MV-pairs and states

Sylvia Pulmannová
Mathematical Institute, Slovak Academy of Sciences
Bratislava, Slovakia

MV-algebra

MV-algebras were introduced by Chang in 1958; algebraic basis for many-valued logic. Equivalent definition by Mangani 1973:
An MV-algebra $(M ; \oplus, *, 0)$ is a $(2,1,0)$ type of algebra:
(MV1) the binary operation \oplus is commutative and associative with the nullary operation 0 as neutral element;
(MV2) $a \oplus 1=1$ where $1=0^{*}$;
(MV3) $1^{*}=0$;
(MV4) $\left(a^{*} \oplus b\right)^{*} \oplus b=\left(b^{*} \oplus a\right)^{*} \oplus a$.
(MV4) is called Lukasiewicz axiom. It guarantees that MV-algebra is a distributive lattice according to the ordering given by

$$
a \leq b \text { iff } a^{*} \oplus b=1
$$

Boolean algebras coincide with MV-algebras satisfying the additional condition $x \oplus x=x$.
Mundici 1986: MV-algebras are in categorical equivalence with $[0, u]$ in Abelian lattice-ordered groups with strong unit u. A prototypical model of MV-algebra is the real unit interval $[0,1]$.

MV-effect algebras

Chovanec and Kôpka: MV-algebras are a subclass of a more general algebraic structures called effect algebras. An effect algebra (Foulis and Bennett 1994; Kôpka and Chovanec 1994): a partial algebraic structure ($E ;+, 0,1$) with a partial binary operation + satisfying (1) $a+b=b+a$; $(a+b)+c=a+(b+c)$ (in the sense that if one side exists so does the other and equality holds);
(2) to every $a \in E$, there is a unique element a^{\prime} such that $a+a^{\prime}=1$;
(3) $a+1$ is defined $\Longrightarrow a=0$.

Define $a \perp b$ iff $a+b$ is defined.
Partial order: $a \leq b$ if there is $c \in E$ with $a+c=b$. Put $c=b-a$.

We may define a partial operation + on MV-algebra by restriction of \oplus to the pairs of elements for which $a \leq b^{*}$. Then the structure $(M,+, 0,1)$ is a lattice ordered effect algebra that satisfies RDP:

$$
a \leq b+c \Longrightarrow \exists b_{1} \leq b, c_{1} \leq c: a=b_{1}+c_{1} .
$$

Definition 1. An MV-effect algebra is a lattice ordered effect algebra satisfying the Riesz decomposition property.
An MV-effect algebra can be made an MV-algebra by putting $a \oplus b=a+a^{\prime} \wedge b$ and $a^{*}=a^{\prime}$. There is a one-to-one correspondence between MV-effect algebras and MV-algebras.

Morphisms

Let E and F be effect algebras. A mapping $\phi: E \rightarrow F$ is a morphism (of effect algebras) if:
(i) $\phi(1)=1$;
(ii) If $a+b$ is defined then $\phi(a)+\phi(b)$ is defined and $\phi(a+b)=\phi(a)+\phi(b)$.
A morphism ϕ is full if whenever $\phi(a)+\phi(b) \in \phi(E)$, there are a_{1} and b_{1} in E such that $\phi(a)=\phi\left(a_{1}\right)$, $\phi(b)=\phi\left(b_{1}\right)$ and $a_{1} \perp b_{1}$.
A bijective and full morphism is an isomorphism.

Congruences

A relation \sim on an effect algebra is called a congruence if:
(C1) \sim is an equivalence relation;
(C2) $a \sim a_{1}, b \sim b_{1}$ and $a \perp b, a_{1} \perp b_{1}$ imply
$a+b \sim a_{1}+b_{1} ;$
(C3) $a \sim b, c \perp b$ implies that there is $d, d \sim c$ and $d \perp a$.
We write $[a]=\{b \in E: a \sim b\}$ for the equivalence class of $a \in E$, and the set of all equivalence classes E / \sim is organized into an effect algebra by defining $[a] \perp[b]$ if there are $a_{1} \in[a], b_{1} \in[b]$ with $a_{1} \perp b_{1}$, and then putting $[a]+[b]=\left[a_{1}+b_{1}\right]$.

