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Natural Dualities

General Duality Theory (1980)

Algebras Topological Structures

M = 〈M; F 〉 M∼ = 〈M; G,H,R,T〉
(a finite algebra) (an alter ego)
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Full Versus Strong and Finite-level

Strong Duality

If M∼ yields a full duality on A and, moreover, M∼ is injective in X,
then we say that M∼ yields a strong duality on A.

Examples
Pontryagin d. (1934), Stone d. (1936), Priestley d. (1972), ...

The Full Versus Strong Problem

Is every full natural duality also strong?

Finite-level Dualities
A finite-level duality (full duality, strong duality) means that the
corresponding concepts are defined between the categories
Afin and Xfin of finite algebras and structures.
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Priestley duality at the finite level

Finite-level Priestley duality is a dual equivalence between

the category Dfin of finite bounded distributive lattices
L = 〈L;∨,∧,0,1〉 and
the category Pfin of finite ordered sets P = 〈P;6〉.

Dfin is generated by the 2-element bounded lattice
2 = 〈{0,1};∨,∧,0,1〉, in the sense that Dfin = ISPfin(2).

Pfin is generated by the 2-element ordered set
2∼ = 〈{0,1};6〉, in the sense that Pfin = ISPfin(2∼).

There is essentially only one full natural duality for Dfin
based on 2 (it is given by hom-functors into 2 and 2∼).
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A change of generator more full dualities

Dfin is also generated by the 3-element bounded lattice
3 = 〈{0,d ,1};∨,∧,0,1〉, that is, Dfin = ISPfin(3).

The 3-element bounded lattice 3 has been a seminal
example in the development of Natural Duality Theory.
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Let 3∼ := 〈{0,d ,1}; f ,g〉, 3∼h := 〈{0,d ,1}; f ,g,h〉,
3∼σ := 〈{0,d ,1}; f ,g, σ〉.
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Why 3∼, 3∼σ and 3∼h are important?

3∼ := 〈{0,d ,1}; f ,g,T〉 gives a duality for D based on 3
(Davey, Haviar, Priestley [1995]);

3∼σ := 〈{0,d ,1}; f ,g, σ,T〉 gives a strong duality for D

based on 3 (Davey, Haviar [2000]);

3∼h := 〈{0,d ,1}; f ,g,h,T〉 gives a full but not strong
duality at the finite level for D (Davey, Haviar, Willard
[2005]).

The Full vs Strong Problem in Natural Duality Theory:
Is every full natural duality strong?

NO, at the finite level: the duality for D given by 3∼h.
NO, in general: a duality constructed by Clark, Davey,
Willard [June 2006] (Algebra Universalis 57 (2007),
375-381).
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3∼h is structural reduct of 3∼σ
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3∼h = 〈{0,d ,1}; f ,g,h〉 and 3∼σ = 〈{0,d ,1}; f ,g, σ〉

3∼h is structural reduct of 3∼σ as h is a “structural function
of” 3∼σ:

dom(h) =
{

(x , y) ∈ {0,d ,1}2
∣∣ g(x) = f (y)

}
,

h(x , y) = σ(f (x),g(y)),

but not conversely:

{0,1} is closed under f , g and h, but not under σ,
so σ cannot be defined in terms of f , g and h.
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Finite-level full dualities on 3

Every full duality for Dfin based on 3 comes from a
partial algebra 3∼ = 〈{0,d ,1}; H〉.

The relation “structural reduct of” forms a quasi-order on
these partial algebras.

Factoring this quasi-order in the usual way yields a
complete (in fact, doubly algebraic) lattice F(3),
the lattice of full dualities for Dfin based on 3.

3∼h is the bottom of F(3), and 3∼σ is the top of F(3).

What lies between 3∼h and 3∼σ?
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Encoding algebraic relations as coloured ordered sets

We can use Priestley duality to encode the algebraic
relation L = {0,d ,1}2 \ {(1,0), (0,1)} on 3 as a
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Recovering algebraic relations from coloured posets

We can recover the algebraic relation L back from the
coloured ordered set C.
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The n-ary algebraic relations on 3 are in a natural
correspondence with posets that are covered by n
2-chains labelled ρ̂1, . . . , ρ̂n.
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Encoding algebraic operations as coloured posets
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The n-ary algebraic operations k on 3 are in a natural
correspondence with posets that are covered by n
2-chains labelled ρ̂1, . . . , ρ̂n and that also have a 2-chain
labelled k̂ .
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Coloured ordered sets

Definition
Let C = 〈C;6,C〉 be a structure, where both 6 and C are
binary relations. Then we call C a coloured ordered set if

〈C;6〉 is an ordered set,
coloured edges occur only between comparable elements,
every element of C is an endpoint of a coloured edge, and
every connected component of the ordered set 〈C;6〉 is
finite.

A homomorphism between coloured ordered sets must
preserve both 6 and C.
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Correspondence with alter egos

Let C be a coloured ordered set, and let C denote the set
of all 6-connected components of C.

Let RC be algebraic relations on 3 that correspond to C.
To C we assign the following alter ego:

3∼C :=
〈
{0,d ,1}; {f ,g,h} ∪

⋃
r∈RC

hom(r,3),T
〉
.

