Dualities and colourings

Brian Davey Miroslav Haviar Jane Pitkethly

Summer School on Algebra and Ordered Sets September 5, 2008

Třešt’

Natural Dualities

General Duality Theory (1980)

Algebras

Topological Structures

Natural Dualities

General Duality Theory (1980)

Algebras

(a finite algebra)

Topological Structures

$X=\mathbb{I} \mathbb{S}_{\mathrm{c}} \mathbb{P}(\underset{\sim}{\mathbf{M}})$
$\underset{\sim}{\mathbf{M}}=\langle M ; G, H, R, \mathcal{T}\rangle$
(an alter ego)

Natural Dualities

General Duality Theory (1980)

Algebras

(a finite algebra)

Topological Structures

$X=\mathbb{S} \mathbb{S}_{\mathbf{c}} \mathbb{P}(\underset{\sim}{\mathbf{M}})$
$\underset{\sim}{\mathbf{M}}=\langle\mathbf{M} ; \mathbf{G}, H, R, \mathcal{T}\rangle$
(an alter ego)

Full Versus Strong and Finite-level

Strong Duality

If $\underset{\sim}{\mathbf{M}}$ yields a full duality on \mathcal{A} and, moreover, $\underset{\sim}{\mathbf{M}}$ is injective in \mathcal{X}, then we say that $\underset{\sim}{\mathbf{M}}$ yields a strong duality on $\widetilde{\mathcal{A}}$.

Full Versus Strong and Finite-level

Strong Duality

If $\underset{\sim}{\mathbf{M}}$ yields a full duality on \mathcal{A} and, moreover, $\underset{\sim}{\mathbf{M}}$ is injective in \mathcal{X}, then we say that $\underset{\sim}{\mathbf{M}}$ yields a strong duality on $\widetilde{\mathcal{A}}$.

Examples

Pontryagin d. (1934), Stone d. (1936), Priestley d. (1972), ...

Full Versus Strong and Finite-level

Strong Duality

If $\underset{\sim}{\mathbf{M}}$ yields a full duality on \mathcal{A} and, moreover, $\underset{\sim}{\mathbf{M}}$ is injective in \mathcal{X}, then we say that $\underset{\sim}{\mathbf{M}}$ yields a strong duality on $\widetilde{\mathcal{A}}$.

Examples

Pontryagin d. (1934), Stone d. (1936), Priestley d. (1972), ...

The Full Versus Strong Problem

Is every full natural duality also strong?

Full Versus Strong and Finite-level

Strong Duality

If $\underset{\sim}{\mathcal{M}}$ yields a full duality on \mathcal{A} and, moreover, $\underset{\sim}{\mathcal{M}}$ is injective in \boldsymbol{X}, then we say that \mathbf{M} yields a strong duality on $\widetilde{\mathcal{A}}$.

Examples
 Pontryagin d. (1934), Stone d. (1936), Priestley d. (1972), ...

The Full Versus Strong Problem
Is every full natural duality also strong?
Finite-level Dualities
A finite-level duality (full duality, strong duality) means that the corresponding concepts are defined between the categories $\mathcal{A}_{\text {fin }}$ and $\mathcal{X}_{\text {fin }}$ of finite algebras and structures.

Priestley duality at the finite level

- Finite-level Priestley duality is a dual equivalence between

Priestley duality at the finite level

- Finite-level Priestley duality is a dual equivalence between
- the category $\mathcal{D}_{\text {fin }}$ of finite bounded distributive lattices $\mathbf{L}=\langle L ; \vee, \wedge, 0,1\rangle$ and

Priestley duality at the finite level

- Finite-level Priestley duality is a dual equivalence between
- the category $\mathcal{D}_{\text {fin }}$ of finite bounded distributive lattices $\mathbf{L}=\langle L ; \vee, \wedge, 0,1\rangle$ and
- the category $\mathcal{P}_{\text {fin }}$ of finite ordered sets $\mathbf{P}=\langle P ; \leqslant\rangle$.

Priestley duality at the finite level

- Finite-level Priestley duality is a dual equivalence between
- the category $\mathcal{D}_{\text {fin }}$ of finite bounded distributive lattices $\mathbf{L}=\langle L ; \vee, \wedge, 0,1\rangle$ and
- the category $\mathcal{P}_{\text {fin }}$ of finite ordered sets $\mathbf{P}=\langle P ; \leqslant\rangle$.
- $\mathcal{D}_{\text {fin }}$ is generated by the 2-element bounded lattice $\underline{\mathbf{2}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle$, in the sense that $\mathcal{D}_{\text {fin }}=\mathbb{S S P}_{\text {fin }}(\underline{\mathbf{2}})$.

Priestley duality at the finite level

- Finite-level Priestley duality is a dual equivalence between
- the category $\mathcal{D}_{\text {fin }}$ of finite bounded distributive lattices
$\mathbf{L}=\langle L ; \vee, \wedge, 0,1\rangle$ and
- the category $\mathcal{P}_{\text {fin }}$ of finite ordered sets $\mathbf{P}=\langle P ; \leqslant\rangle$.
- $\mathcal{D}_{\text {fin }}$ is generated by the 2-element bounded lattice $\underline{\mathbf{2}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle$, in the sense that $\mathcal{D}_{\text {fin }}=\mathbb{I S P}_{\text {fin }}(\underline{\mathbf{2}})$.
- $\mathcal{P}_{\text {fin }}$ is generated by the 2-element ordered set $\underset{\sim}{\mathbf{2}}=\langle\{0,1\} ; \leqslant\rangle$, in the sense that $\mathcal{P}_{\text {fin }}=\mathbb{I S P}_{\text {fin }}(\mathbf{2})$.

