## Constructions of small A-loops

Přemysl Jedlička ${ }^{1}$, Michael Kinyon ${ }^{2}$, Petr Vojtěchovský ${ }^{2}$

${ }^{1}$ Department of Mathematics<br>Faculty of Engineering (former Technical Faculty)<br>Czech University of Life Sciences (former Czech University of Agriculture), Prague<br>${ }^{2}$ Department of Mathematics<br>University of Denver

## SSAOS 2008

Třešt’, 6 September 2008

## Quasigroups

## Definition

Let $(G, \cdot)$ be a groupoid. The mapping $L_{x}: a \mapsto x a$ is called the left translation and the mapping $R_{x}: a \mapsto a x$ the right translation.

## Definition (Combinatorial)

A groupoid $(Q, \cdot)$ is called a quasigroup if the mappings $L_{x}$ and $R_{x}$ are bijections for each $x \in Q$.

Definition (Universal algebraic)
The algebra $(\boldsymbol{Q}, \cdot, /, \backslash)$ is called a quasigroup if it satisfies the following identities:

$$
\begin{array}{ll}
x \backslash(x \cdot y)=y & (x \cdot y) / y=x \\
x \cdot(x \backslash y)=y & (x / y) \cdot y=x
\end{array}
$$

## Quasigroups

## Definition

Let $(G, \cdot)$ be a groupoid. The mapping $L_{x}: a \mapsto x a$ is called the left translation and the mapping $R_{x}: a \mapsto a x$ the right translation.

## Definition (Combinatorial)

A groupoid $(Q, \cdot)$ is called a quasigroup if the mappings $L_{x}$ and $R_{x}$ are bijections for each $x \in Q$.

## Definition (Universal algebraic)

The algebra $(Q, \cdot, /, \backslash)$ is called a quasigroup if it satisfies the following identities:

$$
\begin{array}{ll}
x \backslash(x \cdot y)=y & (x \cdot y) / y=x \\
x \cdot(x \backslash y)=y & (x / y) \cdot y=x
\end{array}
$$

## Loops

## Definition

A quasigroup $Q$ is called a loop if it contains the identity element.

## Example (A minimal nonassociative loop)

|  | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 3 | 4 | 5 |
| 2 | 2 | 1 | 5 | 3 | 4 |
| 3 | 3 | 4 | 1 | 5 | 2 |
| 4 | 4 | 5 | 2 | 1 | 3 |
| 5 | 5 | 3 | 4 | 2 | 1 |

Definition
Let $Q$ be a loop. An element $a \in Q$ belongs to the center of $Q$ if $a x=x a, a \cdot x y=a x \cdot y, x \cdot a y=x a \cdot y$, and $x \cdot y a=x y \cdot a$, for all $x, y \in Q$.

## Definition

A quasigroup $Q$ is called a loop if it contains the identity element.
Example (A minimal nonassociative loop)

|  | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 3 | 4 | 5 |
| 2 | 2 | 1 | 5 | 3 | 4 |
| 3 | 3 | 4 | 1 | 5 | 2 |
| 4 | 4 | 5 | 2 | 1 | 3 |
| 5 | 5 | 3 | 4 | 2 | 1 |

## Definition

Let $Q$ be a loop. An element $a \in Q$ belongs to the center of $Q$ if $a x=x a, a \cdot x y=a x \cdot y, x \cdot a y=x a \cdot y$, and $x \cdot y a=x y \cdot a$, for all $x, y \in Q$.

## Multiplication Groups

## Definitions

Let $Q$ be a loop.

- The group generated by $L_{x}$ and $R_{x}$, for all $x \in Q$, is called the multiplication group of $Q$ and it is denoted by $\operatorname{Mlt}(Q)$.
- The subaroup of $\operatorname{Mlt}(Q)$ stabilizina the neutral element of $Q$ is called the inner mapping group of $Q$ and it is denoted by $\operatorname{Inn}(Q)$.


## Fact

An inner mapping of a loop needs not to be an automorphism.

## Definition

A loop $Q$ is called an $A$-loop if $\operatorname{Inn}(Q) \leq \operatorname{Aut}(Q)$.

## Multiplication Groups

## Definitions

Let $Q$ be a loop.