Correspondence

For each coloured ordered set C, the alter ego 3∼C fully
dualises 3 at the finite level.
For each alter ego 3∼ that fully dualises 3 at the finite level,
there is a coloured ordered set C such that 3∼ ≡ 3∼C.
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A quasi-order on coloured ordered sets
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A quasi-order on coloured ordered sets

Definition
Let C and D be coloured ordered sets.
If D can be used to colour every edge in 6C, then we say
that C can be coloured by D.

The relation “can be coloured by” is a quasi-order on the
class of coloured ordered sets.
Let C denote the ordered set obtained by factoring this
quasi-order in the usual way.

Theorem
The ordered set C is isomorphic to the lattice F(3) of full
dualities for Dfin based on 3.
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Illustrations 1
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Figure: Some different coloured ordered sets
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Illustrations 2
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Figure: Coloured ordered sets equivalent to S>
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Joins and meets

Joins are given by disjoint unions of representatives;
for example, S> ≡ S6 ·∪ S9.

Meets are difficult to calculate. In fact we have not been
able to calculate a single non-trivial meet in C!

Meet-sausage Problem: Is S⊥ ≡ S6 ∧ S9?

The following easy lemma allows us to show that C, and
therefore F(3), is non-modular without actually calculating
a meet.
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The lattice is non-modular

Lemma
Let L be a lattice and let c,d ,e ∈ L. Assume that c is
join-irreducible in L, and that e < c 6 d ∨ e and c 
 d . Then
the lattice L is not modular. Indeed, the pentagon N5 embeds
into L as shown below.

c
c ∧ d

@
@

�
�
��

se
�
�

c(c ∧ d) ∨ e

sc �
�

c d ∨ e
\
\
\\sd

To prove that C is non-modular it suffices to find three coloured
ordered sets C, D and E satisfying the conditions of this lemma.
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The coloured ordered sets C, D and E

C
C is join-irreducible,
E < C 6 D ∨ E
and C 
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The lattice F(3) is as big as possible

Theorem

The lattice F(3) has cardinality 2ℵ0 .
The lattice F(3) contains a countably infinite antichain.
The lattice F(3) contains an uncountable chain.

Proof
Embed the ordered set〈℘(N);⊆〉 into C via the coloured
ordered sets W1, W2, W3, . . . which form an independent
antichain in C.

W1

c
c
@
@
@ c

c
�
�
�

c

W2

c
c
@
@
@ c

c
@
@
@ c

c
��

����

c
c

W3

c
c
@
@
@ c

c
@
@
@ c

c
@
@
@ c

c���������

c
c
c



Full dualities Coloured ordered sets The lattice is non-modular The lattice is big Concluding remarks

The lattice F(3) is as big as possible

Proof
Embed the ordered set〈℘(N);⊆〉 into C via the coloured
ordered sets W1, W2, W3, . . . which form an independent
antichain in C.

W1

c
c
@
@
@ c

c
�
�
�

c

W2

c
c
@
@
@ c

c
@
@
@ c

c
���

���

c
c

W3

c
c
@
@
@ c

c
@
@
@ c

c
@
@
@ c

c���������

c
c
c



Full dualities Coloured ordered sets The lattice is non-modular The lattice is big Concluding remarks

An infinite descending chain in F(3)

Theorem
The lattice F(3) contains an infinite descending chain.

Proof
Show that the coloured ordered sets P2, P3, P4, . . . form an
infinite descending chain P2 > P3 > P4 > · · · in C.

P2

b
bd
b

P3

b
b
b
b

P4

b
b
b . . .

b
b
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Concluding remarks

In general, a finite algebra M admits essentially only one
finite-level strong duality, but can admit many different
finite-level full dualities.

For every finite algebra M, these finite-level full dualities
form a doubly algebraic lattice F(M) (Davey, Pitkethly,
Willard [2006-8]).

There are many finite algebras M for which the lattice
F(M) is

trivial: a finite semilattice or abelian group (Davey, Haviar
and Niven [2007]), and of course, 2 (Priestley duality);
finite: any finite quasi-primal algebra M (for R, the solution
to the Full vs Strong Problem, it has 17 elements).

The three-element bounded lattice 3 is the first example
where the lattice F(M) has been proved to be infinite
(Davey, Haviar and Pitkethly [2006-8]).
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The Negative Solution of the Full vs Strong Problem:
The Algebra and the Alter Ego

R c0

ca

cb

c1

u s0z

sa
7

cb

s1z

u−1 s0z

ca

sb
w

s1z

Full Does Not Imply Strong! [Clark, Davey, Willard (2006)]

Let R := 〈{0,a,b,1}; t ,∨,∧,0,1〉, where 0 < a < b < 1 and the
operation t is the ternary discriminator.

R∼> := 〈{0,a,b,1}; u,u−1,T〉 yields a strong duality
on ISP(R).
R∼⊥ := 〈{0,a,b,1}; graph(u),T〉 yields a full but not strong
duality on ISP(R).
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The Negative Solution:
The Lattice of All Full Dualities on ISP(R) [Davey, Pitkethly, Willard (2007)]
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