Priestley duality at the finite level

- Finite-level Priestley duality is a dual equivalence between
- the category $\mathcal{D}_{\text {fin }}$ of finite bounded distributive lattices
$\mathbf{L}=\langle L ; \vee, \wedge, 0,1\rangle$ and
- the category $\mathcal{P}_{\text {fin }}$ of finite ordered sets $\mathbf{P}=\langle P ; \leqslant\rangle$.
- $\mathcal{D}_{\text {fin }}$ is generated by the 2-element bounded lattice $\underline{\mathbf{2}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle$, in the sense that $\mathcal{D}_{\text {fin }}=\mathbb{S S P}_{\text {fin }}(\underline{\mathbf{2}})$.
- $\mathcal{P}_{\text {fin }}$ is generated by the 2-element ordered set $\underset{\sim}{\mathbf{2}}=\langle\{0,1\} ; \leqslant\rangle$, in the sense that $\mathcal{P}_{\text {fin }}=\mathbb{I S P}_{\text {fin }}(\mathbf{2})$.
- There is essentially only one full natural duality for $\mathcal{D}_{\text {fin }}$ based on $\underline{\mathbf{2}}$ (it is given by hom-functors into $\underline{\mathbf{2}}$ and $\underset{\sim}{\mathbf{2}}$).

Priestley duality at the finite level

- Finite-level Priestley duality is a dual equivalence between
- the category $\mathcal{D}_{\text {fin }}$ of finite bounded distributive lattices
$\mathbf{L}=\langle L ; \vee, \wedge, 0,1\rangle$ and
- the category $\mathcal{P}_{\text {fin }}$ of finite ordered sets $\mathbf{P}=\langle P ; \leqslant\rangle$.
- $\mathcal{D}_{\text {fin }}$ is generated by the 2-element bounded lattice $\underline{\mathbf{2}}=\langle\{0,1\} ; \vee, \wedge, 0,1\rangle$, in the sense that $\mathcal{D}_{\text {fin }}=\mathbb{S S P}_{\text {fin }}(\underline{\mathbf{2}})$.
- $\mathcal{P}_{\text {fin }}$ is generated by the 2-element ordered set $\underset{\sim}{\mathbf{2}}=\langle\{0,1\} ; \leqslant\rangle$, in the sense that $\mathcal{P}_{\text {fin }}=\mathbb{I S P}_{\text {fin }}(\mathbf{2})$.
- There is essentially only one full natural duality for $\mathcal{D}_{\text {fin }}$ based on $\underline{\mathbf{2}}$ (it is given by hom-functors into $\underline{\mathbf{2}}$ and $\underset{\sim}{\mathbf{2}}$).

A change of generator more full dualities

- $\mathcal{D}_{\text {fin }}$ is also generated by the 3-element bounded lattice $\underline{\mathbf{3}}=\langle\{0, d, 1\} ; \vee, \wedge, 0,1\rangle$, that is, $\mathcal{D}_{\text {fin }}=\mathbb{S P}_{\text {fin }}(\underline{\mathbf{3}})$.

A change of generator more full dualities

- $\mathcal{D}_{\text {fin }}$ is also generated by the 3-element bounded lattice $\underline{\mathbf{3}}=\langle\{0, d, 1\} ; \vee, \wedge, 0,1\rangle$, that is, $\mathcal{D}_{\mathrm{fin}}=\mathbb{I S P}_{\mathrm{fin}}(\underline{\mathbf{3}})$.
- The 3 -element bounded lattice $\underline{3}$ has been a seminal example in the development of Natural Duality Theory.

A change of generator more full dualities

- $\mathcal{D}_{\text {fin }}$ is also generated by the 3-element bounded lattice $\underline{\mathbf{3}}=\langle\{0, d, 1\} ; \vee, \wedge, 0,1\rangle$, that is, $\mathcal{D}_{\text {fin }}=\mathbb{I S P}_{\text {fin }}(\mathbf{3})$.
- The 3 -element bounded lattice $\underline{3}$ has been a seminal example in the development of Natural Duality Theory.

A change of generator more full dualities

- $\mathcal{D}_{\text {fin }}$ is also generated by the 3-element bounded lattice $\underline{\mathbf{3}}=\langle\{0, d, 1\} ; \vee, \wedge, 0,1\rangle$, that is, $\mathcal{D}_{\text {fin }}=\mathbb{I S P}_{\text {fin }}(\underline{\mathbf{3}})$.
- The 3 -element bounded lattice $\underline{3}$ has been a seminal example in the development of Natural Duality Theory.

- Let $\underset{\sim}{\mathbf{3}}:=\langle\{0, d, 1\} ; f, g\rangle,{\underset{\sim}{3}}_{h}:=\langle\{0, d, 1\} ; f, g, h\rangle$,

$$
\widetilde{\sim}_{\sigma}:=\langle\{0, d, 1\} ; f, g, \sigma\rangle .
$$

Why $3,{ }_{\sim}^{3}{ }_{\sigma}$ and ${\underset{\sim}{h}}^{h}$ are important?

- $\mathbf{3}:=\langle\{0, d, 1\} ; f, g, \mathcal{T}\rangle$ gives a duality for \mathcal{D} based on $\underline{\mathbf{3}}$ (Davey, Haviar, Priestley [1995]);

Why $3,{ }_{\sim}^{3}{ }_{\sigma}$ and ${\underset{\sim}{h}}$ are important?

