2,1,0\rangle$ ． It has been proved［CHK1］that this variety is arithmetical．

We call a basic algebra $\mathbf{A}=(A, \oplus, \neg, 0)$ commutative if \oplus is commutative．

Example
a）Every finite chain is a commutative basic algebra． b）Every MV－algebra is a commutative basic algebra．

Basic Algebras

Algebras satisfying the identities (A1)-(A4) are called basic algebras. Hence, basic algebras form the variety of type $\langle 2,1,0\rangle$. It has been proved [CHK1] that this variety is arithmetical.

We call a basic algebra $\mathbf{A}=(A, \oplus, \neg, 0)$ commutative if \oplus is commutative.

Example
a) Every finite chain is a commutative basic algebra.
b) Every MV-algebra is a commutative basic algebra.

Commutative basic algebras-theorems

Theorem
Lattices induced by commutative basic algebras are distributive.
Theorem
Finite commutative basic algebras are just finite MV-algebras.
Theorem
Subdirectly irreducible commutative basic algebras are chains.

Commutative basic algebras-theorems

Theorem
Lattices induced by commutative basic algebras are distributive.
Theorem
Finite commutative basic algebras are just finite MV-algebras.
Theorem
Subdirectly irreducible commutative basic algebras are chains.

Commutative basic algebras-theorems

Theorem
Lattices induced by commutative basic algebras are distributive.
Theorem
Finite commutative basic algebras are just finite MV-algebras.
Theorem
Subdirectly irreducible commutative basic algebras are chains.

Commutative basic algebras

Given a basic algebra $\mathbf{A}=(\mathbf{A}, \oplus, \neg, \mathbf{0})$ we use the following derived operations:

$$
\begin{gathered}
a \odot b:=\neg(\neg a \oplus \neg b) \\
a \rightarrow b:=\neg a \oplus b
\end{gathered}
$$

Theorem
Commutative basic algebras are residuated structures, i.e. the adjointness condition
holds.
M.B. and R.Halaš presented a (non-associative) fuzzy logic such
that commutative basic algebras are their equivalent algebraic semantics.

Commutative basic algebras

Given a basic algebra $\mathbf{A}=(\mathbf{A}, \oplus, \neg, \mathbf{0})$ we use the following derived operations:

$$
\begin{gathered}
a \odot b:=\neg(\neg a \oplus \neg b) \\
a \rightarrow b:=\neg a \oplus b
\end{gathered}
$$

Theorem
Commutative basic algebras are residuated structures, i.e. the adjointness condition

$$
x \odot y \leq z \quad \text { iff } \quad x \leq y \rightarrow z
$$

holds.
M.B. and R.Halaš presented a (non-associative) fuzzy logic such
that commutative basic algebras are their equivalent algebraic semantics.

Commutative basic algebras

Given a basic algebra $\mathbf{A}=(\mathbf{A}, \oplus, \neg, \mathbf{0})$ we use the following derived operations:

$$
\begin{gathered}
a \odot b:=\neg(\neg a \oplus \neg b) \\
a \rightarrow b:=\neg a \oplus b
\end{gathered}
$$

Theorem
Commutative basic algebras are residuated structures, i.e. the adjointness condition

$$
x \odot y \leq z \quad \text { iff } \quad x \leq y \rightarrow z
$$

holds.
M.B. and R.Halaš presented a (non-associative) fuzzy logic such that commutative basic algebras are their equivalent algebraic semantics.

Are commutative basic algebras an MV-algebras?

- Are all commutative basic algebras an MV-algebras?
- Are complete commutative basic algebras an MV-algebras?

```
In [BoHal] we have proved:
If there is a complete commutative basic algebra which is not an
MV-algebra then there is a commutative basic algebra (which is
not an MV-algebra) on the interval of reals.
In the following we present a commutative basic algebra on the
interval of reals which is not an MV-algebra.
```


Are commutative basic algebras an
 MV-algebras?

- Are all commutative basic algebras an MV-algebras?
- Are complete commutative basic algebras an MV-algebras?

