Congruence lifting of semilattice diagrams

Miroslav Ploščica
P. J. Šafárik University, Košice

August 28, 2008

Introduction

Problem. For a given class \mathcal{K} of algebras describe Con $\mathcal{K}=$ all lattices isomorphic to $\operatorname{Con} A$ for some $A \in \mathcal{K}$.

Or, at least for given classes \mathcal{K}, \mathcal{L} determine if $\operatorname{Con} \mathcal{K}=\operatorname{Con} \mathcal{L}$ $(\operatorname{Con} \mathcal{K}=\operatorname{Con} \mathcal{L})$.

Especially, for finitely generated varieties \mathcal{K}, \mathcal{L} we have an algorithmic problem.

Con functor

The Con functor:
For any homomorphism of algebras $f: A \rightarrow B$ we define

$$
\operatorname{Con} f: \operatorname{Con} A \rightarrow \operatorname{Con} B
$$

by
$\alpha \mapsto$ congruence generated by $\{(f(x), f(y)) \mid(x, y) \in \alpha\}$.
Fact. Con f preserves \vee and 0 , not necessarily \wedge.

Lifting of semilattice morphisms

Let

- $\varphi: S \rightarrow T$ be a ($\vee, 0$)-homomorphisms of lattices;
- $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts φ, if there are isomorphisms $\psi_{1}: S \rightarrow \operatorname{Con} A$, $\psi_{2}: T \rightarrow \operatorname{Con} B$ such that

commutes.

Diagrams indexed by posets 1

Let

- (P, \leq) be a poset;
- \mathcal{K} be a category of algebras

Definition. A (P, \leq)-indexed diagram in \mathcal{K} is a functor

$$
\mathcal{A}:(P, \leq) \rightarrow \mathcal{K} .
$$

Diagrams indexed by posets 2

That means:

- an algebra $\mathcal{A}(j) \in \mathcal{K}$ for every $j \in P$;
- a homomorphisms $\mathcal{A}(j, k): \mathcal{A}(j) \rightarrow \mathcal{A}(k)$ for every $j \leq k$; such that
- $\mathcal{A}(j, j)=\operatorname{id}(\mathcal{A}(j))$ for every $j \in P$;
- $\mathcal{A}(j, k) \circ \mathcal{A}(i, j)=\mathcal{A}(i, k)$ for every $i \leq j \leq k$.

Lifting of diagrams

Let P be a poset and let

- $\mathcal{D}: P \rightarrow \mathcal{S}$ be a diagram of $(\vee, 0)$-semilattices;
- $\mathcal{A}: P \rightarrow \mathcal{K}$ be a diagram of algebras;

We say that \mathcal{A} lifts \mathcal{D}, if there are isomorphisms $\psi_{j}: \mathcal{D}(j) \rightarrow \operatorname{Con} \mathcal{A}(j)$ such that

$$
\begin{array}{ccc}
\mathcal{D}(j) & \xrightarrow{\mathcal{D}(j, k)} & \mathcal{D}(k) \\
\psi_{j} \downarrow & & \psi_{k} \downarrow \\
\operatorname{Con} \mathcal{A}(j) \xrightarrow{\operatorname{Con} \mathcal{A}(j, k)} & \operatorname{Con} \mathcal{A}(k)
\end{array}
$$

commutes for every $j \leq k$.

Results of P. Gillibert 1

Let \mathcal{K}, \mathcal{L} be finitely generated congruence distributive varieties. Put

$$
\operatorname{Crit}(\mathcal{K}, \mathcal{L})=\min \left\{\operatorname{card}\left(L_{c}\right) \mid L \in \operatorname{Con} \mathcal{K} \backslash \operatorname{Con} \mathcal{L}\right\}
$$

(or ∞).

Theorem

TFAE

- Con $\mathcal{K} \nsubseteq \operatorname{Con} \mathcal{L}$;
- there exists a diagram of finite $(\vee, 0)$-semilattices indexed by $\{0,1\}^{n}$ (for some n) liftable in \mathcal{K} but not in \mathcal{L}

Results of P. Gillibert 2

Theorem

(2) implies (1), where

- $\operatorname{Crit}(\mathcal{K}, \mathcal{L}) \leq \aleph_{n}$;
- there exists a diagram of finite ($\vee, 0)$-semilattices indexed by a product of $n+1$ finite chains liftable in \mathcal{K} but not in \mathcal{L} If $n=0$ then also (1) \Longrightarrow (2).

Question. What about $(1) \Longrightarrow(2)$ for $n>0$?

Critical point aleph2

Let \mathcal{M}_{n}^{01} be the variety of bounded lattices generated by

Critical point aleph2

Theorem

(MP 1998, 2000)

$$
\operatorname{Crit}\left(\mathcal{M}_{n+1}^{01}, \mathcal{M}_{n}^{01}\right)=\aleph_{2}
$$

for every $n \geq 3$.

Question. Is there a diagram indexed by a product of 3 finite chains liftable in \mathcal{M}_{n+1}^{01} but not in \mathcal{M}_{n}^{01} ?

M3 versus M4

General construction 1

Consider the following three linear orders on the set $\{1,2, \ldots, n\}$:

$$
\begin{gathered}
1<_{1} 2<_{1} 3<_{1} \cdots<_{1} n ; \\
1<_{2} n<_{2} n-1<_{2} n-2<_{2} \cdots<_{2} 2 \\
2<_{3} n<_{3} n-1<_{3} \cdots<_{3} 3<_{3} 1 .
\end{gathered}
$$

Let Z_{k}^{i} be the unique k-element lower subset of the ordered set $\left(\{1, \ldots, n\}, \leq_{i}\right)(i \in\{1,2,3\}, 1 \leq k \leq n)$ and

$$
Z(j, k, l)=Z_{j+2}^{1} \cap Z_{k+2}^{2} \cap Z_{l+2}^{3} .
$$

General Construction 2

Define a diagram $\mathcal{A}:\{0,1, \ldots, n-2\}^{3} \rightarrow \mathcal{M}_{n}^{01}$ by

- $\mathcal{A}(j, k, l)$ is a free algebra in \mathcal{M}_{n}^{01} generated by $Z(j, k, l)$;
- all \mathcal{A}-morphisms are set inclusions.

Theorem

For any $n>3$, Con $\circ \mathcal{A}$ is not liftable in \mathcal{M}_{n-1}.