- The group generated by $L_{x}$ and $R_{x}$, for all $x \in Q$, is called the multiplication group of $Q$ and it is denoted by $\operatorname{Mlt}(Q)$.
- The subgroup of $\operatorname{Mlt}(Q)$ stabilizing the neutral element of $Q$ is called the inner mapping group of $Q$ and it is denoted by $\operatorname{Inn}(Q)$.


## Fact <br> An inner mapping of a loop needs not to be an automorphism.

## Definition

A $\operatorname{loon} Q$ is called an $A$-loop if $\operatorname{Inn}(Q) \leq \operatorname{Aut}(Q)$.

## Multiplication Groups

## Definitions

Let $Q$ be a loop.

- The group generated by $L_{x}$ and $R_{x}$, for all $x \in Q$, is called the multiplication group of $Q$ and it is denoted by $\operatorname{Mlt}(Q)$.
- The subgroup of $\operatorname{Mlt}(Q)$ stabilizing the neutral element of $Q$ is called the inner mapping group of $Q$ and it is denoted by $\operatorname{Inn}(Q)$.


## Fact <br> An inner mapping of a loop needs not to be an automorphism.

## Definition

$\Delta \operatorname{Ionn} Q$ is called an $A$-loop if $\operatorname{Inn}(Q) \leq \operatorname{Aut}(Q)$.

## Multiplication Groups

## Definitions

Let $Q$ be a loop.

- The group generated by $L_{x}$ and $R_{x}$, for all $x \in Q$, is called the multiplication group of $Q$ and it is denoted by $\operatorname{Mlt}(Q)$.
- The subgroup of $\operatorname{Mlt}(Q)$ stabilizing the neutral element of $Q$ is called the inner mapping group of $Q$ and it is denoted by $\operatorname{Inn}(Q)$.


## Fact

An inner mapping of a loop needs not to be an automorphism.

Definition
A loop $Q$ is called an A-loop if $\operatorname{Inn}(Q) \leq \operatorname{Aut}(Q)$.

## Multiplication Groups

## Definitions

Let $Q$ be a loop.

- The group generated by $L_{x}$ and $R_{x}$, for all $x \in Q$, is called the multiplication group of $Q$ and it is denoted by $\operatorname{Mlt}(Q)$.
- The subgroup of $\operatorname{Mlt}(Q)$ stabilizing the neutral element of $Q$ is called the inner mapping group of $Q$ and it is denoted by $\operatorname{In}(Q)$.


## Fact

An inner mapping of a loop needs not to be an automorphism.

## Definition

A loop $Q$ is called an $A$-loop if $\operatorname{Inn}(Q) \leq \operatorname{Aut}(Q)$.

## Variety of A-loops

## Fact

Let $Q$ be a loop. The inner mapping group of $Q$ is generated by the mappings

$$
L_{x y}^{-1} L_{x} L_{y}, \quad R_{x y}^{-1} R_{x} R_{y} \quad \text { and } \quad L_{x}^{-1} R_{x}
$$

where $x, y \in Q$.

## Corollary

A loop is an A-loop if it satisfies the following three identities:
$(x y) \backslash(x(y \cdot u v))=((x y) \backslash(x \cdot y u)) \cdot((x y) \backslash(x \cdot y u))$,
$((u v \cdot x) y) /(x y)=((u x \cdot y) /(x y)) \cdot((v x \cdot y) /(x y))$, $x \backslash(u v \cdot x)=(x \backslash(u x)) \cdot(x \backslash(v x))$.

## Variety of A-loops

## Fact

Let $Q$ be a loop. The inner mapping group of $Q$ is generated by the mappings

$$
L_{x y}^{-1} L_{x} L_{y}, \quad R_{x y}^{-1} R_{x} R_{y} \quad \text { and } \quad L_{x}^{-1} R_{x}
$$

where $x, y \in Q$.

## Corollary

A loop is an A-loop if it satisfies the following three identities:

$$
\begin{aligned}
(x y) \backslash(x(y \cdot u v)) & =((x y) \backslash(x \cdot y u)) \cdot((x y) \backslash(x \cdot y v)) \\
((u v \cdot x) y) /(x y) & =((u x \cdot y) /(x y)) \cdot((v x \cdot y) /(x y)) \\
x \backslash(u v \cdot x) & =(x \backslash(u x)) \cdot(x \backslash(v x))
\end{aligned}
$$