In [BoHa1] we have proved:
If there is a complete commutative basic algebra which is not an MV-algebra then there is a commutative basic algebra (which is not an MV-algebra) on the interval of reals.
In the following we present a commutative basic algebra on the interval of reals which is not an MV-algebra.

Important properties of commutative basic algebras.

Claim A basic algebra is commutative if and only if satisfies the contraposition law $(x \rightarrow y=\neg y \rightarrow \neg x)$.

Remark We can describe the operation " \rightarrow " as follows:

in any linearly ordered commutative basic algebra.

Theorem (Fixpoint theorem)
If $\mathbf{A}=(A, \oplus, \neg, 0)$ is a complete commutative basic algebra and $x \in A$ then there is a unique $x^{*} \in[x, 1]$ such that $x^{*}=x^{*} \rightarrow x$.

Important properties of commutative basic algebras.

Claim A basic algebra is commutative if and only if satisfies the contraposition law $(x \rightarrow y=\neg y \rightarrow \neg x)$.

Remark We can describe the operation " \rightarrow " as follows:

$$
x \rightarrow y=\left\{\begin{array}{ccc}
x^{y} & \text { if } & y \leq x \\
1 & & \text { otherwise }
\end{array}\right.
$$

in any linearly ordered commutative basic algebra.

Theorem (Fixpoint theorem)
If $\mathbf{A}=(A, \oplus, \neg, 0)$ is a complete commutative basic algebra and $x \in A$ then there is a unique $x^{*} \in[x, 1]$ such that $x^{*}=x^{*} \rightarrow x$.

Important properties of commutative basic algebras.

Claim A basic algebra is commutative if and only if satisfies the contraposition law $(x \rightarrow y=\neg y \rightarrow \neg x)$.

Remark We can describe the operation " \rightarrow " as follows:

$$
x \rightarrow y=\left\{\begin{array}{ccc}
x^{y} & \text { if } & y \leq x \\
1 & & \text { otherwise }
\end{array}\right.
$$

in any linearly ordered commutative basic algebra.

Theorem (Fixpoint theorem)
If $\mathbf{A}=(A, \oplus, \neg, 0)$ is a complete commutative basic algebra and $x \in A$ then there is a unique $x^{*} \in[x, 1]$ such that $x^{*}=x^{*} \rightarrow x$.

Theorem

Any commutative basic algebra $\mathbf{A}=([0, a], \oplus, \neg, 0)$ is isomorphic to a commutative basic algebra $\mathbf{A}^{\prime}=\left([0, a], \oplus^{\prime}, \neg^{\prime}, 0\right)$ such that $\neg^{\prime} x=a-x$ for any $x \in[0, a]$.
Sketch of proof. Let $\alpha_{*}:\left[0_{*}, a\right] \longrightarrow[a / 2, a]$ be any order isomorphism. Define the mapping

$$
\alpha(x):=\left\{\begin{array}{cll}
\alpha_{*}(x) & \text { if } & x \in\left[0_{*}, a\right] \\
12-\alpha_{*}(\neg x) & & \text { otherwise }
\end{array}\right.
$$

Putting

$$
x \rightarrow^{\prime} y:=\alpha\left(\alpha^{-1}(x) \rightarrow \alpha^{-1}(y)\right)
$$

one can easily prove that for $x \oplus^{\prime} y:=\neg x \rightarrow^{\prime} y$, $\mathbf{A}^{\prime}=\left([0, a], \oplus^{\prime}, \neg^{\prime}, 0\right)$ is a commutative basic algebra for which
$\mathbf{A}^{\prime} \cong \mathbf{A}$, the isomorphism of which is given by α.

We construct a commutative basic algebra on the interval $[0,12]$ of reals. Without lost of generality, we may suppose that the operation \neg is defined by $\neg x:=12-x$.

