Span and Chainability in Non-metric Continua

Dana Bartošová, Klaas Pieter Hart

Charles University in Prague, Czech Republic

Summer School on Algebra, Třešť 2008

Chainability

DEFINITION Continuum = compact Hausdorff connected topological space.

Chainability

DEFINITION Continuum = compact Hausdorff connected topological space.

DEFINITION Let X be a continuum. A chain is a nonempty, finite collection $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of open subsets C_{i} of X such that $C_{i} \cap C_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$. The elements C_{i} of \mathcal{C} are called links of the chain \mathcal{C}.

Chainability

DEFINITION Continuum = compact Hausdorff connected topological space.

DEFINITION Let X be a continuum. A chain is a nonempty, finite collection $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of open subsets C_{i} of X such that $C_{i} \cap C_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$. The elements C_{i} of \mathcal{C} are called links of the chain \mathcal{C}.

DEFINITION A continuum X is chainable if every open cover has an open cover refinement which is a chain.

Span

DEFINITION A continuum X has span zero if every subcontinuum Z of $X \times X$, which projects onto the same set on both coordinates, has a nonempty intersection with the diagonal $\Delta_{X}=\{(x, x) \mid x \in X\}$ of X. Otherwise we say that X has span non-zero.

Lelek's conjecture

THEOREM(Lelek 1964) Every chainable continuum has span zero.

Lelek's conjecture

THEOREM(Lelek 1964) Every chainable continuum has span zero.

CONJECTURE(Lelek) Continuum having span zero is chainable.

Lelek's conjecture

THEOREM(Lelek 1964) Every chainable continuum has span zero.

CONJECTURE(Lelek) Continuum having span zero is chainable.
OUR RESULT If there is a non-metric counterexample, there is also a metric counterexample.

Wallman's representation theorem

DEFINITION A lattice is called disjunctive if it models the following sentence

$$
\forall a b \exists c(a \not \leq b \rightarrow c \neq 0 \text { and } c \leq a \text { and } b \wedge c=0) .
$$

Wallman's representation theorem

DEFINITION A lattice is called disjunctive if it models the following sentence

$$
\forall a b \exists c(a \not \leq b \rightarrow c \neq 0 \text { and } c \leq a \text { and } b \wedge c=0) .
$$

DEFINITION A lattice is called normal if it models the following sentence

$$
\forall a b \exists c d(a \sqcap b=0 \rightarrow a \wedge d=0 \text { and } b \wedge c=\mathbf{0} \text { and } c \vee d=1) .
$$

Wallman's representation theorem

THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff $w L$ with a base for closed sets being isomorphic to L.

Wallman's representation theorem

THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff $w L$ with a base for closed sets being isomorphic to L.

The points of $w L$ are the ultrafilters on L.

Wallman's representation theorem

THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff $w L$ with a base for closed sets being isomorphic to L.

The points of $w L$ are the ultrafilters on L.
The sets $U(a)=\{x \in w L \mid a \in x\}$ form a base for closed sets for the topology on $w L$.

Wallman's representation theorem

THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff $w L$ with a base for closed sets being isomorphic to L.

The points of $w L$ are the ultrafilters on L.
The sets $U(a)=\{x \in w L \mid a \in x\}$ form a base for closed sets for the topology on $w L$.

IMPORTANT $\quad X \rightarrow \mathcal{B} \rightarrow w \mathcal{B}=X$.

Wallman's representation theorem

THEOREM (Wallman 1938) Let L be a distributive disjunctive normal lattice. Then there is a compact Hausdorff $w L$ with a base for closed sets being isomorphic to L.

The points of $w L$ are the ultrafilters on L.
The sets $U(a)=\{x \in w L \mid a \in x\}$ form a base for closed sets for the topology on $w L$.

IMPORTANT $\quad X \rightarrow \mathcal{B} \rightarrow w \mathcal{B}=X$.
Wallman's representation extends to lattice homomorphisms and provides a functor.

Elementarity

Fix a first-order language \mathcal{L}.

Elementarity

Fix a first-order language \mathcal{L}.
LÖWENHEIM-SKOLEM THEOREM Let A be an infinite \mathcal{L}-structure and let $X \subset A$. Denote $\kappa=\max (|\mathcal{L}|,|X|)$. Then for every cardinal λ such that $\kappa \leq \lambda \leq|A|$, there exists an elementary substructure B of A such that $X \subset B$ and $|B|=\lambda$.

Elementarity in set theory

For a cardinal $\theta, H(\theta)$ denotes the set of all sets whose transitive closure has cardinality less then θ.

Elementarity in set theory

For a cardinal $\theta, H(\theta)$ denotes the set of all sets whose transitive closure has cardinality less then θ.

These sets are very important and useful because if θ is uncountable regular then

$$
H(\theta) \models \text { ZFC - P. }
$$

Elementarity in set theory

For a cardinal $\theta, H(\theta)$ denotes the set of all sets whose transitive closure has cardinality less then θ.

These sets are very important and useful because if θ is uncountable regular then

$$
H(\theta) \models \text { ZFC - P. }
$$

If \mathcal{M} is an elementary submodel of $H(\theta)$ such that $2^{X} \in \mathcal{M}$ then $L=\mathcal{M} \cap 2^{X}$ is an elementary sublattice of 2^{X}. Similarly $K=\mathcal{M} \cap 2^{X \times X}$ is an elementary sublattice of $2^{X \times X}$.

Applying elementarity

THEOREM (van der Steeg 2003) $w K \cong w L \times w L$

Applying elementarity

THEOREM (van der Steeg 2003) $w K \cong w L \times w L$
THEOREM (van der Steeg 2003) X is chainable if and only if $w L$ is chainable.

Keisler-Shelah theorem

KEISLER-SHELAH THEOREM Let κ be a cardinal, $\lambda=\min \left\{\mu \mid \kappa^{\mu}>\kappa\right\}$ and let A and B be two elementarily equivalent \mathcal{L}-structures with $\operatorname{card}(A), \operatorname{card}(B)<\lambda$. Then there exists an ultrafilter \mathcal{U} over κ such that $\prod_{\mathcal{U}} A$ and $\prod_{\mathcal{U}} B$ are isomorphic.

Reflecting span zero

THEOREM (DB + KPH 2008) If X is a continuum having span zero, then $w L$ has span zero as well.

Reflecting span zero

THEOREM (DB + KPH 2008) If X is a continuum having span zero, then $w L$ has span zero as well.

Proof

(1)

Proof

$$
\begin{align*}
& w L \times w L \cong w K<{ }_{\leftarrow}{ }^{(e)} X \times X \\
& \left.w(\Delta)\right|_{w\left(\prod_{\mathcal{U}} K\right)} ^{\leftarrow^{w(h)}} w\left(\prod_{\mathcal{U}}\right) 2^{X \times X} \tag{2}
\end{align*}
$$

Proof

$$
\begin{align*}
& w L \times w L \cong w K<\leftarrow^{w(e)} X \times X \\
& \left.w(\Delta)\right|_{w(\Delta)} w\left(\prod_{\mathcal{U}} K\right){ }_{c}{ }_{c}^{w(h)} w\left(\prod_{\mathcal{U}}\right) 2^{X \times X} \tag{2}
\end{align*}
$$

$$
Z^{\prime}=w(\Delta) \circ w(h)^{-1}\left[w\left(\prod_{\mathcal{U}} Z\right)\right] .
$$

THANK YOU

Bartošová, Hart

Charles University in Prague, Czech Republic