## Smallest Moufang Loop

Construction by O. Chein:

| 1 | 2 | 3 | 4 | 5 | 6 | $\overline{1}$ | $\overline{2}$ | $\overline{3}$ | $\overline{4}$ | $\overline{5}$ | $\overline{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 3 | 6 | 5 | $\overline{2}$ | $\overline{1}$ | $\overline{6}$ | $\overline{5}$ | $\overline{4}$ | $\overline{3}$ |
| 3 | 6 | 5 | 2 | 1 | 4 | $\overline{3}$ | $\overline{4}$ | $\overline{5}$ | $\overline{6}$ | $\overline{1}$ | $\overline{2}$ |
| 4 | 5 | 6 | 1 | 2 | 3 | $\overline{4}$ | $\overline{3}$ | $\overline{2}$ | $\overline{1}$ | $\overline{5}$ | $\overline{6}$ |
| 5 | 4 | 1 | 6 | 3 | 2 | $\overline{5}$ | $\overline{6}$ | $\overline{1}$ | $\overline{2}$ | $\overline{3}$ | $\overline{4}$ |
| 6 | 3 | 2 | 5 | 4 | 1 | $\overline{6}$ | $\overline{5}$ | $\overline{4}$ | $\overline{3}$ | $\overline{2}$ | $\overline{1}$ |
| $\overline{1}$ | $\overline{2}$ | $\overline{3}$ | $\overline{4}$ | $\overline{5}$ | $\overline{6}$ | 1 | 2 | 3 | 4 | 5 | 6 |
| $\overline{2}$ | $\overline{1}$ | $\overline{6}$ | $\overline{5}$ | $\overline{4}$ | $\overline{3}$ | 2 | 1 | 4 | 3 | 6 | 5 |
| $\overline{3}$ | $\overline{4}$ | $\overline{5}$ | $\overline{6}$ | $\overline{1}$ | $\overline{2}$ | 3 | 6 | 5 | 2 | 1 | 4 |
| $\overline{4}$ | $\overline{3}$ | $\overline{2}$ | $\overline{1}$ | $\overline{5}$ | $\overline{6}$ | 4 | 5 | 6 | 1 | 2 | 3 |
| $\overline{5}$ | $\overline{6}$ | $\overline{1}$ | $\overline{2}$ | $\overline{3}$ | $\overline{4}$ | 5 | 4 | 1 | 6 | 3 | 2 |
| $\overline{6}$ | $\overline{5}$ | $\overline{4}$ | $\overline{3}$ | $\overline{2}$ | $\overline{1}$ | 6 | 3 | 2 | 5 | 4 | 1 |

## Smallest Conjugacy Closed Loop

Construction by A. Drápal:
We take a group $G(+)$, an automorphism $f \in \operatorname{Aut}(G)$ and $t \in G$ satisfying $f^{2}(x)=t^{-1} x t$ and $f(t) \neq t$. We construct

$$
x * y=\begin{array}{lc}
x+y \\
\overline{x+y} & \overline{f(x)+y} \\
f(x)+y+t
\end{array}
$$

## Example

| 1 | 2 | 3 | $\overline{1}$ | $\overline{2}$ | $\overline{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | $\overline{3}$ | $\overline{1}$ | $\overline{2}$ |
| 3 | 1 | 2 | $\overline{2}$ | $\overline{3}$ | $\overline{1}$ |
| $\overline{1}$ | $\overline{2}$ | $\overline{3}$ | 2 | 3 | 1 |
| $\overline{2}$ | $\overline{3}$ | $\overline{1}$ | 1 | 2 | 3 |
| $\overline{3}$ | $\overline{1}$ | $\overline{2}$ | 3 | 1 | 2 |

## Smallest A-loop

Construction by R. H. Bruck \& L. J. Paige:
We take a group $G$ and a nontrivial automorphism $f \in \operatorname{Aut}(G)$. We construct

$$
x * y=\begin{array}{cc}
\frac{x+y}{f(x+y)} & \overline{x+y} \\
f^{-1}(x+y)
\end{array}
$$

## Example

| 1 | 2 | 3 | $\overline{1}$ | $\overline{2}$ | $\overline{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | $\overline{2}$ | $\overline{3}$ | $\overline{1}$ |
| 3 | 1 | 2 | $\overline{3}$ | $\overline{1}$ | $\overline{2}$ |
| $\overline{1}$ | $\overline{3}$ | $\overline{2}$ | 1 | 3 | 2 |
| $\overline{3}$ | $\overline{2}$ | $\overline{1}$ | 3 | 2 | 1 |
| $\overline{2}$ | $\overline{1}$ | $\overline{3}$ | 2 | 1 | 3 |

