Further critical point between varieties of lattices

P. Gillibert

Université de Caen LMNO, UMR 6139 Département de Mathématiques 14032 Caen cedex *E-mail:* pierre.gillibert@math.unicaen.fr

2 September 2008

Definitions and basic results

A lower bound of some critical point An upper bound of some critical points Semilattice Regular rings the dimension monoid of a lattice

The Con_c functor

• All our semilattices are $(\lor, 0)$ -semilattices.

< □ > < □ > < □ > < □ > < □ >

Semilattice Regular rings the dimension monoid of a lattice

The Con_c functor

- All our semilattices are $(\lor, 0)$ -semilattices.
- For any algebra *A* we denote by Con_c *A* the set of compact congruences of *A*.

Semilattice Regular rings the dimension monoid of a lattice

The Con_c functor

- All our semilattices are $(\lor, 0)$ -semilattices.
- For any algebra *A* we denote by Con_c *A* the set of compact congruences of *A*.
- Con_c A is a semilattice for all algebra A.

Semilattice Regular rings the dimension monoid of a lattice

The Con_c functor

- All our semilattices are $(\lor, 0)$ -semilattices.
- For any algebra *A* we denote by Con_c *A* the set of compact congruences of *A*.
- Con_c A is a semilattice for all algebra A.
- For $f: A \rightarrow B$. We put:

$$\mathsf{Con}_{\mathsf{c}} f \colon \mathsf{Con}_{\mathsf{c}} A o \mathsf{Con}_{\mathsf{c}} B$$

 $\alpha \mapsto \Theta_B(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$

(日)

Semilattice Regular rings the dimension monoid of a lattice

The Con_c functor

- All our semilattices are $(\lor, 0)$ -semilattices.
- For any algebra *A* we denote by Con_c *A* the set of compact congruences of *A*.
- Con_c A is a semilattice for all algebra A.
- For $f: A \rightarrow B$. We put:

$$\mathsf{Con}_{\mathsf{c}} f \colon \mathsf{Con}_{\mathsf{c}} A o \mathsf{Con}_{\mathsf{c}} B$$

 $\alpha \mapsto \Theta_B(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$

 Con_c is a functor from any variety of algebras to the variety of semilattices.

(日)

Critical point

Semilattice Regular rings the dimension monoid of a lattice

• A congruence lifting of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.

< □ > < □ > < □ > < □ > < □ >

Critical point

Semilattice Regular rings the dimension monoid of a lattice

- A congruence lifting of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- We denote by Con_c V the class of all semilattice with a congruence lifting in V.

Critical point

Semilattice Regular rings the dimension monoid of a lattice

- A congruence lifting of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- We denote by Con_c V the class of all semilattice with a congruence lifting in V.
- $\operatorname{crit}(\mathcal{V}_1; \mathcal{V}_2) = \min\{\operatorname{card} S \mid S \in \operatorname{Con}_c \mathcal{V}_1 \operatorname{Con}_c \mathcal{V}_2\}.$

(日)

Critical point

Semilattice Regular rings the dimension monoid of a lattice

- A congruence lifting of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- We denote by Con_c V the class of all semilattice with a congruence lifting in V.
- $\operatorname{crit}(\mathcal{V}_1; \mathcal{V}_2) = \min\{\operatorname{card} S \mid S \in \operatorname{Con}_c \mathcal{V}_1 \operatorname{Con}_c \mathcal{V}_2\}.$
- $\operatorname{crit}(\mathcal{M}_3; \mathcal{D}) = \aleph_0.$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Critical point

Semilattice Regular rings the dimension monoid of a lattice

- A congruence lifting of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- We denote by Con_c V the class of all semilattice with a congruence lifting in V.
- $\operatorname{crit}(\mathcal{V}_1; \mathcal{V}_2) = \min\{\operatorname{card} S \mid S \in \operatorname{Con}_c \mathcal{V}_1 \operatorname{Con}_c \mathcal{V}_2\}.$
- $\operatorname{crit}(\mathcal{M}_3; \mathcal{D}) = \aleph_0.$
- $\operatorname{crit}(\mathcal{V};\mathcal{V}^d) = \infty.$

Critical point

Semilattice Regular rings the dimension monoid of a lattice

- A congruence lifting of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- We denote by Con_c V the class of all semilattice with a congruence lifting in V.
- $\operatorname{crit}(\mathcal{V}_1; \mathcal{V}_2) = \min\{\operatorname{card} S \mid S \in \operatorname{Con}_c \mathcal{V}_1 \operatorname{Con}_c \mathcal{V}_2\}.$
- $\operatorname{crit}(\mathcal{M}_3; \mathcal{D}) = \aleph_0.$
- $\operatorname{crit}(\mathcal{V};\mathcal{V}^d) = \infty.$
- crit($\mathcal{N}_5; \mathcal{D}$) = 5.

(日)

Critical point

Semilattice Regular rings the dimension monoid of a lattice

- A congruence lifting of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- We denote by Con_c V the class of all semilattice with a congruence lifting in V.
- $\operatorname{crit}(\mathcal{V}_1; \mathcal{V}_2) = \min\{\operatorname{card} S \mid S \in \operatorname{Con}_c \mathcal{V}_1 \operatorname{Con}_c \mathcal{V}_2\}.$
- $\operatorname{crit}(\mathcal{M}_3; \mathcal{D}) = \aleph_0.$
- $\operatorname{crit}(\mathcal{V};\mathcal{V}^d) = \infty.$
- crit($\mathcal{N}_5; \mathcal{D}$) = 5.
- crit(M_n^{0,1}; M_m^{0,1}) = ℵ₂ for all n > m ≥ 3 (M. Ploščica, 2000)

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Semilattice Regular rings the dimension monoid of a lattice

Von Neumann Regular rings

A ring *R* is a *regular ring* if for all *x* ∈ *R* there exists *y* ∈ *R* such that *x* = *xyx*.

