MV-pairs and states

Sylvia Pulmannová Mathematical Institute, Slovak Academy of Sciences Bratislava, Slovakia

MV-algebra

MV-algebras were introduced by Chang in 1958; algebraic basis for many-valued logic. Equivalent definition by Mangani 1973:

An MV-algebra $(M; \oplus, *, 0)$ is a (2, 1, 0) type of algebra: (MV1) the binary operation \oplus is commutative and associative with the nullary operation 0 as neutral element;

(MV2) $a \oplus 1 = 1$ where $1 = 0^*$; (MV3) $1^* = 0$; (MV4) $(a^* \oplus b)^* \oplus b = (b^* \oplus a)^* \oplus a$. (MV4) is called *Łukasiewicz axiom*. It guarantees that MV-algebra is a distributive lattice according to the ordering given by

 $a \leq b$ iff $a^* \oplus b = 1$.

Boolean algebras coincide with MV-algebras satisfying the additional condition $x \oplus x = x$. Mundici 1986: MV-algebras are in categorical equivalence with [0, u] in Abelian lattice-ordered groups with strong unit u. A prototypical model of MV-algebra is the real unit interval [0, 1]. Chovanec and Kôpka: MV-algebras are a subclass of a more general algebraic structures called *effect algebras*. An *effect algebra* (Foulis and Bennett 1994; Kôpka and Chovanec 1994):a partial algebraic structure (E; +, 0, 1)with a partial binary operation + satisfying (1) a + b = b + a; (a + b) + c = a + (b + c) (in the sense that if one side exists so does the other and equality holds);

(2) to every $a \in E$, there is a unique element a' such that a + a' = 1; (3) a + 1 is defined $\implies a = 0$. Define $a \perp b$ iff a + b is defined. Partial order: $a \leq b$ if there is $c \in E$ with a + c = b. Put c = b - a. We may define a partial operation + on MV-algebra by restriction of \oplus to the pairs of elements for which $a \leq b^*$. Then the structure (M, +, 0, 1) is a lattice ordered effect algebra that satisfies RDP:

$$a \leq b + c \implies \exists b_1 \leq b, c_1 \leq c : a = b_1 + c_1.$$

Definition 1. An MV-effect algebra is a lattice ordered effect algebra satisfying the Riesz decomposition property.

An MV-effect algebra can be made an MV-algebra by putting $a \oplus b = a + a' \wedge b$ and $a^* = a'$. There is a one-to-one correspondence between MV-effect algebras and MV-algebras.

Morphisms

Let *E* and *F* be effect algebras. A mapping $\phi : E \to F$ is a *morphism* (of effect algebras) if:

(i) $\phi(1) = 1$;

(ii) If a + b is defined then $\phi(a) + \phi(b)$ is defined and $\phi(a + b) = \phi(a) + \phi(b)$.

A morphism ϕ is *full* if whenever $\phi(a) + \phi(b) \in \phi(E)$, there are a_1 and b_1 in E such that $\phi(a) = \phi(a_1)$, $\phi(b) = \phi(b_1)$ and $a_1 \perp b_1$.

A bijective and full morphism is an isomorphism.

Congruences

A relation \sim on an effect algebra is called a *congruence* if:

(C1) ~ is an equivalence relation; (C2) $a \sim a_1$, $b \sim b_1$ and $a \perp b$, $a_1 \perp b_1$ imply $a + b \sim a_1 + b_1$;

(C3) $a \sim b, c \perp b$ implies that there is $d, d \sim c$ and $d \perp a$.

We write $[a] = \{b \in E : a \sim b\}$ for the equivalence class of $a \in E$, and the set of all equivalence classes E / \sim is organized into an effect algebra by defining $[a] \perp [b]$ if there are $a_1 \in [a], b_1 \in [b]$ with $a_1 \perp b_1$, and then putting $[a] + [b] = [a_1 + b_1].$

Ideals

A subset I of an effect algebra E is an *ideal* if

$$a, b \in E, a \perp b \implies a+b \in I \text{ iff } a \in I, b \in I.$$

Define $a \sim_I b$ if $\exists i, j \in I : a - i = b - j$. If E satisfies DDD then for every ideal I.

If E satisfies RDP, then for every ideal I, \sim_I is a congruence.

M-MV-effect algebra.

(1) Every effect algebra ideal I is MV-ideal, and M/\sim_I is an MV-effect algebra.

(2) If ~ is an effect algebra congruence not generated by an ideal, then M/~ need not be MV-effect algebra.
(3) Every effect algebra congruence preserves RDP.

R-generated Boolean algebras

R-generated Boolean algebra B(M): MV-algebra M as a distributive lattice generates B(M) as a Boolean algebra and is its 0,1-sublattice. B(M) is unique, up to isomorphism.

