Constructions of small A-loops

Přemysl Jedlička¹, Michael Kinyon², Petr Vojtěchovský²

¹ Department of Mathematics Faculty of Engineering (former Technical Faculty) Czech University of Life Sciences (former Czech University of Agriculture), Prague

> ²Department of Mathematics University of Denver

SSAOS 2008 Třešť, 6 September 2008

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Quasigroups

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \setminus)$ is called a *quasigroup* if it satisfies the following identities:

 $x \setminus (x \cdot y) = y \qquad (x \cdot y)/y = x$ $x \cdot (x \setminus y) = y \qquad (x/y) \cdot y = x$

Quasigroups

Definition

Let (G, \cdot) be a groupoid. The mapping $L_x : a \mapsto xa$ is called the *left translation* and the mapping $R_x : a \mapsto ax$ the right translation.

Definition (Combinatorial)

A groupoid (Q, \cdot) is called a *quasigroup* if the mappings L_x and R_x are bijections for each $x \in Q$.

Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \cdot)$ is called a *quasigroup* if it satisfies the following identities:

 $x \setminus (x \cdot y) = y \qquad (x \cdot y)/y = x$ $x \cdot (x \setminus y) = y \qquad (x/y) \cdot y = x$

Loops

Definition

A quasigroup Q is called a *loop* if it contains the identity element.

Example (A minimal nonassociative loop)

	1	2	3	4	5
1	1	2	3	4	5
2	2	1	5	3	4
3	3	4	1	5	2
4	4	5	2	1	3
5	5	3	4	2	1

Definition

Let Q be a loop. An element $a \in Q$ belongs to the *center* of Q if ax = xa, $a \cdot xy = ax \cdot y$, $x \cdot ay = xa \cdot y$, and $x \cdot ya = xy \cdot a$, for all $x, y \in Q$.

Loops

Definition

A quasigroup Q is called a *loop* if it contains the identity element.

Example (A minimal nonassociative loop)

	1	2	3	4	5
1	1	2	3	4	5
2	2	1	5	3	4
3	3	4	1	5	2
4	4	5	2	1	3
5	5	3	4	2	1

Definition

Let Q be a loop. An element $a \in Q$ belongs to the *center* of Q if ax = xa, $a \cdot xy = ax \cdot y$, $x \cdot ay = xa \cdot y$, and $x \cdot ya = xy \cdot a$, for all $x, y \in Q$.

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called *the multiplication group* of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(Q) stabilizing the neutral element of Q is called *the inner mapping group* of Q and it is denoted by Inn(Q).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called *the multiplication group* of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

A loop Q is called an *A*-loop if $Inn(Q) \leq Aut(Q)$.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Multiplication Groups

Definitions

Let Q be a loop.

- The group generated by L_x and R_x , for all $x \in Q$, is called the multiplication group of Q and it is denoted by Mlt(Q).
- The subgroup of Mlt(*Q*) stabilizing the neutral element of *Q* is called *the inner mapping group* of *Q* and it is denoted by Inn(*Q*).

Fact

An inner mapping of a loop needs not to be an automorphism.

Definition

Variety of A-loops

Fact

Let Q be a loop. The inner mapping group of Q is generated by the mappings

$$L_{xy}^{-1}L_xL_y, \qquad R_{xy}^{-1}R_xR_y$$
 and $L_x^{-1}R_x,$

where $x, y \in Q$.

Corollary

A loop is an A-loop if it satisfies the following three identities:

 $\begin{aligned} &(xy)\backslash(x(y \cdot uv)) = ((xy)\backslash(x \cdot yu)) \cdot ((xy)\backslash(x \cdot yv)), \\ &((uv \cdot x)y)/(xy) = ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)), \\ &x\backslash(uv \cdot x) = (x\backslash(ux)) \cdot (x\backslash(vx)). \end{aligned}$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Variety of A-loops

Fact

Let Q be a loop. The inner mapping group of Q is generated by the mappings

$$L_{xy}^{-1}L_xL_y, \qquad R_{xy}^{-1}R_xR_y$$
 and $L_x^{-1}R_x,$

where $x, y \in Q$.