- $\underset{\sim}{\mathbf{3}}:=\langle\{0, d, 1\} ; f, g, \mathcal{T}\rangle$ gives a duality for \mathcal{D} based on $\underline{\mathbf{3}}$ (Davey, Haviar, Priestley [1995]);
- $\mathbf{3}_{\sigma}:=\langle\{0, d, 1\} ; f, g, \sigma, \mathcal{T}\rangle$ gives a strong duality for \mathcal{D} based on 3 (Davey, Haviar [2000]);

Why $3,{ }_{\sim}^{3}{ }_{\sigma}$ and ${\underset{\sim}{h}}^{h}$ are important?

- $\mathbf{3}:=\langle\{0, d, 1\} ; f, g, \mathcal{T}\rangle$ gives a duality for \mathcal{D} based on $\underline{\mathbf{3}}$ (Davey, Haviar, Priestley [1995]);
- $\mathbf{3}_{\sigma}:=\langle\{0, d, 1\} ; f, g, \sigma, \mathcal{T}\rangle$ gives a strong duality for \mathcal{D} based on 3 (Davey, Haviar [2000]);
- ${\underset{\sim}{3}}_{h}:=\langle\{0, d, 1\} ; f, g, h, \mathcal{T}\rangle$ gives a full but not strong duality at the finite level for \mathcal{D} (Davey, Haviar, Willard [2005]).

Why $3,{ }_{\sim}^{3}{ }_{\sigma}$ and ${\underset{\sim}{3}}_{h}$ are important?

- $\mathbf{3}:=\langle\{0, d, 1\} ; f, g, \mathcal{T}\rangle$ gives a duality for \mathcal{D} based on $\underline{\mathbf{3}}$ (Davey, Haviar, Priestley [1995]);
- $\mathbf{3}_{\sigma}:=\langle\{0, d, 1\} ; f, g, \sigma, \mathcal{T}\rangle$ gives a strong duality for \mathcal{D} based on 3 (Davey, Haviar [2000]);
- ${\underset{\sim}{3}}_{h}:=\langle\{0, d, 1\} ; f, g, h, \mathcal{T}\rangle$ gives a full but not strong duality at the finite level for \mathcal{D} (Davey, Haviar, Willard [2005]).

The Full vs Strong Problem in Natural Duality Theory: Is every full natural duality strong?

Why $\underset{\sim}{3},{\underset{\sim}{\sigma}}^{3}$ and ${\underset{\sim}{h}}_{h}$ are important?

- $\underset{\sim}{\mathbf{3}}:=\langle\{0, d, 1\} ; f, g, \mathcal{T}\rangle$ gives a duality for \mathcal{D} based on $\underline{\mathbf{3}}$ (Davey, Haviar, Priestley [1995]);
- ${\underset{\sim}{3}}_{\sigma}:=\langle\{0, d, 1\} ; f, g, \sigma, \mathcal{T}\rangle$ gives a strong duality for \mathcal{D} based on 3 (Davey, Haviar [2000]);
- ${\underset{\sim}{3}}_{h}:=\langle\{0, d, 1\} ; f, g, h, \mathcal{T}\rangle$ gives a full but not strong duality at the finite level for \mathcal{D} (Davey, Haviar, Willard [2005]).

The Full vs Strong Problem in Natural Duality Theory: Is every full natural duality strong?

- NO, at the finite level: the duality for \mathcal{D} given by ${\underset{\sim}{3}}^{h}$.

Why $\underset{\sim}{3},{\underset{\sim}{\sigma}}^{3}$ and ${\underset{\sim}{h}}_{h}$ are important?

- $\mathbf{3}:=\langle\{0, d, 1\} ; f, g, \mathcal{T}\rangle$ gives a duality for \mathcal{D} based on $\underline{\mathbf{3}}$ (Davey, Haviar, Priestley [1995]);
- ${\underset{\sim}{3}}_{\sigma}:=\langle\{0, d, 1\} ; f, g, \sigma, \mathcal{T}\rangle$ gives a strong duality for \mathcal{D} based on 3 (Davey, Haviar [2000]);
- ${\underset{\sim}{3}}_{h}:=\langle\{0, d, 1\} ; f, g, h, \mathcal{T}\rangle$ gives a full but not strong duality at the finite level for \mathcal{D} (Davey, Haviar, Willard [2005]).

The Full vs Strong Problem in Natural Duality Theory: Is every full natural duality strong?

- NO, at the finite level: the duality for \mathcal{D} given by ${\underset{\sim}{3}}^{n}$.
- NO, in general: a duality constructed by Clark, Davey, Willard [June 2006] (Algebra Universalis 57 (2007), 375-381).

${\underset{\sim}{3}}^{3} h$ is structural reduct of ${\underset{\sim}{3}}_{\sigma}$

${\underset{\sim}{\mathbf{3}}}_{h}=\langle\{0, d, 1\} ; f, g, h\rangle \quad$ and $\quad{\underset{\sim}{3}}_{\sigma}=\langle\{0, d, 1\} ; f, g, \sigma\rangle$

$3_{\sim} h$ is structural reduct of ${\underset{\sim}{\alpha}}_{\sigma}$

$$
\begin{aligned}
& \left.\begin{array}{l}
(1,1) \\
(0,1) \\
(0,0)
\end{array}\right) \longrightarrow \underset{\sigma}{\longrightarrow} 0 \begin{array}{l}
1 \\
\longrightarrow d
\end{array} \\
& {\underset{\sim}{3}}_{h}=\langle\{0, d, 1\} ; f, g, h\rangle \quad \text { and } \quad{\underset{\sim}{3}}_{\sigma}=\langle\{0, d, 1\} ; f, g, \sigma\rangle
\end{aligned}
$$