M-chain representation $\forall x \in B(M)$, : $x = x_1 + \ldots + x_n$ where $x_i \in M$ for every $i \in \{1, \ldots n\}, x_1 \leq \ldots \leq x_n$ and + denotes the symmetric difference in the Boolean algebra. We may choose it such that every element will have an *M*-chain of even length. **Theorem 2.** (Jenča,2004) Let M be an MV-effect algebra. The mapping $\psi_M : B(M) \to M$ given by

$$\psi_M(x) = \bigoplus_{i=1}^n (x_{2i} \ominus x_{2i-1}),$$

where $\{x_i\}_{i=1}^{2n}$ is an *M*-chain representation of *x*, is a surjective and full morphism of effect algebras. **Example 3.** If *M* is linearly ordered MV-algebra, then B(M) is isomorphic to the Boolean algebra of the subsets of *M* of the form $[a_1, b_1) \cup ... \cup [a_n, b_n)$. Then

 $\psi_M([a_1,b_1)\dot{\cup}\ldots\dot{\cup}[a_n,b_n))=(b_1\ominus a_1)\oplus\cdots\oplus(b_n\ominus a_n).$

MV-pair

A *BG-pair* is a pair (B, G), where *B* is a Boolean algebra and *G* is a subgroup of the group of automorphisms of *B*. Define $a \sim_G b$ iff there exists $f \in G : a = f(b)$. **Definition 4.** (Jenča,2007) *A BG-pair* (B, G) *is called an MV-pair iff the following conditions are satisfied:* (MVP1) For all $a, b \in B$, $f \in G$ such that $a \leq b$ and $f(a) \leq b$, there is $h \in G$ such that h(a) = f(a) and h(b) = b.

(MVP2) For all $a, b \in B$ and $x \in L(a, b)$, there exists $m \in \max(L(a, b))$ with $m \ge x$.

 $L(a,b) := \{a \land f(b); f \in G\}; \max(L(a,b)) \text{ the set of maximal elements in } L(a,b).$

Theorem 5. (Jenča, 2007) Let (B, G) be an MV-pair. Then \sim_G is an effect algebra congruence on B and B/\sim_G is an MV-effect algebra.

Theorem 6. (Jenča, 2007) Let M be an MV-effect algebra. Let G(M) be the set of all ψ_M -preserving automorphisms of B(M). Then (B(M), G(M)) is an MV-pair and the MV-effect algebra $B(M) / \sim_{G(M)}$ is isomorphic to M.

A modification of MV-pairs

Definition 7. A BG-pair is an MV*-pair if the following conditions are satisfied: (MVP1*) for any $a, b \in B$ and $f \in G$, if $a \perp b$ and $a \perp f(b)$ then there is $h \in G$ with $h(a \lor b) = a \lor f(b)$. (MVP2*) Let $L^+(a, b) = \{f(a) \land g(b) : f, g \in G\}$, $\max(L^+(a, b))$ be the set of maximal elements in $L^+(a, b)$. For every $x \in L^+(a, b)$ there is an element $m \in \max(L^+(a, b))$ such that $x \leq m$.

MV*pair — MV-algebra

Theorem 8. Let (B, G) be a BG-pair. (i) The relation \sim_G is an effect algebra congruence iff (MVP1*) holds. (ii) If (MVP1*) holds, then the quotient B/\sim_G is an *MV-effect algebra iff* (MVP2*) holds.

Theorem 9. Let (B, G) be a BG-pair such that (MVP1) is satisfied. Then (MVP2) is satisfied iff B/G is an MV-effect algebra.

Theorem 10. Let (B, G) be an MV-pair, and I a G-invariant ideal in B. Then (B/I, G') is also an MV-pair. Moreover, $(B/I)/G' \cong (B/G)/(I/G)$. (Here B/G means B/\sim_G , and $g'([a]_I) = [g(a)]_I$). Let B be a Boolean algebra with three atoms a_1, a_2, a_3 . The mapping f given by

$$f(0) = 0, f(a_1) = a_2, f(a_2) = a_3, f(a_3) = a_1$$

extends to an automorphism of B and $G = \{id, f, f^2\}$ is a subgroup of Aut(B). (MVP1) does not hold: $a_1 \leq a'_3, f(a_1) = a_2 \leq a'_3$, but there is no $h \in G$ with $h(a_1) = f(a_1)$ and $h(a'_3) = a'_3$. But B/G is the chain $[0] \leq [a] \leq [a'] \leq [1]$. A state on an effect algebra E is a mapping $s: E \to [0,1] \subseteq \mathbb{R}$ such that: (i) s(1) = 1; (ii) s(a + b) = s(a) + s(b) whenever $a \perp b$. States on MV-algebras coincide with states on MV-effect

States on MV-algebras coincide with states on MV-effect algebras.

$$I_s = \{a \in M : s(a) = 0\}$$
 is an ideal.

Theorem 11. Let (B,G) be an MV-pair, and let s be a state on B which is G-invariant, that is, s(f(a)) = s(a) for all $f \in G$. Let M = B/G, and let $\phi : B \to M$ be the canonical morphism. Then \tilde{s} defined by $\tilde{s}(\phi(a)) = s(a)$ is a state on M.