Semilattice Regular rings the dimension monoid of a lattice

Von Neumann Regular rings

- A ring *R* is a *regular ring* if for all *x* ∈ *R* there exists *y* ∈ *R* such that *x* = *xyx*.
- *M_n*(*F*) the ring of *n* × *n* matrices with entries from a field *F*, is a regular ring.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Semilattice Regular rings the dimension monoid of a lattice

Von Neumann Regular rings

- A ring *R* is a *regular ring* if for all *x* ∈ *R* there exists *y* ∈ *R* such that *x* = *xyx*.
- $M_n(F)$ the ring of $n \times n$ matrices with entries from a field F, is a regular ring.
- Given a ring *R*, we denote by $\mathcal{L}(R)$ the set of all principal left-ideals of *R*.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Semilattice Regular rings the dimension monoid of a lattice

Von Neumann Regular rings

- A ring *R* is a *regular ring* if for all *x* ∈ *R* there exists *y* ∈ *R* such that *x* = *xyx*.
- $M_n(F)$ the ring of $n \times n$ matrices with entries from a field F, is a regular ring.
- Given a ring *R*, we denote by $\mathcal{L}(R)$ the set of all principal left-ideals of *R*.
- If *R* is unital, then $\mathcal{L}(R)$ is bounded.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Semilattice Regular rings the dimension monoid of a lattice

Von Neumann Regular rings

- A ring *R* is a *regular ring* if for all *x* ∈ *R* there exists *y* ∈ *R* such that *x* = *xyx*.
- $M_n(F)$ the ring of $n \times n$ matrices with entries from a field F, is a regular ring.
- Given a ring *R*, we denote by $\mathcal{L}(R)$ the set of all principal left-ideals of *R*.
- If *R* is unital, then $\mathcal{L}(R)$ is bounded.
- $\mathcal{L}(M_{k_1}(F) \times M_{k_2}(F) \times \cdots \times M_{k_n}(F)) \cong$ $\operatorname{Sub}(F^{k_1}) \times \operatorname{Sub}(F^{k_2}) \times \cdots \times \operatorname{Sub}(F^{k_n}).$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Semilattice Regular rings the dimension monoid of a lattice

Von Neumann Regular rings

- A ring *R* is a *regular ring* if for all *x* ∈ *R* there exists *y* ∈ *R* such that *x* = *xyx*.
- $M_n(F)$ the ring of $n \times n$ matrices with entries from a field F, is a regular ring.
- Given a ring *R*, we denote by $\mathcal{L}(R)$ the set of all principal left-ideals of *R*.
- If *R* is unital, then $\mathcal{L}(R)$ is bounded.
- $\mathcal{L}(M_{k_1}(F) \times M_{k_2}(F) \times \cdots \times M_{k_n}(F)) \cong$ $\operatorname{Sub}(F^{k_1}) \times \operatorname{Sub}(F^{k_2}) \times \cdots \times \operatorname{Sub}(F^{k_n}).$
- We denote by Id_c(*R*) the set of all finitely generated two-sided ideals of *R*.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The K₀ functor

Semilattice Regular rings the dimension monoid of a lattice

• Given a unital ring *R*. We denote by *V*(*R*) the commutative monoid of all isomorphism classes of finitely generated projective right *R*-modules.

The K₀ functor

Semilattice Regular rings the dimension monoid of a lattice

- Given a unital ring *R*. We denote by *V*(*R*) the commutative monoid of all isomorphism classes of finitely generated projective right *R*-modules.
- We denote by K₀(R) the preordered universal group of V(R).

(日)

The K₀ functor

Semilattice Regular rings the dimension monoid of a lattice

- Given a unital ring *R*. We denote by *V*(*R*) the commutative monoid of all isomorphism classes of finitely generated projective right *R*-modules.
- We denote by K₀(R) the preordered universal group of V(R).
- [*R*] the class of *R* is an order unit of $K_0(R)$.

(日)

The K₀ functor

Semilattice Regular rings the dimension monoid of a lattice

- Given a unital ring *R*. We denote by *V*(*R*) the commutative monoid of all isomorphism classes of finitely generated projective right *R*-modules.
- We denote by K₀(R) the preordered universal group of V(R).
- [*R*] the class of *R* is an order unit of $K_0(R)$.
- Let *F* be a field, set $R = M_{k_1}(F) \times M_{k_2}(F) \times \cdots \times M_{k_n}(F)$, then $K_0(R) \cong \mathbb{Z}^n$

イロト イヨト イヨト イヨト

The K₀ functor

Semilattice Regular rings the dimension monoid of a lattice

- Given a unital ring *R*. We denote by *V*(*R*) the commutative monoid of all isomorphism classes of finitely generated projective right *R*-modules.
- We denote by K₀(R) the preordered universal group of V(R).
- [*R*] the class of *R* is an order unit of $K_0(R)$.
- Let *F* be a field, set $R = M_{k_1}(F) \times M_{k_2}(F) \times \cdots \times M_{k_n}(F)$, then $K_0(R) \cong \mathbb{Z}^n$, and it maps [*R*] to $(k_i)_{1 \le i \le n}$.

<ロ> <同> <同> < 同> < 同> < 同> 、

Semilattice Regular rings the dimension monoid of a lattice

The dimension monoid of a lattice

Dim L is the commutative monoid defined by generators Δ(a, b), a ≤ b in L and relations
(D0) Δ(a, a) = 0, for all a ∈ L
(D1) Δ(a, c) = Δ(a, b) + Δ(b, c), for all a ≤ b ≤ c in L.
(D2) Δ(a, a ∨ b) = Δ(a ∧ b, b), for all a, b in L.
(introduced by F. Wehrung in 1998).