Ideals

A subset I of an effect algebra E is an ideal if

$$
a, b \in E, a \perp b \Longrightarrow a+b \in I \text { iff } a \in I, b \in I
$$

Define $a \sim_{I} b$ if $\exists i, j \in I: a-i=b-j$.
If E satisfies RDP, then for every ideal I, \sim_{I} is a congruence.
M- MV-effect algebra.
(1) Every effect algebra ideal I is MV-ideal, and M / \sim_{I} is an MV-effect algebra.
(2) If \sim is an effect algebra congruence not generated by an ideal, then M / \sim need not be MV-effect algebra.
(3) Every effect algebra congruence preserves RDP.

R-generated Boolean algebras

R-generated Boolean algebra $B(M)$: MV-algebra M as a distributive lattice generates $B(M)$ as a Boolean algebra and is its 0,1 -sublattice. $B(M)$ is unique, up to isomorphism.
M-chain representation $\forall x \in B(M)$, : $x=x_{1}+\ldots+x_{n}$ where $x_{i} \in M$ for every
$i \in\{1, \ldots n\}, x_{1} \leq \ldots \leq x_{n}$ and + denotes the symmetric difference in the Boolean algebra.
We may choose it such that every element will have an M-chain of even length.

Theorem 2. (Jenča,2004) Let M be an MV-effect algebra. The mapping $\psi_{M}: B(M) \rightarrow M$ given by

$$
\psi_{M}(x)=\bigoplus_{i=1}^{n}\left(x_{2 i} \ominus x_{2 i-1}\right)
$$

where $\left\{x_{i}\right\}_{i=1}^{2 n}$ is an M-chain representation of x, is a surjective and full morphism of effect algebras. Example 3. If M is linearly ordered MV-algebra, then $B(M)$ is isomorphic to the Boolean algebra of the subsets of M of the form $\left[a_{1}, b_{1}\right) \dot{\cup} \ldots \dot{U}\left[a_{n}, b_{n}\right)$. Then $\psi_{M}\left(\left[a_{1}, b_{1}\right) \dot{\cup} \ldots \dot{U}\left[a_{n}, b_{n}\right)\right)=\left(b_{1} \ominus a_{1}\right) \oplus \cdots \oplus\left(b_{n} \ominus a_{n}\right)$.

MV-pair

A $B G$-pair is a pair (B, G), where B is a Boolean algebra and G is a subgroup of the group of automorphisms of B. Define $a \sim_{G} b$ iff there exists $f \in G: a=f(b)$. Definition 4. (Jenča,2007) A BG-pair (B, G) is called an MV-pair iff the following conditions are satisfied: (MVP1) For all $a, b \in B, f \in G$ such that $a \leq b$ and $f(a) \leq b$, there is $h \in G$ such that $h(a)=f(a)$ and $h(b)=b$.
(MVP2) For all $a, b \in B$ and $x \in L(a, b)$, there exists $m \in \max (L(a, b))$ with $m \geq x$.
$L(a, b):=\{a \wedge f(b) ; f \in G\} ; \max (L(a, b))$ the set of maximal elements in $L(a, b)$.

MV-pairs-MV-algebras

Theorem 5. (Jenča, 2007) Let (B, G) be an MV-pair. Then \sim_{G} is an effect algebra congruence on B and B / \sim_{G} is an $M V$-effect algebra.

Theorem 6. (Jenča, 2007) Let M be an MV-effect algebra. Let $G(M)$ be the set of all ψ_{M}-preserving automorphisms of $B(M)$. Then $(B(M), G(M))$ is an $M V$-pair and the $M V$-effect algebra $B(M) / \sim_{G(M)}$ is isomorphic to M.