Corollary

A loop is an A-loop if it satisfies the following three identities:

$$\begin{aligned} (xy)\backslash(x(y \cdot uv)) &= ((xy)\backslash(x \cdot yu)) \cdot ((xy)\backslash(x \cdot yv)), \\ ((uv \cdot x)y)/(xy) &= ((ux \cdot y)/(xy)) \cdot ((vx \cdot y)/(xy)), \\ x\backslash(uv \cdot x) &= (x\backslash(ux)) \cdot (x\backslash(vx)). \end{aligned}$$

Smallest Moufang Loop

Construction by O. Chein:

1	2	3	4	5	6	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$	ē
2	1	4	3	6	5	$\overline{2}$	1	$\bar{6}$	$\bar{5}$	$\bar{4}$	$\bar{3}$
3	6	5	2	1	4	Ī	$\bar{4}$	$\overline{5}$	$\bar{6}$	ī	$\bar{2}$
4	5	6	1	2	3	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī	$\overline{5}$	$\bar{6}$
5	4	1	6	3	2	$\overline{5}$	$\bar{6}$	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$
6	3	2	5	4	1	$\bar{6}$	$\overline{5}$	$\bar{4}$	$\bar{3}$	$\bar{2}$	ī
Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\overline{5}$	$\bar{6}$	1	2	3	4	5	6
ā		-	=	-	ā	-			~	-	_
2	1	6	5	4	3	2	1	4	3	6	5
$\frac{2}{3}$	$\frac{1}{4}$	$\frac{6}{5}$	5 6	4 1	$\frac{3}{2}$	2 3	$\frac{1}{6}$	4 5	$\frac{3}{2}$	$\frac{6}{1}$	5 4
$\frac{2}{3}$	$\frac{1}{4}$ $\overline{3}$	$egin{array}{c} 6 \ ar{5} \ ar{2} \end{array}$	$5\\ar{6}$	$4\\ \bar{1}\\ \bar{5}$	$\frac{3}{2}$	2 3 4	1 6 5	4 5 6	$3 \\ 2 \\ 1$	$egin{array}{c} 6 \\ 1 \\ 2 \end{array}$	5 4 3
$2\\ \bar{3}\\ \bar{4}\\ \bar{5}$	$ \begin{array}{c} 1 \\ \bar{4} \\ \bar{3} \\ \bar{6} \end{array} $	${6 \over {ar 5}} {ar 2} {ar 1}$	$5\\ar{6}\\ar{1}\\ar{2}$	${4 \over 1} {5 \over 3}$	${3\over 2}$ ${ar 6}$ ${ar 4}$	2 3 4 5	$1\\6\\5\\4$	4 5 6 1	3 2 1 6	$ \begin{array}{c} 6 \\ 1 \\ 2 \\ 3 \end{array} $	5 4 3 2

Smallest Conjugacy Closed Loop

Construction by A. Drápal: We take a group G(+), an automorphism $f \in Aut(G)$ and $t \in G$ satisfying $f^2(x) = t^{-1}xt$ and $f(t) \neq t$. We construct

$$x * y = \frac{x + y}{x + y} \frac{f(x) + y}{f(x) + y + t}$$

Example

- ▲ 日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 → ���

Smallest A-loop

Construction by R. H. Bruck & L. J. Paige: We take a group G and a nontrivial automorphism $f \in Aut(G)$. We construct

$$x * y = \frac{x + y}{f(x + y)} \frac{\overline{x + y}}{f^{-1}(x + y)}$$

Example 3 1 $\bar{3}$ $\mathbf{2}$ $\bar{2}$ 1 $\bar{2}$ $\bar{3}$ $\bar{1}$ 3 12 $2 | \bar{3} | \bar{1}$ $\overline{2}$ 3 1 ī $\bar{3}$ $\bar{2}$ 1 3 $\mathbf{2}$ $\bar{3}$ $ar{2}$ $ar{1}$ $ar{3}$ $ar{2}$ $ar{1}$ ī 3 $\overline{2}$ 2 13