(日)

Semilattice Regular rings the dimension monoid of a lattice

The dimension monoid of a lattice

- Dim *L* is the commutative monoid defined by generators $\Delta(a, b), a \leq b$ in *L* and relations $(D0) \ \Delta(a, a) = 0$, for all $a \in L$ $(D1) \ \Delta(a, c) = \Delta(a, b) + \Delta(b, c)$, for all $a \leq b \leq c$ in *L*. $(D2) \ \Delta(a, a \lor b) = \Delta(a \land b, b)$, for all a, b in *L*. (introduced by F. Wehrung in 1998).
- $K_0^{\ell}(L)$ is the preordered universal group of Dim(L).

< 日 > < 回 > < 回 > < 回 > < 回 > <

Semilattice Regular rings the dimension monoid of a lattice

The dimension monoid of a lattice

- Dim *L* is the commutative monoid defined by generators $\Delta(a, b), a \leq b$ in *L* and relations $(D0) \ \Delta(a, a) = 0$, for all $a \in L$ $(D1) \ \Delta(a, c) = \Delta(a, b) + \Delta(b, c)$, for all $a \leq b \leq c$ in *L*. $(D2) \ \Delta(a, a \lor b) = \Delta(a \land b, b)$, for all a, b in *L*. (introduced by F. Wehrung in 1998).
- $K_0^{\ell}(L)$ is the preordered universal group of Dim(L).
- If *L* is a bounded lattice, then $\Delta(0, 1)$ is an order unit of $K_0^{\ell}(L)$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Semilattice Regular rings the dimension monoid of a lattice

The dimension monoid of a lattice

- Dim *L* is the commutative monoid defined by generators Δ(*a*, *b*), *a* ≤ *b* in *L* and relations
 (D0) Δ(*a*, *a*) = 0, for all *a* ∈ *L*(D1) Δ(*a*, *c*) = Δ(*a*, *b*) + Δ(*b*, *c*), for all *a* ≤ *b* ≤ *c* in *L*.
 (D2) Δ(*a*, *a* ∨ *b*) = Δ(*a* ∧ *b*, *b*), for all *a*, *b* in *L*.
 (introduced by F. Wehrung in 1998).
- $K_0^{\ell}(L)$ is the preordered universal group of Dim(L).
- If L is a bounded lattice, then Δ(0, 1) is an order unit of *K*^ℓ₀(L)
- Let *L* be a finite modular lattice. Put X = M(Con L).

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Semilattice Regular rings the dimension monoid of a lattice

The dimension monoid of a lattice

- Dim *L* is the commutative monoid defined by generators Δ(*a*, *b*), *a* ≤ *b* in *L* and relations
 (D0) Δ(*a*, *a*) = 0, for all *a* ∈ *L*(D1) Δ(*a*, *c*) = Δ(*a*, *b*) + Δ(*b*, *c*), for all *a* ≤ *b* ≤ *c* in *L*.
 (D2) Δ(*a*, *a* ∨ *b*) = Δ(*a* ∧ *b*, *b*), for all *a*, *b* in *L*.
 (introduced by F. Wehrung in 1998).
- $K_0^{\ell}(L)$ is the preordered universal group of Dim(L).
- If L is a bounded lattice, then Δ(0, 1) is an order unit of *K*^ℓ₀(L)
- Let *L* be a finite modular lattice. Put X = M(Con L). Then $K_0^{\ell}(L) \cong \mathbb{Z}^X$,

< 日 > < 回 > < 回 > < 回 > < 回 > <

Semilattice Regular rings the dimension monoid of a lattice

The dimension monoid of a lattice

- Dim *L* is the commutative monoid defined by generators Δ(*a*, *b*), *a* ≤ *b* in *L* and relations
 (D0) Δ(*a*, *a*) = 0, for all *a* ∈ *L*(D1) Δ(*a*, *c*) = Δ(*a*, *b*) + Δ(*b*, *c*), for all *a* ≤ *b* ≤ *c* in *L*.
 (D2) Δ(*a*, *a* ∨ *b*) = Δ(*a* ∧ *b*, *b*), for all *a*, *b* in *L*.
 (introduced by F. Wehrung in 1998).
- $K_0^{\ell}(L)$ is the preordered universal group of Dim(L).
- If L is a bounded lattice, then Δ(0, 1) is an order unit of *K*^ℓ₀(L)
- Let *L* be a finite modular lattice. Put X = M(Con L). Then $K_0^{\ell}(L) \cong \mathbb{Z}^X$, and it maps $\Delta(0, 1)$ to $(\text{Ih}(L/\theta))_{\theta \in X}$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Definitions and basic results

A lower bound of some critical point An upper bound of some critical points

Categories

Semilattice Regular rings the dimension monoid of a lattice

• Let Λ be the category of lattices.

P. Gillibert Further critical point between varieties of lattices

< □ > < □ > < □ > < □ > < □ >

Categories

Semilattice Regular rings the dimension monoid of a lattice

- Let Λ be the category of lattices.
- Let \mathscr{P} be the category of preodered abelian groups.

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Categories

Semilattice Regular rings the dimension monoid of a lattice

- Let Λ be the category of lattices.
- Let \mathscr{P} be the category of preodered abelian groups.
- Let $\mathscr S$ be the category of semilattices.

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Categories

Semilattice Regular rings the dimension monoid of a lattice

- Let Λ be the category of lattices.
- Let \mathscr{P} be the category of preodered abelian groups.
- Let $\mathscr S$ be the category of semilattices.
- Let \mathscr{R} be the category of regular rings with unit.