A modification of MV-pairs

Definition 7. A BG-pair is an MV^{*}-pair if the following conditions are satisfied:
(MVP1*) for any $a, b \in B$ and $f \in G$, if $a \perp b$ and $a \perp f(b)$ then there is $h \in G$ with $h(a \vee b)=a \vee f(b)$.
$(\mathrm{MVP} 2 *)$ Let $L^{+}(a, b)=\{f(a) \wedge g(b): f, g \in G\}$, $\max \left(L^{+}(a, b)\right)$ be the set of maximal elements in $L^{+}(a, b)$. For every $x \in L^{+}(a, b)$ there is an element $m \in \max \left(L^{+}(a, b)\right)$ such that $x \leq m$.

MV*pair - MV-algebra

Theorem 8. Let (B, G) be a BG-pair. (i) The relation \sim_{G} is an effect algebra congruence iff (MVP1*) holds.
(ii) If (MVP1*) holds, then the quotient B / \sim_{G} is an MV-effect algebra iff (MVP2*) holds.

Theorem 9. Let (B, G) be a BG-pair such that (MVP1) is satisfied. Then (MVP2) is satisfied iff B / G is an $M V$-effect algebra.
Theorem 10. Let (B, G) be an MV-pair, and I a G-invariant ideal in B. Then $\left(B / I, G^{\prime}\right)$ is also an $M V$-pair. Moreover, $(B / I) / G^{\prime} \cong(B / G) /(I / G)$.
(Here B / G means B / \sim_{G}, and $\left.g^{\prime}\left([a]_{I}\right)=[g(a)]_{I}\right)$.

(MVP1) is stronger that (MVP1*)

Let B be a Boolean algebra with three atoms a_{1}, a_{2}, a_{3}. The mapping f given by

$$
f(0)=0, f\left(a_{1}\right)=a_{2}, f\left(a_{2}\right)=a_{3}, f\left(a_{3}\right)=a_{1}
$$

extends to an automorphism of B and $G=\left\{i d, f, f^{2}\right\}$ is a subgroup of $\operatorname{Aut}(B)$. (MVP1) does not hold: $a_{1} \leq a_{3}^{\prime}, f\left(a_{1}\right)=a_{2} \leq a_{3}^{\prime}$, but there is no $h \in G$ with $h\left(a_{1}\right)=f\left(a_{1}\right)$ and $h\left(a_{3}^{\prime}\right)=a_{3}^{\prime}$. But B / G is the chain $[0] \leq[a] \leq\left[a^{\prime}\right] \leq[1]$.

MV-pairs and states

A state on an effect algebra E is a mapping $s: E \rightarrow[0,1] \subseteq \mathbb{R}$ such that:
(i) $s(1)=1$; (ii) $s(a+b)=s(a)+s(b)$ whenever $a \perp b$.

States on MV-algebras coincide with states on MV-effect algebras.
$I_{s}=\{a \in M: s(a)=0\}$ is an ideal.
Theorem 11. Let (B, G) be an MV-pair, and let s be a state on B which is G-invariant, that is, $s(f(a))=s(a)$ for all $f \in G$. Let $M=B / G$, and let $\phi: B \rightarrow M$ be the canonical morphism. Then \tilde{s} defined by $\tilde{s}(\phi(a))=s(a)$ is a state on M.
If s is a state on M, then s_{0} defined by $s_{0}(a)=s(\phi(a))$ is a G-invariant state on B.

0-1 state

If P is a generalized effect algebra (effect algebra without 1), there is an effect algebra $E=P \dot{\cup}(E \backslash P)$
satisfying the diagram (τ is injective, π is surjective effect algebra morphism, and the image of τ is the kernel of π):

$$
0 \rightarrow P \xrightarrow{\tau} E \xrightarrow{\pi}\{0,1\} \rightarrow 0,
$$

E - unitization of P. An effect algebra E is a unitization of some generalized effect algebra P iff E has a $0-1$-state.

Example 12. Let (B, G) be an MV-pair, and let s be a G-invariant $0-1$-state on B. Then \tilde{s} is a $0-1$-state on $M=B / G$ and M can be written as $M=I_{\tilde{s}} \dot{\cup} I_{\tilde{s}}^{\perp}$, where $I_{\tilde{s}}^{\perp}=\left\{a^{\prime}: a \in I_{\tilde{s}}\right\}$, and M is the unitization of $I_{\tilde{s}}$, which is a generalized MV-effect algebra.
On the other hand, if $M=P \dot{\cup} P^{\perp}$ is a unitization of the generalized MV-effect algebra P, then it has a 0 -1-state which extends to a G-invariant $0-1$ state for the corresponding MV-pair $(B(M), G(M))$.