Commutative A-loops of Order 8

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\overline{4}$	1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	3	4	1	$\overline{2}$	$\bar{3}$	$\overline{4}$	1	2	1	4	3	$\overline{2}$	ī	$\bar{4}$	$\bar{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	4	1	2	3	$\bar{4}$	ī	$\bar{2}$	3	4	1	2	3	$\bar{4}$	Ī	$\bar{2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1	2	3	$\overline{4}$	ī	$\bar{2}$	$\bar{3}$	4	3	2	1	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	1	4	3	2	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	1	3	4	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bar{2}$	$\bar{3}$	$\bar{4}$	ī	4	3	2	1	$\bar{2}$	ī	$\bar{4}$	$\bar{3}$	3	1	2	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bar{3}$	$\bar{4}$	ī	$\bar{2}$	3	2	1	4	$\bar{3}$	$\bar{4}$	Ī	$\bar{2}$	4	2	1	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bar{4}$	ī	$\bar{2}$	$\bar{3}$	2	1	4	3	$\bar{4}$	$\bar{3}$	$\bar{2}$	ī	2	4	3	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\overline{4}$	1	2	3	4	1	$\bar{2}$	$\bar{3}$	$\overline{4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	4	3	$\overline{2}$	ī	$\bar{4}$	$\bar{3}$	2	1	4	3	$\overline{2}$	Ī	$\bar{4}$	$\bar{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	4	1	2	3	$\bar{4}$	ī	$\bar{2}$	3	4	1	2	3	$\bar{4}$	Ī	$\bar{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	3	2	1	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī	4	3	2	1	$\overline{4}$	$\bar{3}$	$\bar{2}$	ī
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$ \begin{vmatrix} \bar{3} & \bar{4} & \bar{1} & \bar{2} \\ \bar{4} & \bar{3} & \bar{2} & \bar{1} \end{vmatrix} \begin{vmatrix} 4 & 3 & 1 & 2 \\ 3 & 4 & 2 & 1 \end{vmatrix} \begin{vmatrix} \bar{3} & \bar{4} & \bar{1} & \bar{2} \\ \bar{4} & \bar{3} & \bar{2} & \bar{1} \end{vmatrix} \begin{vmatrix} 3 & 4 & 2 & 1 \\ \bar{4} & \bar{3} & \bar{2} & \bar{1} \end{vmatrix} \begin{vmatrix} \bar{3} & 4 & 2 & 1 \\ \bar{4} & \bar{3} & \bar{2} & \bar{1} \end{vmatrix} $	ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	1	2	4	3	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	2	1	3	4
$egin{array}{c c c c c c c c c c c c c c c c c c c $	$ar{1} \ ar{2}$	$ar{2}{ar{1}}$	$ar{3}{4}$	$\overline{4}$ $\overline{3}$	$\begin{array}{c} 1 \\ 2 \end{array}$	$2 \\ 1$	$\frac{4}{3}$	$\frac{3}{4}$	$ar{1} \ ar{2}$	$ar{2}{ar{1}}$	$\overline{3}$ $\overline{4}$	$\overline{4}$ $\overline{3}$	$\begin{array}{c} 2 \\ 1 \end{array}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{4}{3}$
	$ar{1} \ ar{2} \ ar{3}$	$ar{2} \ ar{1} \ ar{4}$	$ar{3}{ar{4}}{ar{1}}$	$ar{4} \\ ar{3} \\ ar{2}$	$egin{array}{c} 1 \\ 2 \\ 4 \end{array}$	2 1 3	$4\\3\\1$	3 4 2	$ar{1} \ ar{2} \ ar{3}$	$ar{2} \ ar{1} \ ar{4}$	$ar{3}{4}$	$ar{4} \ ar{3} \ ar{2}$	$egin{array}{c} 2 \\ 1 \\ 3 \end{array}$	$egin{array}{c} 1 \\ 2 \\ 4 \end{array}$	$\begin{array}{c} 3 \\ 4 \\ 2 \end{array}$	4 3 1

▲□▶▲圖▶▲豆▶▲豆▶ 豆 のへで

Construction of the Smallest Commutative A-loops

Proposition (P.J., M.K., P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$\begin{array}{ll} x \ast y = x + y, & \bar{x} \ast y = \overline{x + y}, \\ x \ast \bar{y} = \overline{x + y}, & \bar{x} \ast \bar{y} = f(x + y) + t \end{array}$$

- Q is associative if and only if f is trivial;
- if f is not trivial then $Z(Q) = \{x \in G; f(x) = x\};$
- Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$.