- ${\underset{\sim}{d}}_{h}$ is structural reduct of ${\underset{\sim}{\sigma}}_{\sigma}$ as h is a "structural function of" $\mathbf{3}_{\sigma}$:

$3_{\sim} h$ is structural reduct of ${\underset{\sim}{\alpha}}_{\sigma}$

$$
\begin{aligned}
& {\underset{\sim}{3}}_{h}=\langle\{0, d, 1\} ; f, g, h\rangle \quad \text { and } \quad{\underset{\sim}{3}}_{\sigma}=\langle\{0, d, 1\} ; f, g, \sigma\rangle
\end{aligned}
$$

- ${\underset{\sim}{2}}_{h}$ is structural reduct of $\mathbf{3}_{\sigma}$ as h is a "structural function of" ${ }_{\sim}^{3} \sigma$:
- $\operatorname{dom}(h)=\left\{(x, y) \in\{0, d, 1\}^{2} \mid g(x)=f(y)\right\}$,

$3_{\sim} h$ is structural reduct of ${\underset{\sim}{\alpha}}_{\sigma}$

${\underset{\sim}{3}}_{h}=\langle\{0, d, 1\} ; f, g, h\rangle \quad$ and $\quad \mathbf{3}_{\sigma}=\langle\{0, d, 1\} ; f, g, \sigma\rangle$

- ${\underset{\sim}{2}}_{h}$ is structural reduct of $\mathbf{3}_{\sigma}$ as h is a "structural function of" ${ }_{\sim}^{3} \sigma$:
- $\operatorname{dom}(h)=\left\{(x, y) \in\{0, d, 1\}^{2} \mid g(x)=f(y)\right\}$,
- $h(x, y)=\sigma(f(x), g(y))$,

${\underset{\sim}{3}}^{3} h$ is structural reduct of ${\underset{\sim}{3}}_{\sigma}$

${\underset{\sim}{3}}_{h}=\langle\{0, d, 1\} ; f, g, h\rangle \quad$ and $\quad{\underset{\sim}{3}}_{\sigma}=\langle\{0, d, 1\} ; f, g, \sigma\rangle$

- ${\underset{\sim}{h}}_{h}$ is structural reduct of $\mathbf{3}_{\sigma}$ as h is a "structural function of" ${ }_{\sim}^{3} \sigma$:
- $\operatorname{dom}(h)=\left\{(x, y) \in\{0, d, 1\}^{2} \mid g(x)=f(y)\right\}$,
- $h(x, y)=\sigma(f(x), g(y))$,
- but not conversely:

${\underset{\sim}{3}}^{2}$ is structural reduct of ${\underset{\sim}{3}}_{\sigma}$

$$
\begin{aligned}
& \begin{array}{cc}
c o 1 & \epsilon \\
c q_{0}^{d} & q_{d}^{1} \\
c & g
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{\sim}{3}}_{h}=\langle\{0, d, 1\} ; f, g, h\rangle \quad \text { and } \quad{\underset{\sim}{3}}_{\sigma}=\langle\{0, d, 1\} ; f, g, \sigma\rangle
\end{aligned}
$$

- ${\underset{\sim}{d}}_{h}$ is structural reduct of ${\underset{\sim}{\sigma}}_{\sigma}$ as h is a "structural function of" ${ }_{\sim}^{3} \sigma$:
- $\operatorname{dom}(h)=\left\{(x, y) \in\{0, d, 1\}^{2} \mid g(x)=f(y)\right\}$,
- $h(x, y)=\sigma(f(x), g(y))$,
- but not conversely:
- $\{0,1\}$ is closed under f, g and h, but not under σ, so σ cannot be defined in terms of f, g and h.

Finite-level full dualities on $\mathbf{3}$

- Every full duality for $\mathcal{D}_{\text {fin }}$ based on $\underline{\mathbf{3}}$ comes from a partial algebra $\underset{\sim}{3}=\langle\{0, d, 1\} ; H\rangle$.

Finite-level full dualities on $\mathbf{3}$

- Every full duality for $\mathcal{D}_{\text {fin }}$ based on $\underline{\mathbf{3}}$ comes from a partial algebra $\underset{\sim}{3}=\langle\{0, d, 1\} ; H\rangle$.
- The relation "structural reduct of" forms a quasi-order on these partial algebras.

Finite-level full dualities on $\mathbf{3}$

- Every full duality for $\mathcal{D}_{\text {fin }}$ based on $\underline{\mathbf{3}}$ comes from a partial algebra $\underset{\sim}{3}=\langle\{0, d, 1\} ; H\rangle$.
- The relation "structural reduct of" forms a quasi-order on these partial algebras.
- Factoring this quasi-order in the usual way yields a complete (in fact, doubly algebraic) lattice $\mathcal{F}(\mathbf{3})$, the lattice of full dualities for $\mathcal{D}_{\text {fin }}$ based on $\underline{3}$.

Finite-level full dualities on $\mathbf{3}$

- Every full duality for $\mathcal{D}_{\text {fin }}$ based on $\underline{\mathbf{3}}$ comes from a partial algebra $\underset{\sim}{3}=\langle\{0, d, 1\} ; H\rangle$.
- The relation "structural reduct of" forms a quasi-order on these partial algebras.
- Factoring this quasi-order in the usual way yields a complete (in fact, doubly algebraic) lattice $\mathcal{F}(\underline{\mathbf{3}})$, the lattice of full dualities for $\mathcal{D}_{\text {fin }}$ based on $\underline{3}$.
- ${\underset{\sim}{3}}_{h}$ is the bottom of $\mathcal{F}(\underline{\mathbf{3}})$, and ${\underset{\sim}{\mathbf{3}}}_{\sigma}$ is the top of $\mathcal{F}(\underline{\mathbf{3}})$.