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Categories

Semilattice Regular rings the dimension monoid of a lattice

- Let Λ be the category of lattices.
- Let \mathscr{P} be the category of preodered abelian groups.
- Let $\mathscr S$ be the category of semilattices.
- Let \mathscr{R} be the category of regular rings with unit.
- For G ∈ P, put ∇(G) = G⁺/≍, where G⁺ is the monoid of positive elements of G and ≍ is the smalest congruence of M⁺ such that G⁺/≍ is a semilattice.

Semilattice Regular rings the dimension monoid of a lattice

Relations of those functors

$\mathcal{K}_0, \mathcal{L}, \mathsf{Id}_c, \mathcal{K}_0^\ell, \nabla$ and Con_c are all functor,

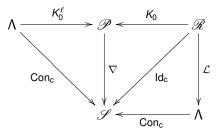
P. Gillibert Further critical point between varieties of lattices

э

Semilattice Regular rings the dimension monoid of a lattice

Relations of those functors

 K_0 , \mathcal{L} , Id_c, K_0^{ℓ} , ∇ and Con_c are all functor, and the following diagram is commutative (up to natural equivalences) :



Statement Proof

A lower bound of some critical point

Theorem

Let \mathcal{V} be a variety of locally finite modular lattices. Let F be a field, let $n \in \mathbb{N}$ such that $lh(K) \leq n$ for all K simple lattices of \mathcal{V} . Then :

 $\operatorname{crit}(\mathcal{V};\operatorname{Var}(\operatorname{Sub} F^n)) \geq \aleph_2$

Statement Proof

A lower bound of some critical point

Theorem

Let \mathcal{V} be a variety of locally finite modular lattices. Let F be a field, let $n \in \mathbb{N}$ such that $lh(K) \leq n$ for all K simple lattices of \mathcal{V} . Then :

 $\operatorname{crit}(\mathcal{V}; \operatorname{Var}(\operatorname{Sub} F^n)) \geq \aleph_2$

If $L \in \mathcal{V}$, such that card $L \leq \aleph_1$, then there exists R a regular ring, such that $\operatorname{Con}_{c} L \cong \operatorname{Con}_{c}(\mathcal{L}(R))$ and $\mathcal{L}(R) \in \operatorname{Var}(\operatorname{Sub} F^{n})$.

Statement Proof

Lifting with *K*₀

Let *L* be a bounded lattice such that card $L \leq \aleph_1$.

< □ > < □ > < □ > < □ > < □ >

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$.

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$. Set $X_i = M(\text{Con } L_i)$.

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\sf R}_i = \prod_{lpha \in {\sf X}_i} {\sf M}_{{\sf lh}(L_i / lpha)}({\sf F})$$

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system \vec{R} ,

< 同 > < 三 > < 三 >

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\sf R}_i = \prod_{lpha \in {\sf X}_i} {\sf M}_{{\sf lh}(L_i / lpha)}({\sf F})$$

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system \vec{R} , such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$

< 同 > < 三 > < 三 >

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\sf R}_i = \prod_{lpha \in {\sf X}_i} {\sf M}_{{\sf lh}(L_i / lpha)}({\sf F})$$

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system \vec{R} , such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ thus $\text{Con}_c \mathcal{L}(\lim \vec{R}) \cong \text{Con}_c L$.

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\sf R}_i = \prod_{lpha \in {\sf X}_i} {\sf M}_{{\sf lh}(L_i / lpha)}({\sf F})$$

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system \vec{R} , such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ thus $\text{Con}_c \mathcal{L}(\lim \vec{R}) \cong \text{Con}_c L$. Moreover $\mathcal{L}(R_i) \in \text{Var}(\text{Sub } F^n)$ for all $i \in I$,

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\sf R}_i = \prod_{lpha \in {\sf X}_i} {\sf M}_{{\sf lh}(L_i / lpha)}({\sf F})$$

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system \vec{R} , such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ thus $\text{Con}_c \mathcal{L}(\lim \vec{R}) \cong \text{Con}_c L$. Moreover $\mathcal{L}(R_i) \in \text{Var}(\text{Sub } F^n)$ for all $i \in I$, Therefore $\mathcal{L}(\lim \vec{R}) \in \text{Var}(\text{Sub } F^n)$.

Statement Proof

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. We write $L = \lim \vec{L}$, for some well choosen direct system $\vec{L} = (L_i, f_{i,j})_{i \leq j \text{ in } I}$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\sf R}_i = \prod_{lpha \in {\sf X}_i} {\sf M}_{{\sf lh}(L_i / lpha)}({\sf F})$$

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system \vec{R} , such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ thus $\operatorname{Con}_c \mathcal{L}(\lim \vec{R}) \cong \operatorname{Con}_c L$. Moreover $\mathcal{L}(R_i) \in \operatorname{Var}(\operatorname{Sub} F^n)$ for all $i \in I$, Therefore $\mathcal{L}(\lim \vec{R}) \in \operatorname{Var}(\operatorname{Sub} F^n)$. This can be extended to the unbounded case.

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

An upper bound of some critical points

Theorem

Let \mathcal{V} be a finitely generated variety of lattices such that $M_n \notin \mathcal{V}$ and simple lattice of \mathcal{V} are of length at most three, then:

$\text{crit}(\mathcal{M}_n;\mathcal{V})\leq\aleph_2$

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

The poset index of the diagram

Let
$$I_n = \{P \subseteq \{1, ..., n\} \mid \text{card } P \le 2 \text{ or } P = \{1, ..., n\}\}$$

P. Gillibert Further critical point between varieties of lattices

< □ > < □ > < □ > < □ > < □ >

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

The poset index of the diagram

Let
$$I_n = \{P \subseteq \{1, ..., n\} \mid \text{card } P \le 2 \text{ or } P = \{1, ..., n\}\}$$

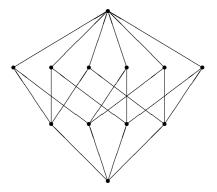


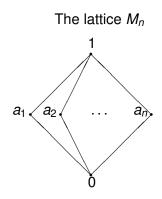
Figure: The poset *I*₄

(日)

