Rings of endomorphisms of Abelian groups with special 0-neighborhoods

Horea Abrudan, Mihail Ursul

August 27, 2008

Horea Abrudan, Mihail Ursul Rings of endomorphisms of Abelian groups with special 0-neigh

Abstract

Properties of a 0-neighborhood of a topological ring have an influence to the global properties of it. For instance, commutativity of a connected ring is equivalent to commutativity of a neighborhood of 0. The connections between local and global properties of a topological ring are weaker in the case of disconnected rings. We study the influence of properties of a neighborhood of 0 of a topological ring $(End(A), \mathcal{T})$, where End(A) is the ring of endomorphisms of an Abelian group A and T the finite topology. We show that although the rings of endomorphisms of Abelian groups are totally disconnected, there is a close relation between local and global properties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Let A be an Abelian group. The following statements are equivalent:

1. End(A) is a Q_l -ring;

Let A be an Abelian group. The following statements are equivalent:

- 1. End(A) is a Q_l -ring;
- 2. End(A) is a Q_r -ring;

Let A be an Abelian group. The following statements are equivalent:

- 1. End(A) is a Q_l -ring;
- 2. End(A) is a Q_r -ring;
- 3. End(A) is a Q-ring;

伺下 イヨト イヨト

Let A be an Abelian group. The following statements are equivalent:

- 1. End(A) is a Q_l -ring;
- 2. End(A) is a Q_r -ring;
- 3. End(A) is a Q-ring;
- 4. J[End(A)] is open.

伺下 イヨト イヨト

Let A be a separable infinite p-group. Then the ring End(A) has no 0-neighborhood consisting of topologically nilpotent elements.

Let A be a separable infinite p-group. Then the ring End(A) has no 0-neighborhood consisting of topologically nilpotent elements.

Theorem

If A is an Abelian separable reduced p-group and End(A) have a 0-neighborhood without zero-divisors, then A is finite.

If A is an Abelian separable reduced p-group and End(A) have a 0-neighborhood without nilpotent elements, then A is finite.

If A is an Abelian separable reduced p-group and End(A) have a 0-neighborhood without nilpotent elements, then A is finite.

Theorem

If A is an Abelian separable group and End(A) have a commutative 0-neighborhood, then A is finite.

If A is an Abelian separable reduced p-group and End(A) have a 0-neighborhood without nilpotent elements, then A is finite.

Theorem

If A is an Abelian separable group and End(A) have a commutative 0-neighborhood, then A is finite.

Theorem

If A is a torsion Abelian group and End(A) have a nilpotent 0-neighborhood, then A is a finite direct sum of p-groups.

If we fix a positive prime number p, \mathbb{Z}_p the ring of p-adic numbers and $\mathbb{Z}_p M$ a \mathbb{Z}_p -module (all modules are unitary), then we have:

If we fix a positive prime number p, \mathbb{Z}_p the ring of p-adic numbers and $\mathbb{Z}_p M$ a \mathbb{Z}_p -module (all modules are unitary), then we have: Theorem If $\operatorname{End}(\mathbb{Z}_p M)$ is compact then M is a p-group.

Let M_R be a discrete right *R*-module.

Two elements m, m' have the same order if the modules mR and m'R are isomorphic.

Johnson and Wong have called a module M_R quasi-injective if every partial endomorphism of M_R can be extended to a full endomorphism. We have the following theorem:

Let M_R be a discrete right *R*-module.

Two elements m, m' have the same order if the modules mR and m'R are isomorphic.

Johnson and Wong have called a module M_R quasi-injective if every partial endomorphism of M_R can be extended to a full endomorphism. We have the following theorem:

Theorem

Let M_R be a quasi-injective module. Then $End(M_R)$ is compact \Leftrightarrow for every $m \in M_R$ the set of m' having the same order as m is finite.