Finite-level full dualities on $\mathbf{3}$

- Every full duality for $\mathcal{D}_{\text {fin }}$ based on $\underline{\mathbf{3}}$ comes from a partial algebra $\underset{\sim}{3}=\langle\{0, d, 1\} ; H\rangle$.
- The relation "structural reduct of" forms a quasi-order on these partial algebras.
- Factoring this quasi-order in the usual way yields a complete (in fact, doubly algebraic) lattice $\mathcal{F}(\underline{\mathbf{3}})$, the lattice of full dualities for $\mathcal{D}_{\text {fin }}$ based on $\underline{3}$.
- ${\underset{\sim}{\mathbf{3}}}_{h}$ is the bottom of $\mathcal{F}(\underline{\mathbf{3}})$, and ${\underset{\sim}{\mathbf{3}}}_{\sigma}$ is the top of $\mathcal{F}(\underline{\mathbf{3}})$.

Encoding algebraic relations as coloured ordered sets

- We can use Priestley duality to encode the algebraic relation $L=\{0, d, 1\}^{2} \backslash\{(1,0),(0,1)\}$ on $\underline{3}$ as a coloured ordered set \mathbf{C}.

Encoding algebraic relations as coloured ordered sets

- We can use Priestley duality to encode the algebraic relation $L=\{0, d, 1\}^{2} \backslash\{(1,0),(0,1)\}$ on $\underline{3}$ as a coloured ordered set \mathbf{C}.

Encoding algebraic relations as coloured ordered sets

- We can use Priestley duality to encode the algebraic relation $L=\{0, d, 1\}^{2} \backslash\{(1,0),(0,1)\}$ on $\underline{3}$ as a coloured ordered set \mathbf{C}.

Encoding algebraic relations as coloured ordered sets

- We can use Priestley duality to encode the algebraic relation $L=\{0, d, 1\}^{2} \backslash\{(1,0),(0,1)\}$ on $\underline{3}$ as a coloured ordered set \mathbf{C}.

$H(3)$

$$
H(\mathbf{L})
$$

Encoding algebraic relations as coloured ordered sets

- We can use Priestley duality to encode the algebraic relation $L=\{0, d, 1\}^{2} \backslash\{(1,0),(0,1)\}$ on $\underline{3}$ as a coloured ordered set \mathbf{C}.

H(3)

$$
H(\mathbf{L})
$$

Encoding algebraic relations as coloured ordered sets

- We can use Priestley duality to encode the algebraic relation $L=\{0, d, 1\}^{2} \backslash\{(1,0),(0,1)\}$ on $\underline{3}$ as a coloured ordered set \mathbf{C}.

$$
\mathbf{C}=\langle H(\mathbf{L}) ; \leqslant, \triangleleft\rangle
$$

Encoding algebraic relations as coloured ordered sets

- We can use Priestley duality to encode the algebraic relation $L=\{0, d, 1\}^{2} \backslash\{(1,0),(0,1)\}$ on $\underline{3}$ as a coloured ordered set \mathbf{C}.

- The red edges remember the coordinate projections up to a permutation.

Recovering algebraic relations from coloured posets

- We can recover the algebraic relation L back from the coloured ordered set C.

Recovering algebraic relations from coloured posets

- We can recover the algebraic relation L back from the coloured ordered set C.

Recovering algebraic relations from coloured posets

- We can recover the algebraic relation L back from the coloured ordered set C.

- The n-ary algebraic relations on $\mathbf{3}$ are in a natural correspondence with posets that are covered by n 2-chains labelled $\widehat{\rho}_{1}, \ldots, \widehat{\rho}_{n}$.

Encoding algebraic operations as coloured posets

Encoding algebraic operations as coloured posets

- The n-ary algebraic operations k on $\underline{\mathbf{3}}$ are in a natural correspondence with posets that are covered by n 2-chains labelled $\widehat{\rho}_{1}, \ldots, \widehat{\rho}_{n}$ and that also have a 2-chain labelled \widehat{k}.

Coloured ordered sets

Definition

Let $\mathbf{C}=\langle C ; \leqslant, \triangleleft\rangle$ be a structure, where both \leqslant and \triangleleft are binary relations. Then we call C a coloured ordered set if

Coloured ordered sets

Definition

Let $\mathbf{C}=\langle C ; \leqslant, \triangleleft\rangle$ be a structure, where both \leqslant and \triangleleft are binary relations. Then we call \mathbf{C} a coloured ordered set if

- $\langle C ; \leqslant\rangle$ is an ordered set,

Coloured ordered sets

Definition

Let $\mathbf{C}=\langle C ; \leqslant, \triangleleft\rangle$ be a structure, where both \leqslant and \triangleleft are binary relations. Then we call \mathbf{C} a coloured ordered set if

- $\langle C ; \leqslant\rangle$ is an ordered set,
- coloured edges occur only between comparable elements,

Coloured ordered sets

Definition

Let $\mathbf{C}=\langle C ; \leqslant, \triangleleft\rangle$ be a structure, where both \leqslant and \triangleleft are binary relations. Then we call C a coloured ordered set if

- $\langle C ; \leqslant\rangle$ is an ordered set,
- coloured edges occur only between comparable elements,
- every element of C is an endpoint of a coloured edge, and

Coloured ordered sets

Definition

Let $\mathbf{C}=\langle C ; \leqslant, \triangleleft\rangle$ be a structure, where both \leqslant and \triangleleft are binary relations. Then we call \mathbf{C} a coloured ordered set if

- $\langle C ; \leqslant\rangle$ is an ordered set,
- coloured edges occur only between comparable elements,
- every element of C is an endpoint of a coloured edge, and
- every connected component of the ordered set $\langle C ; \leqslant\rangle$ is finite.