크

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A diagram of \mathcal{M}_n



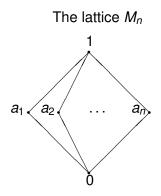
< □ > < □ > < □ > < □ > < □ >

크

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A diagram of \mathcal{M}_n

For $P \in I_n$, we put $A_P = \{a_k \mid k \in P\} \cup \{0, 1\}$

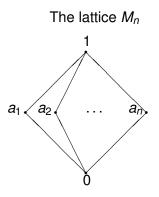


-

Statement A diagram of $M_n^{0,1}$ Corollary

A diagram of \mathcal{M}_n

For $P \in I_n$, we put $A_P = \{a_k \mid k \in P\} \cup \{0, 1\}$ For $P \leq Q \in I_n$, we denote by $f_{P,Q}: A_P \rightarrow A_Q$ the inclusion map.

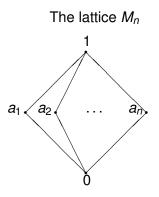


< 同 > < ∃ >

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A diagram of \mathcal{M}_n

For $P \in I_n$, we put $A_P = \{a_k \mid k \in P\} \cup \{0, 1\}$ For $P \leq Q \in I_n$, we denote by $f_{P,Q} \colon A_P \to A_Q$ the inclusion map. $\vec{A} = (A_P, f_{P,Q})_{P \leq Q \text{ in } I_n}$ is a direct system of \mathcal{M}_n .



Norm-covering

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

• A *kernel* of a poset *U* is a finite subset *V* of *U*, such that $\{v \in V \mid v \le u\}$ has a largest element for all $u \in U$.

Norm-covering

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A *kernel* of a poset U is a finite subset V of U, such that {v ∈ V | v ≤ u} has a largest element for all u ∈ U. We denote by V ⋅ u this element.

Norm-covering

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

- A *kernel* of a poset U is a finite subset V of U, such that {v ∈ V | v ≤ u} has a largest element for all u ∈ U. We denote by V ⋅ u this element.
- A poset *U* is *supported* if all finite subset can be extended to a kernel of *U*.

Norm-covering

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

- A *kernel* of a poset U is a finite subset V of U, such that {v ∈ V | v ≤ u} has a largest element for all u ∈ U. We denote by V ⋅ u this element.
- A poset *U* is *supported* if all finite subset can be extended to a kernel of *U*.
- (U, |·|) is a norm-covering of I if U is a supported poset and |·|: U → I is isotone.

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A Norm-covering of I_n

Put:

$$U_n = \bigcup_{P \subseteq \{1,\ldots,n\}} \aleph_2^P.$$

P. Gillibert Further critical point between varieties of lattices

æ

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A Norm-covering of I_n

Put:

$$U_n = \bigcup_{P \subseteq \{1,\ldots,n\}} \aleph_2^P.$$

We view the elements of U_n as (partial) functions and "to be greater" means "to extend".

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A Norm-covering of I_n

Put:

$$U_n = \bigcup_{P \subseteq \{1,\ldots,n\}} \aleph_2^P.$$

We view the elements of U_n as (partial) functions and "to be greater" means "to extend".

Put:

$$ert \cdot ert \colon U_n o I_n$$
 $u \mapsto ert u ert = egin{cases} {\sf dom} \ u & ext{if card}({\sf dom} \ u) \le 2 \ \{1,\dots,n\} & ext{otherwise}. \end{cases}$

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

A Norm-covering of I_n

·

Put:

$$U_n = \bigcup_{P \subseteq \{1,\ldots,n\}} \aleph_2^P.$$

We view the elements of U_n as (partial) functions and "to be greater" means "to extend".

Put:

$$ert \colon U_n o I_n$$
 $u \mapsto ert u ert = egin{cases} {\sf dom} \ u & ext{if card}({\sf dom} \ u) \le 2 \ \{1,\ldots,n\} & ext{otherwise}. \end{cases}$

• $(U_n, |\cdot|)$ is a norm-covering of I_n .

・ 戸 ト ・ ヨ ト ・ ヨ ト

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Condensate

Let D
 [¯] = (D_P, φ_{P,Q})_{P≤Q in In} be a direct system of finite semilattices.

< □ > < □ > < □ > < □ > < □ >

Condensate

Let D
 [¯] = (D_P, φ_{P,Q})_{P≤Q in In} be a direct system of finite semilattices.

• For V support of U_n , we put:

$$\mathsf{Cond}(\vec{D}, V) = \left\{ (\alpha_u)_{u \in U_n} \in \prod_{u \in U_n} D_{|u|} \mid \alpha_u = \phi_{|V \cdot u|, |u|}(\alpha_{|V \cdot u|}) \right\}$$

Statement A diagram of $\mathcal{M}_{p}^{0,1}$

Corollarv

Condensate

Let D
 [¯] = (D_P, φ_{P,Q})_{P≤Q in In} be a direct system of finite semilattices.

• For *V* support of *U_n*, we put:

$$\mathsf{Cond}(\vec{D}, V) = \left\{ (\alpha_u)_{u \in U_n} \in \prod_{u \in U_n} D_{|u|} \mid \alpha_u = \phi_{|V \cdot u|, |u|}(\alpha_{|V \cdot u|}) \right\}$$

Statement A diagram of $\mathcal{M}_{p}^{0,1}$

Corollarv

We have $\operatorname{Cond}(\vec{D}, V) \cong \prod_{v \in V} D_{|v|}$.