Perfect MV-algebra

Example 13. Let M be a perfect MV-algebra, that is, $M=R \dot{\cup} R^{\perp}$, where R is its radical and $R^{\perp}=\left\{a^{\prime}: a \in R\right\}$ its co-radical. Then M is a unitization of R. Since R consists of all infinitesimal elements and 0 , there is only one state s on M, namely $s(a)=0$ whenever $a \in R$, and $s(a)=1$ if $s \in R^{\perp}$. Accordingly, there is only one G-invariant state s_{0} for the MV-pair $(B(M), G(M))$, and s_{0} is $0-1$. It follows that $B(M)=P \dot{\cup} P^{\perp}$, where
$P=\left\{a \in B(M): \psi_{M}(a) \in R\right\}$.

Theorem 14. Let M be an MV-algebra, $B(M)$ its R-generated Boolean algebra and $\psi: B(M) \rightarrow M$ the corresponding full surjective effect algebra morphism, and let $G(M)$ be the group of all ψ-invariant automorphisms of B. (i) For every ψ-invariant state on $B(M), \tilde{s}$ is a state on M, which is a restriction of s to M. (ii) For every state on $M, s_{0}(a)=s(\psi(a))$ is a G-invariant state on $B(M)$. If moreover s is an extremal state on M, then s extends to a boolean algebra homomorphism s* from $B(M)$ onto $B(s(M))$, and $s \circ \psi(a)=\psi_{1} \circ s^{*}(a)$.

Commuting diagram

$$
\begin{array}{cc}
M \longleftarrow \\
s\rfloor \\
s(M) & \psi(M) \\
s(M) & \psi_{1} \\
\psi_{1} & B(s(M))
\end{array}
$$

Remark 15. (B, G) - an MV-pair, s - a G-invariant state on $B . I_{s}$ is a G-invariant ideal of B. $[a]_{s}$ the equivalence class in B / I_{s} containing $a \in B$.
Then $s^{0}\left([a]_{s}\right):=s(a)$ is a state on B / I_{s}.
$\left(B / I_{s}, G^{\prime}\right)$ is an MV-pair, so
$\tilde{s}^{0}\left(\left[[a]_{s}\right]_{G^{\prime}}\right)=s^{0}\left([a]_{s}\right)=s(a)$ is a state on $\left(B / I_{s}\right) / G^{\prime}$.
On the other hand, since s is G-invariant, we may defined the state $\tilde{s}\left([a]_{G}\right):=s(a)$ on B / G.
And since I_{s} / G is an ideal of B / G, we may define the state $\tilde{s}_{0}\left(\left[[a]_{G}\right]_{s}\right)=\tilde{s}\left([a]_{G}\right)=s(a)$ on $(B / G) /\left(I_{s} / G\right)$.
Clearly, $\tilde{s^{0}}=\tilde{s}_{0}$.

References

[1] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, 2000.
[2] G. Grätzer: General Lattice Theory. Birkhäuser, Stuttgart, 1978.
[3] C. Chang: Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc. 89(1959),74-80.
[4] F. Chovanec, F. Kôpka: D-lattices Inter. J. Theor. Phys. 34 (1995), 1297-1302.
[5] D.J. Foulis and M.K. Bennett:Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 13251346.
[6] G. Jenča: A representation theorem for MV-algebras. Soft Computing 11(2007), 557-564.
[7] G. Jenča: Boolean algebras R-generated by MV-effect algebras. Fuzzy Sets and Systems 145 (2004), 279285.
[8] S. Pulmannová, E. Vinceková: Ideals in MV-pairs, Soft Computing, DOI 10.1007/s0050-008-0282-3.
[9] S. Pulmannová, E. Vinceková:Riesz ideals on generalized effect algebras and in their unitizations, Algebra univers. 57 (2007), 393-417.