Coloured ordered sets

Definition

Let $\mathbf{C}=\langle C ; \leqslant, \triangleleft\rangle$ be a structure, where both \leqslant and \triangleleft are binary relations. Then we call \mathbf{C} a coloured ordered set if

- $\langle C ; \leqslant\rangle$ is an ordered set,
- coloured edges occur only between comparable elements,
- every element of C is an endpoint of a coloured edge, and
- every connected component of the ordered set $\langle C ; \leqslant\rangle$ is finite.

A homomorphism between coloured ordered sets must preserve both \leqslant and \triangleleft.

Correspondence with alter egos

- Let \mathbf{C} be a coloured ordered set, and let \mathcal{C} denote the set of all \leqslant-connected components of \mathbf{C}.

Correspondence with alter egos

- Let \mathbf{C} be a coloured ordered set, and let \mathcal{C} denote the set of all $\leqslant-$ connected components of \mathbf{C}.
- Let R_{C} be algebraic relations on $\mathbf{3}$ that correspond to \mathcal{C}.

Correspondence with alter egos

- Let \mathbf{C} be a coloured ordered set, and let \mathcal{C} denote the set of all \leqslant-connected components of \mathbf{C}.
- Let R_{C} be algebraic relations on $\mathbf{3}$ that correspond to \mathcal{C}.
- To \mathbf{C} we assign the following alter ego:

$$
{\underset{\sim}{\mathbf{3}}}_{\mathbf{c}} \mathbf{:}=\left\langle\{0, d, 1\} ;\{f, g, h\} \cup \bigcup_{r \in R_{\mathrm{c}}} \operatorname{hom}(\mathbf{r}, \underline{\mathbf{3}}), \mathcal{T}\right\rangle .
$$

Correspondence with alter egos

- Let \mathbf{C} be a coloured ordered set, and let \mathcal{C} denote the set of all \leqslant-connected components of \mathbf{C}.
- Let R_{C} be algebraic relations on $\mathbf{3}$ that correspond to \mathcal{C}.
- To \mathbf{C} we assign the following alter ego:

$$
{\underset{\sim}{\mathbf{3}}}_{\mathbf{c}} \mathbf{:}=\left\langle\{0, d, 1\} ;\{f, g, h\} \cup \bigcup_{r \in R_{\mathrm{c}}} \operatorname{hom}(\mathbf{r}, \underline{\mathbf{3}}), \mathcal{T}\right\rangle .
$$

Correspondence with alter egos

- Let \mathbf{C} be a coloured ordered set, and let \mathcal{C} denote the set of all \leqslant-connected components of \mathbf{C}.
- Let R_{C} be algebraic relations on $\mathbf{3}$ that correspond to \mathcal{C}.
- To \mathbf{C} we assign the following alter ego:

$$
{\underset{\sim}{3}}_{\mathbf{c}}:=\left\langle\{0, d, 1\} ;\{f, g, h\} \cup \bigcup_{r \in R_{\mathrm{c}}} \text { hom }(\mathbf{r}, \underline{\mathbf{3}}), \mathcal{T}\right\rangle \text {. }
$$

Correspondence

- For each coloured ordered set \mathbf{C}, the alter ego $\mathbf{N}_{\mathbf{~}}$ c fully dualises $\mathbf{3}$ at the finite level.

Correspondence with alter egos

- Let C be a coloured ordered set, and let \mathcal{C} denote the set of all \leqslant-connected components of \mathbf{C}.
- Let R_{C} be algebraic relations on $\mathbf{3}$ that correspond to \mathcal{C}.
- To \mathbf{C} we assign the following alter ego:

$$
{\underset{\sim}{3}}_{\mathbf{c}}:=\left\langle\{0, d, 1\} ;\{f, g, h\} \cup \bigcup_{r \in R_{\mathrm{c}}} \text { hom }(\mathbf{r}, \underline{\mathbf{3}}), \mathcal{T}\right\rangle \text {. }
$$

Correspondence

- For each coloured ordered set C, the alter ego $\mathbf{N}_{\sim} \mathbf{c}$ fully dualises $\mathbf{3}$ at the finite level.
- For each alter ego $\underset{\sim}{3}$ that fully dualises $\underline{3}$ at the finite level, there is a coloured ordered set \mathbf{C} such that $\underset{\sim}{3} \equiv{\underset{\sim}{3}}^{\mathbf{c}} \mathrm{c}$.

A quasi-order on coloured ordered sets

C can be coloured using D

D

C

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

A quasi-order on coloured ordered sets

C can be coloured using D

D cannot be coloured using C

C

A quasi-order on coloured ordered sets

C can be coloured using D

D cannot be coloured using C

C

A quasi-order on coloured ordered sets

C can be coloured using D

D cannot be coloured using C

A quasi-order on coloured ordered sets

C can be coloured using D

D cannot be coloured using C

A quasi-order on coloured ordered sets

Definition

- Let C and D be coloured ordered sets.

If \mathbf{D} can be used to colour every edge in $\leqslant \mathbf{c}$, then we say that \mathbf{C} can be coloured by \mathbf{D}.

A quasi-order on coloured ordered sets

Definition

- Let C and D be coloured ordered sets.