Condensate

- Let D
 [¯] = (D_P, φ_{P,Q})_{P≤Q in In} be a direct system of finite semilattices.
- For *V* support of *U_n*, we put:

$$\mathsf{Cond}(\vec{D}, V) = \left\{ (\alpha_u)_{u \in U_n} \in \prod_{u \in U_n} D_{|u|} \mid \alpha_u = \phi_{|V \cdot u|, |u|}(\alpha_{|V \cdot u|}) \right\}$$

Statement A diagram of $\mathcal{M}_{p}^{0,1}$

Corollarv

We have $\operatorname{Cond}(\vec{D}, V) \cong \prod_{v \in V} D_{|v|}$.

• We put:

 $Cond(\vec{D}, U_n) = \bigcup \{Cond(\vec{D}, V) \mid V \text{ support of } U_n\}$

・ロット (母) ・ ヨ) ・ ・ ヨ)

Condensate

- Let D
 [¯] = (D_P, φ_{P,Q})_{P≤Q in In} be a direct system of finite semilattices.
- For V support of U_n, we put:

$$\mathsf{Cond}(\vec{D}, V) = \left\{ (\alpha_u)_{u \in U_n} \in \prod_{u \in U_n} D_{|u|} \mid \alpha_u = \phi_{|V \cdot u|, |u|}(\alpha_{|V \cdot u|}) \right\}$$

Statement A diagram of $\mathcal{M}_{p}^{0,1}$

Corollarv

We have $\operatorname{Cond}(\vec{D}, V) \cong \prod_{v \in V} D_{|v|}$.

• We put:

 $Cond(\vec{D}, U_n) = \bigcup \{Cond(\vec{D}, V) \mid V \text{ support of } U_n\}$

• We have card $Cond(\vec{D}, U_n) = \aleph_2$.

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Congruence lifting lemma

Using an infinite combinatorial property proved by A. Hajnal and A. Máté, we obtain a "nice" infinite combinatorial property of $(U_n, |\cdot|)$.

Statement A diagram of $M_n^{0,1}$ Corollary

Congruence lifting lemma

Using an infinite combinatorial property proved by A. Hajnal and A. Máté, we obtain a "nice" infinite combinatorial property of $(U_n, |\cdot|)$.

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. Let $\vec{D} = (D_P, \phi_{P,Q})_{P \leq Q}$ in I_n be a direct system of finite semilattices. Then the following conditions are equivalent:

▲ □ ▶ ▲ □ ▶

Statement A diagram of $M_n^{0,1}$ Corollary

Congruence lifting lemma

Using an infinite combinatorial property proved by A. Hajnal and A. Máté, we obtain a "nice" infinite combinatorial property of $(U_n, |\cdot|)$.

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. Let $\vec{D} = (D_P, \phi_{P,Q})_{P \leq Q}$ in I_n be a direct system of finite semilattices. Then the following conditions are equivalent:

• \vec{D} has a lifting in \mathcal{V} .

▲ □ ▶ ▲ □ ▶

Statement A diagram of $M_n^{0,1}$ Corollary

Congruence lifting lemma

Using an infinite combinatorial property proved by A. Hajnal and A. Máté, we obtain a "nice" infinite combinatorial property of $(U_n, |\cdot|)$.

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. Let $\vec{D} = (D_P, \phi_{P,Q})_{P \leq Q}$ in I_n be a direct system of finite semilattices. Then the following conditions are equivalent:

- \vec{D} has a lifting in \mathcal{V} .
- **2** Cond (\vec{D}, U_n) has a lifting in \mathcal{V} .

▲ □ ▶ ▲ □ ▶

Proof idea

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Theorem

Let \mathcal{V} be a finitely generated variety of lattices such that $M_n \notin \mathcal{V}$ and simple lattice of \mathcal{V} are of length at most three, then:

 $\text{crit}(\mathcal{M}_n;\mathcal{V})\leq\aleph_2$

A B > A B >

Proof idea

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Theorem

Let \mathcal{V} be a finitely generated variety of lattices such that $M_n \notin \mathcal{V}$ and simple lattice of \mathcal{V} are of length at most three, then:

 $\text{crit}(\mathcal{M}_n;\mathcal{V})\leq\aleph_2$

• The diagram $\vec{D} = \text{Con}_c \circ \vec{A}$ is not liftable in \mathcal{V} .

Image: A marked and A marked

Proof idea

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Theorem

Let \mathcal{V} be a finitely generated variety of lattices such that $M_n \notin \mathcal{V}$ and simple lattice of \mathcal{V} are of length at most three, then:

 $\text{crit}(\mathcal{M}_n;\mathcal{V})\leq\aleph_2$

• The diagram $\vec{D} = \text{Con}_c \circ \vec{A}$ is not liftable in \mathcal{V} . Thus $\text{Cond}(\vec{D}, U_n)$ is not liftable in \mathcal{V} .

▲ □ ▶ ▲ □ ▶

Proof idea

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Theorem

Let \mathcal{V} be a finitely generated variety of lattices such that $M_n \notin \mathcal{V}$ and simple lattice of \mathcal{V} are of length at most three, then:

 $\operatorname{crit}(\mathcal{M}_n; \mathcal{V}) \leq \aleph_2$

- The diagram $\vec{D} = \text{Con}_c \circ \vec{A}$ is not liftable in \mathcal{V} . Thus $\text{Cond}(\vec{D}, U_n)$ is not liftable in \mathcal{V} .
- The diagram \vec{D} is liftable in \mathcal{M}_n .

< 同 > < ∃ >

Proof idea

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Theorem

Let \mathcal{V} be a finitely generated variety of lattices such that $M_n \notin \mathcal{V}$ and simple lattice of \mathcal{V} are of length at most three, then:

 $\operatorname{crit}(\mathcal{M}_n; \mathcal{V}) \leq \aleph_2$

- The diagram $\vec{D} = \text{Con}_c \circ \vec{A}$ is not liftable in \mathcal{V} . Thus $\text{Cond}(\vec{D}, U_n)$ is not liftable in \mathcal{V} .
- The diagram \vec{D} is liftable in \mathcal{M}_n . Thus $\text{Cond}(\vec{D}, U_n)$ is liftable in \mathcal{M}_n .