Lemma

Let $\mathbf{A}=([0,12], \oplus, \neg, 0)$ be a commutative basic algebra. Then the function $f:[0,12]^{2} \longrightarrow[0,12]$, where $f(x, y):=x \rightarrow y$ is continuous (in a usual sense) and for all $y \in[0,12]$ and all $x, x_{1}, x_{2} \in[y, 12]$ we have
(i) $f(x, y)=f(\neg y, \neg x)$
(ii) if $x \geq y$ then $f(f(x, y), y)=x$
(iii) if $x_{1} \leq x_{2}$ then $f\left(x_{1}, y\right) \geq f\left(x_{2}, y\right)$.

As well-known, the implication $\rightarrow_{M V}$ on $[0,12]$ considered as an MV-algebra is given by stipulation $x \rightarrow_{M V} y:=12-x+y$. Consider another function $f(x, y)$ of the form:

$$
f(x, y):=12-x+y+d(x, y)
$$

where $d(x, y)$ measures the "difference" of $f(x, y)$ and " $x \rightarrow M V y$ ". The idea of constructing a commutative basic algebra which is not MV-algebra is based on finding the non-zero function $d(x, y)$. Hence, given $f(x, y)$ as before, we derive the properties of $d(x, y)$.

Lemma

For all $x, y \in[0,12]$ with $x \geq y$ we have $d(x, y)=d(\neg y, \neg x)=d(f(x, y), y)$ ．
Now，consider the following sets：

$$
\begin{gathered}
g=\left\{\left\langle x_{*}, x\right\rangle \mid x \in[0,12]\right\}, h=\left\{\left\langle 12-x, 12-x_{*}\right\rangle \mid x \in[0,12]\right\}, \\
k=\{\langle x, \neg x\rangle \mid x \in[6,12]\} .
\end{gathered}
$$

The continuity of f yields that all g, h, k are the continuous curves．Moreover，they divide the area $\left\{\langle x, y\rangle \in[0,12]^{2} \mid x \geq y\right\}$ into six parts．

ロ司 三 ミ 引 引のく

Lemma

For all $x, y \in[0,12]$ with $x \geq y$ we have $d(x, y)=d(\neg y, \neg x)=d(f(x, y), y)$.
Now, consider the following sets:

$$
\begin{gathered}
g=\left\{\left\langle x_{*}, x\right\rangle \mid x \in[0,12]\right\}, h=\left\{\left\langle 12-x, 12-x_{*}\right\rangle \mid x \in[0,12]\right\}, \\
k=\{\langle x, \neg x\rangle \mid x \in[6,12]\} .
\end{gathered}
$$

The continuity of f yields that all g, h, k are the continuous curves. Moreover, they divide the area $\left\{\langle x, y\rangle \in[0,12]^{2} \mid x \geq y\right\}$ into six parts.

The following table describes the membership of points into the above areas.

$\langle x, y\rangle$	$\langle\neg y, \neg x\rangle$	$\langle f(x, y), y\rangle$
I.	II.	IV.
II.	I.	III.
III.	VI.	II.
IV.	V.	I.
V.	IV.	VI.
VI.	III.	V.

Now we present a commutative basic algebra $\mathbf{A}=([0,12], \oplus, \neg, 0)$ by constructing the function $f(x, y)$. Let the curves g, h, k be defined as follows:

- g is an abscissa from $[6,0]$ to $[12,12]$
- h is an abscissa from $[0,0]$ to $[6,12]$
- k is an abscissa from $[6,6]$ to $[12,0]$.

Thus, the curves g, h, k coincide on the standard MV-algebra on $[0,12]$. On the the area I. (see Figure 2.1.) we define the function $d(x, y)$ as a "pyramid" and with vertex in [6, 4] with height 1.8. So, the area I . is splitting into the three subareas M, N, O.

$$
d(x, y):=\left\{\begin{array}{cll}
0.9 x-0.9 y & \text { if } & x \in M \\
1.8 y-0.9 x & \text { if } & x \in N \\
10.8-0.9 x-0.9 y & \text { if } & x \in O
\end{array}\right.
$$