If \mathbf{D} can be used to colour every edge in $\leqslant \mathbf{c}$, then we say that \mathbf{C} can be coloured by \mathbf{D}.

- The relation "can be coloured by" is a quasi-order on the class of coloured ordered sets.

A quasi-order on coloured ordered sets

Definition

- Let C and D be coloured ordered sets.

If \mathbf{D} can be used to colour every edge in $\leqslant \mathbf{c}$, then we say that \mathbf{C} can be coloured by \mathbf{D}.

- The relation "can be coloured by" is a quasi-order on the class of coloured ordered sets.
- Let \mathcal{C} denote the ordered set obtained by factoring this quasi-order in the usual way.

A quasi-order on coloured ordered sets

Definition

- Let C and D be coloured ordered sets.

If \mathbf{D} can be used to colour every edge in $\leqslant \mathbf{c}$, then we say that \mathbf{C} can be coloured by \mathbf{D}.

- The relation "can be coloured by" is a quasi-order on the class of coloured ordered sets.
- Let \mathcal{C} denote the ordered set obtained by factoring this quasi-order in the usual way.

Theorem

The ordered set \mathcal{C} is isomorphic to the lattice $\mathcal{F}(\underline{\mathbf{3}})$ of full dualities for $\mathcal{D}_{\text {fin }}$ based on $\mathbf{3}$.

Illustrations 1

Figure: Some different coloured ordered sets

Illustrations 2

Figure: Coloured ordered sets equivalent to \mathbf{S}_{\top}

Joins and meets

- Joins are given by disjoint unions of representatives; for example, $\mathbf{S}_{\top} \equiv \mathbf{S}_{6} \cup \mathbf{S}_{9}$.

Joins and meets

- Joins are given by disjoint unions of representatives; for example, $\mathbf{S}_{\top} \equiv \mathbf{S}_{6} \cup \mathbf{S}_{9}$.
- Meets are difficult to calculate. In fact we have not been able to calculate a single non-trivial meet in \mathcal{C} !

Joins and meets

- Joins are given by disjoint unions of representatives; for example, $\mathbf{S}_{\top} \equiv \mathbf{S}_{6} \cup \mathbf{S}_{9}$.
- Meets are difficult to calculate. In fact we have not been able to calculate a single non-trivial meet in \mathcal{C} !
- Meet-sausage Problem: Is $\mathbf{S}_{\perp} \equiv \mathbf{S}_{6} \wedge \mathbf{S}_{9}$?

Joins and meets

- Joins are given by disjoint unions of representatives; for example, $\mathbf{S}_{\top} \equiv \mathbf{S}_{6} \cup \mathbf{S}_{9}$.
- Meets are difficult to calculate. In fact we have not been able to calculate a single non-trivial meet in \mathcal{C} !
- Meet-sausage Problem: Is $\mathbf{S}_{\perp} \equiv \mathbf{S}_{6} \wedge \mathbf{S}_{9}$?
- The following easy lemma allows us to show that \mathcal{C}, and therefore $\mathcal{F}(\underline{\mathbf{3}})$, is non-modular without actually calculating a meet.

The lattice is non-modular

Lemma

Let \mathcal{L} be a lattice and let $c, d, e \in L$. Assume that c is join-irreducible in \mathcal{L}, and that $e<c \leqslant d \vee e$ and $c \nless d$. Then the lattice \mathcal{L} is not modular. Indeed, the pentagon \mathcal{N}_{5} embeds into \mathcal{L} as shown below.

The lattice is non-modular

Lemma

Let \mathcal{L} be a lattice and let $c, d, e \in L$. Assume that c is join-irreducible in \mathcal{L}, and that $e<c \leqslant d \vee e$ and $c \nless d$. Then the lattice \mathcal{L} is not modular. Indeed, the pentagon \mathcal{N}_{5} embeds into \mathcal{L} as shown below.

To prove that \mathcal{C} is non-modular it suffices to find three coloured ordered sets \mathbf{C}, \mathbf{D} and \mathbf{E} satisfying the conditions of this lemma.

The coloured ordered sets C, D and E

The lattice $\mathcal{F}(\underline{3})$ is as big as possible

Theorem

- The lattice $\mathcal{F}(\underline{\mathbf{3}})$ has cardinality $2^{\aleph_{0}}$.
- The lattice $\mathcal{F}(\underline{\mathbf{3}})$ contains a countably infinite antichain.
- The lattice $\mathcal{F}(\underline{\mathbf{3}})$ contains an uncountable chain.

The lattice $\mathcal{F}(\underline{3})$ is as big as possible

Proof

Embed the ordered $\operatorname{set}\langle\wp(\mathbb{N}) ; \subseteq\rangle$ into \mathcal{C} via the coloured ordered sets $\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}, \ldots$ which form an independent antichain in \mathcal{C}.

W_{1}

\mathbf{W}_{2}

W_{3}

An infinite descending chain in $\mathcal{F}(\underline{\mathbf{3}})$

Theorem
The lattice $\mathcal{F}(\underline{\mathbf{3}})$ contains an infinite descending chain.

An infinite descending chain in $\mathcal{F}(\underline{\mathbf{3}})$

Theorem
The lattice $\mathcal{F}(\underline{\mathbf{3}})$ contains an infinite descending chain.

Proof

Show that the coloured ordered sets $\mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{4}, \ldots$ form an infinite descending chain $\mathbf{P}_{2}>\mathbf{P}_{3}>\mathbf{P}_{4}>\cdots$ in \mathcal{C}.