▲ □ ▶ ▲ □ ▶

Proof idea

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Theorem

Let \mathcal{V} be a finitely generated variety of lattices such that $M_n \notin \mathcal{V}$ and simple lattice of \mathcal{V} are of length at most three, then:

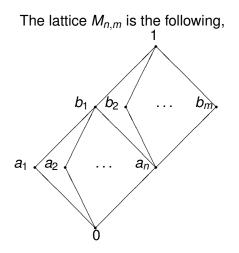
 $\operatorname{crit}(\mathcal{M}_n; \mathcal{V}) \leq \aleph_2$

- The diagram $\vec{D} = \operatorname{Con}_{c} \circ \vec{A}$ is not liftable in \mathcal{V} . Thus $\operatorname{Cond}(\vec{D}, U_n)$ is not liftable in \mathcal{V} .
- The diagram \vec{D} is liftable in \mathcal{M}_n . Thus $\text{Cond}(\vec{D}, U_n)$ is liftable in \mathcal{M}_n .
- Moreover card Cond $(\vec{D}, U_n) = \aleph_2$

▲ □ ▶ ▲ □ ▶

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

The lattice $M_{n,m}$



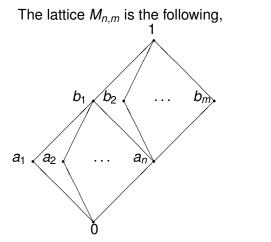
< 一型

ъ

크

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

The lattice $M_{n,m}$



we denote $\mathcal{M}_{n,m}$ the variety generated by $M_{n,m}$

< □ > < 同

Statement Corollary

Corollary

Critical points

The following equalities hold

 $\operatorname{crit}(\mathcal{M}_n; \mathcal{M}_{m,m}) = \aleph_2;$ $\operatorname{crit}(\mathcal{M}_n; \mathcal{M}_m) = \aleph_2$ for all n, m with $3 < m < n < \omega$.

Critical points

Corollary

The following equalities hold

 $\begin{aligned} \operatorname{crit}(\mathcal{M}_n; \mathcal{M}_{m,m}) &= \aleph_2; \\ \operatorname{crit}(\mathcal{M}_n; \mathcal{M}_m) &= \aleph_2 \qquad \text{for all } n, m \text{ with } 3 \leq m < n \leq \omega. \end{aligned}$

Statement

Corollarv

Let F be a finite field, and $n \ge 4$ such that card F < n - 1, then: $\operatorname{crit}(\mathcal{M}_n; \operatorname{Var}(\operatorname{Sub} F^3)) = \aleph_2$

Critical points

Corollary

The following equalities hold

 $\begin{aligned} \operatorname{crit}(\mathcal{M}_n; \mathcal{M}_{m,m}) &= \aleph_2; \\ \operatorname{crit}(\mathcal{M}_n; \mathcal{M}_m) &= \aleph_2 \qquad \text{for all } n, m \text{ with } 3 \leq m < n \leq \omega. \end{aligned}$

Statement

Corollarv

Let F be a finite field, and $n \ge 4$ such that card F < n - 1, then:

 $\operatorname{crit}(\mathcal{M}_n;\operatorname{Var}(\operatorname{Sub} F^3)) = \aleph_2$

The lattice M_n is neither in $\mathcal{M}_{m,m}$, nor in \mathcal{M}_m , nor in Sub F^3 .

Critical points

Corollary

The following equalities hold

 $\begin{aligned} \operatorname{crit}(\mathcal{M}_n; \mathcal{M}_{m,m}) &= \aleph_2; \\ \operatorname{crit}(\mathcal{M}_n; \mathcal{M}_m) &= \aleph_2 \qquad \text{for all } n, m \text{ with } 3 \leq m < n \leq \omega. \end{aligned}$

Statement

Corollarv

Let F be a finite field, and $n \ge 4$ such that card F < n - 1, then:

 $\operatorname{crit}(\mathcal{M}_n;\operatorname{Var}(\operatorname{Sub} F^3)) = \aleph_2$

The lattice M_n is neither in $\mathcal{M}_{m,m}$, nor in \mathcal{M}_m , nor in Sub F^3 . The lattice Sub $\mathbb{F}_2^2 \cong M_3$ is in $\mathcal{M}_{m,m}$ and \mathcal{M}_m and Sub F^3 .

Critical points

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Corollary

Let K and F be finite fields such that card K > card F, then:

 $\operatorname{crit}(\operatorname{Var}(\operatorname{Sub} K^3); \operatorname{Var}(\operatorname{Sub} F^3)) = \aleph_2.$

P. Gillibert Further critical point between varieties of lattices

Critical points

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Corollary

Let K and F be finite fields such that card K > card F, then:

crit(**Var**(Sub
$$K^3$$
); **Var**(Sub F^3)) = \aleph_2 .

Corollary

Let \mathcal{V} be a finitely generated variety of lattices such that $M_3 \in \mathcal{V}$, then:

$$\operatorname{crit}(\mathcal{M}_{\omega};\mathcal{V})=\aleph_{2}.$$

イロト イヨト イヨト イヨト

That is all

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

P. Gillibert Further critical point between varieties of lattices

< □ > < □ > < □ > < □ > < □ >

크

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Lifting with *K*₀

Let *L* be a bounded lattice such that card $L \leq \aleph_1$.

P. Gillibert Further critical point between varieties of lattices

< □ > < □ > < □ > < □ > < □ >

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Lifting with *K*₀

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. Let *I* be a two ladder of cardinality \aleph_1 .