Construction of the Smallest Commutative A-loops

Proposition (P.J., M.K., P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$\begin{array}{ll} x*y = x+y, & \bar{x}*y = \overline{x+y}, \\ x*\bar{y} = \overline{x+y}, & \bar{x}*\bar{y} = f(x+y)+t \end{array}$$

- *Q* is associative if and only if *f* is trivial;
- if f is not trivial then $Z(Q) = \{x \in G; f(x) = x\};$
- Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$.

Construction of the Smallest Commutative A-loops

Proposition (P.J., M.K., P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$\begin{array}{ll} x*y = x+y, & \bar{x}*y = x+y, \\ x*\bar{y} = \overline{x+y}, & \bar{x}*\bar{y} = f(x+y)+t \end{array}$$

- Q is associative if and only if f is trivial;
- if f is not trivial then $Z(Q) = \{x \in G; f(x) = x\};$
- Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$.

Construction of the Smallest Commutative A-loops

Proposition (P.J., M.K., P.V.)

Let (G, +) be an abelian group, f an automorphism of G and t a fixed point of f. We define an operation * on $Q = G \cup \overline{G}$ as follows:

$$\begin{array}{ll} x*y = x+y, & \bar{x}*y = x+y, \\ x*\bar{y} = \overline{x+y}, & \bar{x}*\bar{y} = f(x+y)+t \end{array}$$

- Q is associative if and only if f is trivial;
- if f is not trivial then $Z(Q) = \{x \in G; f(x) = x\};$
- Q is an A-loop if and only if f(2x) = 2x, for all $x \in G$.

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

$$\bigcirc \ G=\mathbb{Z}_4, f: x\mapsto 3x \text{ and } t=0 \text{ or } 2;$$

2
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

$$\ \, {\bf 0} \ \, G=\mathbb{Z}_4, f:x\mapsto 3x \text{ and }t=0 \text{ or }2;$$

2
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3) $G = \mathbb{Z}_2^2$, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2, f$$
 of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

There exist commutative A-loops with trivial center for any size 2^k with k > 2.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2$$
, f of order 3 and t neutral;

Corollary

Commutative A-loops of Order 8 — Constructions

Examples

The commutative A-loops of order 8 are

•
$$G = \mathbb{Z}_4, f : x \mapsto 3x$$
 and $t = 0$ or 2;

2
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t neutral;

3)
$$G = \mathbb{Z}_2^2$$
, f of order 2 and t not neutral.

•
$$G = \mathbb{Z}_2^2, f$$
 of order 3 and t neutral;

Corollary

Cocycles in Groups

Definition

Let *G* be a group and *V* an abelian group. A mapping $\theta: G^2 \to V$ is called a *group cocycle* if, for all g, h, k in *G*,

$$\begin{aligned} \theta(g,1) &= \theta(1,g) = 0, \\ \theta(g,hk) + \theta(h,k) &= \theta(g,h)^k + \theta(gh,k). \end{aligned}$$

Theorem

Ler G be a group and V an abelian group. The set $G \times V$ with the operation

$$(g, u) \cdot (h, v) = (gh, \theta(g, h) + u^h + v)$$

is a group denoted by $E(\theta, G, V)$. On the other hand, every group E, with a normal abelian subgroup V is isomorphic to $E(\theta, E/V, V)$, for some cocycle θ .