\mathbf{P}_{2}

P_{4}

Concluding remarks

- In general, a finite algebra M admits essentially only one finite-level strong duality, but can admit many different finite-level full dualities.

Concluding remarks

- In general, a finite algebra M admits essentially only one finite-level strong duality, but can admit many different finite-level full dualities.
- For every finite algebra M, these finite-level full dualities form a doubly algebraic lattice $\mathcal{F}(\mathbf{M})$ (Davey, Pitkethly, Willard [2006-8]).

Concluding remarks

- In general, a finite algebra M admits essentially only one finite-level strong duality, but can admit many different finite-level full dualities.
- For every finite algebra M, these finite-level full dualities form a doubly algebraic lattice $\mathcal{F}(\mathbf{M})$ (Davey, Pitkethly, Willard [2006-8]).
- There are many finite algebras \mathbf{M} for which the lattice $\mathcal{F}(\mathbf{M})$ is

Concluding remarks

- In general, a finite algebra \mathbf{M} admits essentially only one finite-level strong duality, but can admit many different finite-level full dualities.
- For every finite algebra M, these finite-level full dualities form a doubly algebraic lattice $\mathcal{F}(\mathbf{M})$ (Davey, Pitkethly, Willard [2006-8]).
- There are many finite algebras \mathbf{M} for which the lattice $\mathcal{F}(\mathbf{M})$ is
- trivial: a finite semilattice or abelian group (Davey, Haviar and Niven [2007]), and of course, $\underline{\mathbf{2}}$ (Priestley duality);

Concluding remarks

- In general, a finite algebra \mathbf{M} admits essentially only one finite-level strong duality, but can admit many different finite-level full dualities.
- For every finite algebra M, these finite-level full dualities form a doubly algebraic lattice $\mathcal{F}(\mathbf{M})$ (Davey, Pitkethly, Willard [2006-8]).
- There are many finite algebras \mathbf{M} for which the lattice $\mathcal{F}(\mathbf{M})$ is
- trivial: a finite semilattice or abelian group (Davey, Haviar and Niven [2007]), and of course, $\underline{\mathbf{2}}$ (Priestley duality);
- finite: any finite quasi-primal algebra \mathbf{M} (for \mathbf{R}, the solution to the Full vs Strong Problem, it has 17 elements).

Concluding remarks

- In general, a finite algebra \mathbf{M} admits essentially only one finite-level strong duality, but can admit many different finite-level full dualities.
- For every finite algebra M, these finite-level full dualities form a doubly algebraic lattice $\mathcal{F}(\mathbf{M})$ (Davey, Pitkethly, Willard [2006-8]).
- There are many finite algebras \mathbf{M} for which the lattice $\mathcal{F}(\mathbf{M})$ is
- trivial: a finite semilattice or abelian group (Davey, Haviar and Niven [2007]), and of course, $\underline{\mathbf{2}}$ (Priestley duality);
- finite: any finite quasi-primal algebra \mathbf{M} (for \mathbf{R}, the solution to the Full vs Strong Problem, it has 17 elements).
- The three-element bounded lattice $\underline{\mathbf{3}}$ is the first example where the lattice $\mathcal{F}(\mathbf{M})$ has been proved to be infinite (Davey, Haviar and Pitkethly [2006-8]).

The Negative Solution of the Full vs Strong Problem:

The Algebra and the Alter Ego

Full Does Not Imply Strong! [Clark, Davey, Willard (2006)]
Let $\mathbf{R}:=\langle\{0, a, b, 1\} ; t, \vee, \wedge, 0,1\rangle$, where $0<a<b<1$ and the operation t is the ternary discriminator.

The Negative Solution of the Full vs Strong Problem:

The Algebra and the Alter Ego

Full Does Not Imply Strong! [Clark, Davey, Willard (2006)]
Let $\mathbf{R}:=\langle\{0, a, b, 1\} ; t, \vee, \wedge, 0,1\rangle$, where $0<a<b<1$ and the operation t is the ternary discriminator.

- ${\underset{\sim}{R}}_{\top}^{\mathbf{R}^{\prime}}:=\left\langle\{0, a, b, 1\} ; u, u^{-1}, \mathcal{T}\right\rangle$ yields a strong duality on $\operatorname{ISP}(\mathbf{R})$.

The Negative Solution of the Full vs Strong Problem:

The Algebra and the Alter Ego

Full Does Not Imply Strong! [Clark, Davey, Willard (2006)]

Let $\mathbf{R}:=\langle\{0, a, b, 1\} ; t, \vee, \wedge, 0,1\rangle$, where $0<a<b<1$ and the operation t is the ternary discriminator.

- ${\underset{\sim}{\sim}}_{\top}^{\mathbf{R}^{\prime}}:=\left\langle\{0, a, b, 1\} ; u, u^{-1}, \mathcal{T}\right\rangle$ yields a strong duality on $\mathbb{I S P}(\mathbf{R})$.
- ${\underset{\sim}{\mathbf{R}}}_{\perp}:=\langle\{0, a, b, 1\} ; \operatorname{graph}(u), \mathcal{T}\rangle$ yields a full but not strong duality on $\mathbb{I S P}(\mathbf{R})$.

The Negative Solution:

The Lattice of All Full Dualities on $\operatorname{ISP}(\mathbf{R})$ [Davey, Pitkethly, Willard (2007)]

$$
\begin{aligned}
r & =\operatorname{graph}(u) \\
r_{0} & =\operatorname{fix}(u) \\
r_{1} & =\operatorname{dom}(u) \\
r_{2} & =\operatorname{ran}(u)
\end{aligned}
$$

