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Chainability

DEFINITION Continuum = compact Hausdorff connected
topological space.

DEFINITION Let X be a continuum. A chain is a nonempty,
finite collection C = {C1, . . . ,Cn} of open subsets Ci of X such
that Ci ∩Cj 6= ∅ if and only if |i − j | ≤ 1. The elements Ci of C are
called links of the chain C.

DEFINITION A continuum X is chainable if every open cover has
an open cover refinement which is a chain.
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Span

DEFINITION A continuum X has span zero if every
subcontinuum Z of X × X , which projects onto the same set on
both coordinates, has a nonempty intersection with the diagonal
∆X = {(x , x) | x ∈ X} of X . Otherwise we say that X has span
non-zero.

Bartošová, Hart Charles University in Prague, Czech Republic

Span and chainability



Lelek’s conjecture

THEOREM(Lelek 1964) Every chainable continuum has span
zero.

CONJECTURE(Lelek) Continuum having span zero is chainable.

OUR RESULT If there is a non-metric counterexample, there is
also a metric counterexample.
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Wallman’s representation theorem

DEFINITION A lattice is called disjunctive if it models the
following sentence

∀ab ∃c (a � b → c 6= 0 and c ≤ a and b ∧ c = 0).

DEFINITION A lattice is called normal if it models the
following sentence

∀ab ∃cd (a u b = 0 → a ∧ d = 0 and b ∧ c = 0 and c ∨ d = 1).

Bartošová, Hart Charles University in Prague, Czech Republic

Span and chainability



Wallman’s representation theorem

DEFINITION A lattice is called disjunctive if it models the
following sentence

∀ab ∃c (a � b → c 6= 0 and c ≤ a and b ∧ c = 0).

DEFINITION A lattice is called normal if it models the
following sentence

∀ab ∃cd (a u b = 0 → a ∧ d = 0 and b ∧ c = 0 and c ∨ d = 1).
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Wallman’s representation theorem

THEOREM (Wallman 1938) Let L be a distributive disjunctive
normal lattice. Then there is a compact Hausdorff wL with a base
for closed sets being isomorphic to L.

The points of wL are the ultrafilters on L.

The sets U(a) = {x ∈ wL|a ∈ x} form a base for closed sets for
the topology on wL.

IMPORTANT X → B → wB = X .

Wallman’s representation extends to lattice homomorphisms and
provides a functor.
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Elementarity

Fix a first-order language L.

LÖWENHEIM-SKOLEM THEOREM Let A be an infinite
L-structure and let X ⊂ A. Denote κ = max(|L| , |X |). Then for
every cardinal λ such that κ ≤ λ ≤ |A| , there exists an elementary
substructure B of A such that X ⊂ B and |B| = λ.
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Elementarity in set theory

For a cardinal θ, H(θ) denotes the set of all sets whose transitive
closure has cardinality less then θ.

These sets are very important and useful because if θ is
uncountable regular then

H(θ) |= ZFC - P .

If M is an elementary submodel of H(θ) such that 2X ∈M then
L = M∩ 2X is an elementary sublattice of 2X . Similarly
K = M∩ 2X×X is an elementary sublattice of 2X×X .
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Applying elementarity

THEOREM (van der Steeg 2003) wK ∼= wL× wL

THEOREM (van der Steeg 2003) X is chainable if and only if wL
is chainable.
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Keisler-Shelah theorem

KEISLER-SHELAH THEOREM Let κ be a cardinal,
λ = min{µ | κµ > κ} and let A and B be two elementarily
equivalent L-structures with card(A), card(B) < λ. Then there
exists an ultrafilter U over κ such that

∏
U A and

∏
U B are

isomorphic.
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Reflecting span zero

THEOREM (DB+KPH 2008) If X is a continuum having span
zero, then wL has span zero as well.

Proof

∏
U K

∏
U 2X×Xh //

K

∏
U K

∆

��

K 2X×Xe // 2X×X

∏
U 2X×X

∆

��

(1)
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Proof

w(
∏
U K ) w(

∏
U )2X×Xoo w(h)

wL× wL ∼= wK

w(
∏
U K )

OO

w(∆)

wL× wL ∼= wK X × Xoo w(e)
X × X

w(
∏
U )2X×X

OO

w(∆) (2)

Z ′ = w(∆) ◦ w(h)−1[w(
∏
U Z )].
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THANK YOU
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