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. Let *I* be a two ladder of cardinality \aleph_1 . Let $\vec{L} = (L_i)_{i \in I}$ be a direct system of finite bounded sublattices of *L* such that $L = \bigcup_{i \in I} L_i$. Set $X_i = M(\text{Con } L_i)$.

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Lifting with *K*₀

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. Let *I* be a two ladder of cardinality \aleph_1 . Let $\vec{L} = (L_i)_{i \in I}$ be a direct system of finite bounded sublattices of *L* such that $L = \bigcup_{i \in I} L_i$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\it R}_i = \prod_{lpha \in {\it X}_i} {\it M}_{{
m lh}(L_i / lpha)}({\it F})$$

• (10) • (10)

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Lifting with *K*₀

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. Let *I* be a two ladder of cardinality \aleph_1 . Let $\vec{L} = (L_i)_{i \in I}$ be a direct system of finite bounded sublattices of *L* such that $L = \bigcup_{i \in I} L_i$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\it R}_i = \prod_{lpha \in {\it X}_i} {\it M}_{{
m lh}({\it L}_i / lpha)}({\it F})$$

we have $K_0(R_i) \cong K_0^{\ell}(L_i)$.

• (10) • (10)

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Lifting with *K*₀

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. Let *I* be a two ladder of cardinality \aleph_1 . Let $\vec{L} = (L_i)_{i \in I}$ be a direct system of finite bounded sublattices of *L* such that $L = \bigcup_{i \in I} L_i$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\it R}_i = \prod_{lpha \in {\it X}_i} {\it M}_{{
m lh}(L_i / lpha)}({\it F})$$

we have $K_0(R_i) \cong K_0^{\ell}(L_i)$. the order unit $[R_i]$ is mapped to $\Delta(0, 1)$.

< 回 > < 回 > < 回 >

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Lifting with K_0

Let *L* be a bounded lattice such that card $L \leq \aleph_1$. Let *I* be a two ladder of cardinality \aleph_1 . Let $\vec{L} = (L_i)_{i \in I}$ be a direct system of finite bounded sublattices of *L* such that $L = \bigcup_{i \in I} L_i$. Set $X_i = M(\text{Con } L_i)$. Put:

$${\it R}_i = \prod_{lpha \in {\it X}_i} {\it M}_{{
m lh}(L_i / lpha)}({\it F})$$

we have $\mathcal{K}_0(R_i) \cong \mathcal{K}_0^{\ell}(L_i)$. the order unit $[R_i]$ is mapped to $\Delta(0, 1)$.

$$\mathcal{L}(R_i) = \prod_{lpha \in X_i} \operatorname{Sub}(F^{\operatorname{lh}(L_i/lpha)}) \quad \text{is in } \operatorname{Var}(\operatorname{Sub} F^n).$$

< 回 > < 回 > < 回 >

Lifting with *K*₀

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system $\vec{R} = (R_i, f_{i,j})_{i \le j \in I}$,

Lifting with *K*₀

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system $\vec{R} = (R_i, f_{i,j})_{i \le j \in I}$, such that $K_0 \circ \vec{R} \cong K_0^\ell \circ \vec{L}$

Lifting with *K*₀

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system $\vec{R} = (R_i, f_{i,j})_{i \le j \in I}$, such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ hence $\nabla(K_0(\lim \vec{R})) = \nabla(K_0^{\ell}(L))$,

• (1) • (1) • (1)

Lifting with K₀

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system $\vec{R} = (R_i, f_{i,j})_{i \le j \in I}$, such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ hence $\nabla(K_0(\lim \vec{R})) = \nabla(K_0^{\ell}(L))$, thus $\text{Con}_c \mathcal{L}(\lim \vec{R}) \cong \text{Con}_c L$.

< ∰ > < ≣ >

Lifting with K_0

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system $\vec{R} = (R_i, f_{i,j})_{i \le j \in I}$, such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ hence $\nabla(K_0(\lim \vec{R})) = \nabla(K_0^{\ell}(L))$, thus $\operatorname{Con}_c \mathcal{L}(\lim \vec{R}) \cong \operatorname{Con}_c L$. Moreover $\mathcal{L}(R_i) \in \operatorname{Var}(\operatorname{Sub} F^n)$ for all $i \in I$,

Lifting with K₀

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system $\vec{R} = (R_i, f_{i,j})_{i \le j \in I}$, such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ hence $\nabla(K_0(\lim \vec{R})) = \nabla(K_0^{\ell}(L))$, thus $\operatorname{Con}_c \mathcal{L}(\lim \vec{R}) \cong \operatorname{Con}_c L$. Moreover $\mathcal{L}(R_i) \in \operatorname{Var}(\operatorname{Sub} F^n)$ for all $i \in I$, Therefore $\mathcal{L}(\lim \vec{R}) \in \operatorname{Var}(\operatorname{Sub} F^n)$.

< ∰ > < ≣ >

Lifting with K_0

Statement A diagram of $\mathcal{M}_n^{0,1}$ Corollary

Using a result of Goodearl about lifting of morphism of ordered group we obtain a direct system $\vec{R} = (R_i, f_{i,j})_{i \le j \in I}$, such that $K_0 \circ \vec{R} \cong K_0^{\ell} \circ \vec{L}$ hence $\nabla(K_0(\lim \vec{R})) = \nabla(K_0^{\ell}(L))$, thus $\operatorname{Con}_c \mathcal{L}(\lim \vec{R}) \cong \operatorname{Con}_c L$. Moreover $\mathcal{L}(R_i) \in \operatorname{Var}(\operatorname{Sub} F^n)$ for all $i \in I$, Therefore $\mathcal{L}(\lim \vec{R}) \in \operatorname{Var}(\operatorname{Sub} F^n)$. This can be extended to the unbounded case.