Congruence lifting of semilattice diagrams

Miroslav Ploščica

P. J. Šafárik University, Košice

August 28, 2008

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} = all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least for given classes \mathcal{K} , \mathcal{L} determine if $\operatorname{Con} \mathcal{K} = \operatorname{Con} \mathcal{L}$ ($\operatorname{Con} \mathcal{K} = \operatorname{Con} \mathcal{L}$).

Especially, for finitely generated varieties $\mathcal{K},\ \mathcal{L}$ we have an algorithmic problem.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Con functor:

For any homomorphism of algebras $f:\ A\to B$ we define ${\rm Con}\,f:\ {\rm Con}\,A\to {\rm Con}\,B$

by

 $\alpha \mapsto \text{congruence generated by } \{(f(x), f(y)) \mid (x, y) \in \alpha\}.$

Fact. Con f preserves \lor and 0, not necessarily \land .

イロト イポト イヨト イヨト

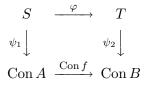
э

Let

• $\varphi:\ S\to T$ be a $(\vee,0)\text{-homomorphisms}$ of lattices;

• $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts φ , if there are isomorphisms $\psi_1: S \to \operatorname{Con} A$, $\psi_2: T \to \operatorname{Con} B$ such that



commutes.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) = (回 > (回 >)) = (回 > (回 >)) = (\Pi > (\cup >)) = (\Pi > (\square >)) = (\Pi > (

Let

- (P, \leq) be a poset;
- $\bullet \ \mathcal{K}$ be a category of algebras

Definition. A (P, \leq) -indexed diagram in \mathcal{K} is a functor

$$\mathcal{A}: \ (P,\leq) \to \mathcal{K}.$$

・ロト ・ 一 ト ・ モト ・ モト

э

That means:

- an algebra $\mathcal{A}(j)\in\mathcal{K}$ for every $j\in P$;
- a homomorphisms $\mathcal{A}(j,k): \ \mathcal{A}(j) \to \mathcal{A}(k)$ for every $j \leq k$; such that

•
$$\mathcal{A}(j,j) = \mathrm{id}(\mathcal{A}(j))$$
 for every $j \in P$;

• $\mathcal{A}(j,k) \circ \mathcal{A}(i,j) = \mathcal{A}(i,k)$ for every $i \leq j \leq k$.

イロト イポト イヨト イヨト

-

Lifting of diagrams

Let P be a poset and let

- $\mathcal{D}: P \to \mathcal{S}$ be a diagram of $(\lor, 0)$ -semilattices;
- $\mathcal{A}: P \to \mathcal{K}$ be a diagram of algebras;

We say that \mathcal{A} lifts \mathcal{D} , if there are isomorphisms $\psi_j: \mathcal{D}(j) \to \operatorname{Con} \mathcal{A}(j)$ such that

$$\begin{array}{ccc} \mathcal{D}(j) & \xrightarrow{\mathcal{D}(j,k)} & \mathcal{D}(k) \\ \psi_j & & \psi_k \\ \mathrm{Con}\,\mathcal{A}(j) & \xrightarrow{\mathrm{Con}\,\mathcal{A}(j,k)} & \mathrm{Con}\,\mathcal{A}(k) \end{array}$$

commutes for every $j \leq k$.

イロト イポト イヨト イヨト

-

Let $\mathcal{K},\,\mathcal{L}$ be finitely generated congruence distributive varieties. Put

$$\operatorname{Crit}(\mathcal{K},\mathcal{L}) = \min\{\operatorname{card}(L_c) \mid L \in \operatorname{Con} \mathcal{K} \setminus \operatorname{Con} \mathcal{L}\}$$

(or ∞).

TheoremTFAE• $Con \mathcal{K} \nsubseteq Con \mathcal{L};$ • there exists a diagram of finite $(\lor, 0)$ -semilattices indexed by

 $\{0,1\}^n$ (for some n) liftable in $\mathcal K$ but not in $\mathcal L$

・ロト ・ 一 ト ・ モ ト ・ モ ト

Theorem

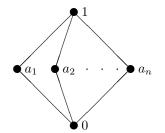
(2) implies (1), where

- $\operatorname{Crit}(\mathcal{K}, \mathcal{L}) \leq \aleph_n$;
- there exists a diagram of finite (∨, 0)-semilattices indexed by a product of n + 1 finite chains liftable in K but not in L
 If n = 0 then also (1)⇒ (2).

Question. What about (1) \Longrightarrow (2) for n > 0?

イロト イポト イヨト イヨト

Let \mathcal{M}_n^{01} be the variety of bounded lattices generated by



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

(MP 1998, 2000)

$$\operatorname{Crit}(\mathcal{M}_{n+1}^{01},\mathcal{M}_n^{01}) = \aleph_2$$

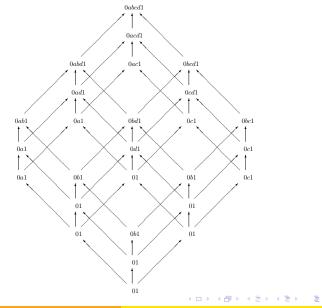
for every $n \geq 3$.

Question. Is there a diagram indexed by a product of 3 finite chains liftable in \mathcal{M}_{n+1}^{01} but not in \mathcal{M}_{n}^{01} ?

イロト イポト イヨト イヨト

э

M3 versus M4



Miroslav Ploščica Congruence lifting of semilattice diagrams

Consider the following three linear orders on the set $\{1, 2, \ldots, n\}$:

$$1 <_{1} 2 <_{1} 3 <_{1} \dots <_{1} n;$$

$$1 <_{2} n <_{2} n - 1 <_{2} n - 2 <_{2} \dots <_{2} 2;$$

$$2 <_{3} n <_{3} n - 1 <_{3} \dots <_{3} 3 <_{3} 1.$$

Let Z_k^i be the unique k-element lower subset of the ordered set $(\{1,\ldots,n\},\leq_i)$ ($i\in\{1,2,3\},\ 1\leq k\leq n)$ and

$$Z(j,k,l) = Z_{j+2}^1 \cap Z_{k+2}^2 \cap Z_{l+2}^3.$$

・ロト ・聞ト ・ヨト ・

-

Define a diagram $\mathcal{A}:\ \{0,1,\ldots,n-2\}^3 \to \mathcal{M}_n^{01}$ by

- $\mathcal{A}(j,k,l)$ is a free algebra in \mathcal{M}_n^{01} generated by Z(j,k,l);
- all A-morphisms are set inclusions.

Theorem

For any n > 3, $\operatorname{Con} \circ \mathcal{A}$ is not liftable in \mathcal{M}_{n-1} .

< ロ > < 同 > < 回 > < 回 > < 回 > <