－司 三 ミ 引 引のく

	M	N	O
I.	$[0 ; 0],[6 ; 6],[6 ; 4]$	$[0 ; 0],[6 ; 4],[8 ; 4]$	$[6 ; 4],[8 ; 4],[6 ; 6]$
II.	$[6 ; 6],[8 ; 6],[12 ; 12]$	$[8 ; 4],[8 ; 6],[12 ; 12]$	$[8 ; 4],[8 ; 6],[6 ; 6]$
III.	$[12 ; 6],[12 ; 12],[11.8 ; 6]$	$[8 ; 4],[12 ; 12],[11.8 ; 6]$	$[8 ; 4],[12 ; 6],[11.8 ; 6]$
IV.	$[12 ; 0],[11.8 ; 4],[12 ; 6]$	$[12 ; 0],[8 ; 4],[11.8 ; 4]$	$[8 ; 4],[12 ; 6],[11.8 ; 4]$
V.	$[6 ; 0],[12 ; 0],[8 ; 0.2]$	$[12 ; 0],[8 ; 4],[8 ; 0.2]$	$[6 ; 0],[8 ; 4],[8 ; 0.2]$
VI.	$[0 ; 0],[6 ; 0],[6 ; 0,2]$	$[0 ; 0],[8 ; 4],[6 ; 0,2]$	$[6 ; 0],[8 ; 4],[6 ; 0,2]$

I. $12-0.1 x+0.1 y \quad 12-1.9 x+2.8 y \quad 22.8-1.9 x+0.1 y$
II. $12-0.1 x+0.1 y \quad 22.8-2.8 x+1.9 y \quad 1.2-0.1 x+1.9 y$
III. $120-10 x+y \quad \frac{12 \cdot 1.9}{2.8}-\frac{1}{2.8} x+\frac{1.9}{2.8} y \quad 12-10 x+19 y$
IV. $120-10 x+y \quad \frac{12}{1.9}-\frac{1}{1.9} x+\frac{2.8}{1.9} y \quad 12-\frac{1}{1.9} x+\frac{1}{19} y$
V. $12-x+10 y \quad \frac{12 \cdot 2.8}{1.9}-\frac{2.8}{1.9} x+\frac{1}{1.9} y \quad \frac{12}{1.9}-\frac{1}{19} x+\frac{1}{1.9} y$
VI. $12-x+10 y \quad 12-\frac{1.9}{2.8} x+\frac{1}{2.8} y \quad 120-19 x+10 y$

ロ 可 ミ ミ 引 ЭQく

Since $f(x, y)$ is piecewise linear, so these are also $f(f(x, y), y)$ and $f(\neg y, \neg x)$. It can be checked that $f(f(x, y), y)=x$ and $f(\neg y, \neg x)=f(x, y)$ on all of the boudaries of areas I.-VI., hence $f(x, y)$ fulfils these identities everywhere. Thus, if we denote

$$
x \oplus y=\neg x \rightarrow y=f(\neg x, y)
$$

then $\mathbf{A}=([0,12], \oplus, \neg, 0)$ is a commutative basic algebra.

Finally, one can compute that $10 \rightarrow(8 \rightarrow 4)=10 \rightarrow 8=10$ whereas $8 \rightarrow(10 \rightarrow 4) \doteq 8 \rightarrow 6.95 \doteq 11.89$. Thus in \mathbf{A} the exchange identity does not hold and \mathbf{A} is not an MV-algebra.

References

R M．Botur，R．Halaš：Complete commutative basic algebras， Order，
© M．Botur，R．Halaš：Finite commutative basic algebras are MV－algebras，Multiple Valued Logic and Soft Comp．，to appear．
（in Botur：An example of commutative basic algebra which is naot an MV－algebra，Mathematica Slovaca，submitted

围 I．Chajda：Lattices and semilattices having an antitone involution in every upper interval，Comment．Math．Gen． Algebra Appl．．24，31－42（2004）

圊 I．Chajda，R．Halaš，J．Kühr：Distributive lattices with sectionally antitone involutions．Acta Sci．Math．（Szeged）71， 19－33（2005）