Cocycles in Groups

Definition

Let G be a group and V an abelian group. A mapping $\theta: G^2 \to V$ is called a *group cocycle* if, for all g, h, k in G,

$$heta(g,1) = heta(1,g) = 0,$$

 $heta(g,hk) + heta(h,k) = heta(g,h)^k + heta(gh,k).$

Theorem

Ler G be a group and V an abelian group. The set $G \times V$ with the operation

$$(g, u) \cdot (h, v) = (gh, \theta(g, h) + u^h + v)$$

is a group denoted by $E(\theta, G, V)$. On the other hand, every group E, with a normal abelian subgroup V is isomorphic to $E(\theta, E/V, V)$, for some cocycle θ .

Normal Subloops

Definition

A subloop S of a loop L is called *normal* if it is preserved by any inner mapping of L.

Proposition

The center of a loop is a normal subgroup.

Proof.

Any inner mapping fixes the center pointwise.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Normal Subloops

Definition

A subloop S of a loop L is called *normal* if it is preserved by any inner mapping of L.

Proposition

The center of a loop is a normal subgroup.

Proof.

Any inner mapping fixes the center pointwise.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Normal Subloops

Definition

A subloop S of a loop L is called *normal* if it is preserved by any inner mapping of L.

Proposition

The center of a loop is a normal subgroup.

Proof.

Any inner mapping fixes the center pointwise.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Cocycle Extensions of A-loops

Theorem (R. H. Bruck & L. J. Paige, special version)

Let *Z* be an elementary abelian 2-group and *K* a commutative A-loop of exponent 2. Let θ : $K \times K \rightarrow Z$ be a loop cocycle satisfying $\theta(x, y) = \theta(y, x)$, for every $x, y \in K$, $\theta(x, x) = 1$, for every $x \in K$, and

$$\begin{aligned} \theta(x, y)\theta(x', y)\theta(xx', y)\theta(x, x')\theta(xy, z)\theta(x'y, z)\theta(y, z)\theta((xx')y, z) &= \\ \theta(R(y, z)x, yz)\theta(R(y, z)x', yz)\theta(R(y, z)(xx'), yz) \\ \theta(R(y, z)x, R(y, z)x, R(y, z)x') \end{aligned}$$

for every $x, y, z, x' \in K$, where $R(y, z) = R_y R_z R_{yz}^{-1}$. Then $K \ltimes_{\theta} R$ is a commutative A-loop of exponent 2.

Conversely, every commutative A-loop of exponent two that is a central extension of Z by K can be represented in this manner.

Enumeration

Numbers of non-associative commutative A-loops which are 2-loops. The columns show, for each order, the number of all commutative A-loops, the number of commutative A-loops of exponent 2 with nontrivial center and the number of commutative A-loops with trivial center.

loop order	all loops	e.2 + n.c.	trivial center
8	4	1	1
16	46	10	2
32	?	355	6+?

Questions

Question

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a *p*-loop of order p^k , for some prime $p \neq 3$.

Question

Construct a finite commutative A-loop with trivial center and exponent different from 2.

Question

Prove that there is no non-associative commutative A-loop of order p^2 , for any prime p.

Questions

Question

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a *p*-loop of order p^k , for some prime $p \neq 3$.

Question

Construct a finite commutative A-loop with trivial center and exponent different from 2.

Question

Prove that there is no non-associative commutative A-loop of order p^2 , for any prime p.

Questions

Question

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a *p*-loop of order p^k , for some prime $p \neq 3$.

Question

Construct a finite commutative A-loop with trivial center and exponent different from 2.

Question

Prove that there is no non-associative commutative A-loop of order p^2 , for any prime p.

Bibliography

R. H. Bruck, J. L. Paige:

Loops whose inner mappings are automorphisms The Annals of Math., 2nd Series, **63**, no. 2, (1956), 308–323

- P. Jedlička, M. Kinyon, P. Vojtěchovský: Commutative A-loops: Construction and enumeration preprint
- P. Jedlička, M. Kinyon, P. Vojtěchovský: The structure of commutative A-loops (preprint)
- M. Kinyon, K. Kunen, J. D. Phillips: Every diassociative A-loop is Moufang Proc. Amer. Math. Soc. 130 (2002), 619–624
- M. Kinyon, K. Kunen, J. D. Phillips:
 Some notes on the structure of A-loops (preprint)