If s is a state on M, then s_0 defined by $s_0(a) = s(\phi(a))$ is a G-invariant state on B. MV-pairs and states - p. 16/2

0-1 state

If P is a generalized effect algebra (effect algebra without 1), there is an effect algebra $E = P \dot{\cup} (E \setminus P)$ satisfying the diagram (τ is injective, π is surjective effect algebra morphism, and the image of τ is the kernel of π):

$$0 \to P \xrightarrow{\tau} E \xrightarrow{\pi} \{0, 1\} \to 0,$$

E- unitization of P. An effect algebra E is a unitization of some generalized effect algebra P iff E has a 0-1-state.

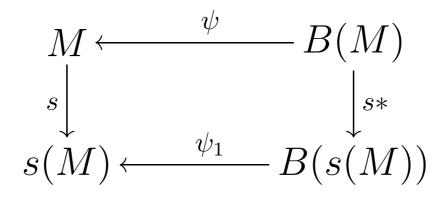
Example 12. Let (B, G) be an MV-pair, and let s be a G-invariant 0-1-state on B. Then \tilde{s} is a 0-1-state on M = B/G and M can be written as $M = I_{\tilde{s}} \cup I_{\tilde{s}}^{\perp}$, where $I_{\tilde{s}}^{\perp} = \{a' : a \in I_{\tilde{s}}\}, \text{ and } M$ is the unitization of $I_{\tilde{s}}$, which is a generalized MV-effect algebra.

On the other hand, if $M = P \dot{\cup} P^{\perp}$ is a unitization of the generalized MV-effect algebra P, then it has a 0-1-state which extends to a G-invariant 0-1 state for the corresponding MV-pair (B(M), G(M)).

Example 13. Let M be a perfect MV-algebra, that is, $M = R \dot{\cup} R^{\perp}$, where R is its radical and $R^{\perp} = \{a' : a \in R\}$ its co-radical. Then M is a unitization of R. Since R consists of all infinitesimal elements and 0, there is only one state s on M, namely s(a) = 0 whenever $a \in R$, and s(a) = 1 if $s \in R^{\perp}$. Accordingly, there is only one G-invariant state s_0 for the MV-pair (B(M), G(M)), and s_0 is 0-1. It follows that $B(M) = P \dot{\cup} P^{\perp}$, where $P = \{a \in B(M) : \psi_M(a) \in R\}.$

Theorem 14. Let M be an MV-algebra, B(M) its *R*-generated Boolean algebra and $\psi : B(M) \to M$ the corresponding full surjective effect algebra morphism, and let G(M) be the group of all ψ -invariant automorphisms of B. (i) For every ψ -invariant state on B(M), \tilde{s} is a state on M, which is a restriction of s to M. (ii) For every state on M, $s_0(a) = s(\psi(a))$ is a G-invariant state on B(M). If moreover s is an extremal state on M, then s extends to a boolean algebra homomorphism s^* from B(M) onto B(s(M)), and $s \circ \psi(a) = \psi_1 \circ s^*(a).$

Commuting diagram



Remark 15. (B, G) – an MV-pair, s – a G-invariant state on B. I_s is a G-invariant ideal of B. $[a]_s$ the equivalence class in B/I_s containing $a \in B$. Then $s^0([a]_s) := s(a)$ is a state on B/I_s . $(B/I_s, G')$ is an MV-pair, so $\tilde{s^0}([[a]_s]_{G'}) = s^0([a]_s) = s(a)$ is a state on $(B/I_s)/G'$. On the other hand, since s is G-invariant, we may defined the state $\tilde{s}([a]_G) := s(a)$ on B/G. And since I_s/G is an ideal of B/G, we may define the state $\tilde{s}_0([[a]_G]_s) = \tilde{s}([a]_G) = s(a)$ on $(B/G)/(I_s/G)$. Clearly, $s^0 = \tilde{s}_0$.

References

- [1] A. Dvurečenskij, S. Pulmannová: *New Trends in Quantum Structures*. Kluwer Academic Publishers, Dordrecht, 2000.
- [2] G. Grätzer: *General Lattice Theory*. Birkhäuser, Stuttgart, 1978.
- [3] C. Chang: Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc. **89**(1959),74-80.
- [4] F. Chovanec, F. Kôpka: *D-lattices* Inter. J. Theor. Phys. **34** (1995), 1297-1302.
- [5] D.J. Foulis and M.K. Bennett: *Effect algebras and un-sharp quantum logics*, Found. Phys. 24 (1994), 1325-1346.
- [6] G. Jenča: A representation theorem for MV-algebras. Soft Computing **11**(2007), 557-564.
- [7] G. Jenča: Boolean algebras R-generated by MV-effect algebras. Fuzzy Sets and Systems 145 (2004), 279– 285.
- [8] S. Pulmannová, E. Vinceková: *Ideals in MV-pairs*, Soft Computing, DOI 10.1007/s0050-008-0282-3.

[9] S. Pulmannová, E. Vinceková:*Riesz ideals on generalized effect algebras and in their unitizations*, Algebra univers. **57** (2007), 393-417.