## Commutative A-loops of Order 8



## Construction of the Smallest Commutative A-loops

## Proposition (P.J.,M.K.,P.V.)

Let $(G,+)$ be an abelian group, $f$ an automorphism of $G$ and $t$ a fixed point of $f$. We define an operation $*$ on $Q=G \cup \bar{G}$ as follows:

$$
\begin{array}{ll}
x * y=x+y, & \bar{x} * y=\overline{x+y}, \\
x * \bar{y}=\overline{x+y}, & \bar{x} * \bar{y}=f(x+y)+t .
\end{array}
$$

Then $Q$ is a loop and

- $Q$ is associative if and only if $f$ is trivial;
- if $f$ is not trivial then $Z(Q)=\{x \in G ; f(x)=x\}$;
- $Q$ is an A-loop if and only if $f(2 x)=2 x$, for all $x \in G$.


## Construction of the Smallest Commutative A-loops

## Proposition (P.J.,M.K.,P.V.)

Let $(G,+)$ be an abelian group, $f$ an automorphism of $G$ and $t$ a fixed point of $f$. We define an operation $*$ on $Q=G \cup \bar{G}$ as follows:

$$
\begin{array}{ll}
x * y=x+y, & \bar{x} * y=\overline{x+y}, \\
x * \bar{y}=\overline{x+y}, & \bar{x} * \bar{y}=f(x+y)+t .
\end{array}
$$

Then $Q$ is a loop and

- $Q$ is associative if and only if $f$ is trivial;
- if $f$ is not trivial then $Z(Q)=\{x \in G ; f(x)=x\}$;
- $Q$ is an A-loop if and only if $f(2 x)=2 x$, for all $x \in G$.


## Construction of the Smallest Commutative A-loops

## Proposition (P.J.,M.K.,P.V.)

Let $(G,+)$ be an abelian group, $f$ an automorphism of $G$ and $t$ a fixed point of $f$. We define an operation * on $Q=G \cup \bar{G}$ as follows:

$$
\begin{array}{ll}
x * y=x+y, & \bar{x} * y=\overline{x+y}, \\
x * \bar{y}=\overline{x+y}, & \bar{x} * \bar{y}=f(x+y)+t .
\end{array}
$$

Then $Q$ is a loop and

- $Q$ is associative if and only if $f$ is trivial;
- if $f$ is not trivial then $Z(Q)=\{x \in G ; f(x)=x\}$;

$$
\text { - } Q \text { is an A-loop if and only if } f(2 x)=2 x \text {, for all } x \in G \text {. }
$$

## Construction of the Smallest Commutative A-loops

## Proposition (P.J.,M.K.,P.V.)

Let $(G,+)$ be an abelian group, $f$ an automorphism of $G$ and $t$ a fixed point of $f$. We define an operation $*$ on $Q=G \cup \bar{G}$ as follows:

$$
\begin{array}{ll}
x * y=x+y, & \bar{x} * y=\overline{x+y}, \\
x * \bar{y}=\overline{x+y}, & \bar{x} * \bar{y}=f(x+y)+t .
\end{array}
$$

Then $Q$ is a loop and

- $Q$ is associative if and only if $f$ is trivial;
- if $f$ is not trivial then $Z(Q)=\{x \in G ; f(x)=x\}$;
- $Q$ is an A-loop if and only if $f(2 x)=2 x$, for all $x \in G$.


## Commutative A-loops of Order 8 - Constructions

## Examples

The commutative A-loops of order 8 are
(1) $G=\mathbb{Z}_{4}, f: x \mapsto 3 x$ and $t=0$ or 2 ;
(2) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ neutral;
(- $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ not neutra.

- $G=\mathbb{Z}_{2}^{2}, f$ of order 3 and $t$ neutral;


## Corollary

There exist commutative A-loops with trivial center for any size $2^{k}$ with $k>2$.

## Commutative A-loops of Order 8 - Constructions

## Examples

The commutative A-loops of order 8 are
(1) $G=\mathbb{Z}_{4}, f: x \mapsto 3 x$ and $t=0$ or 2 ;
(3) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ neutral;
(c) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ not neutral.
(c) $G=\mathbb{Z}_{2}^{2}, f$ of order 3 and $t$ neutral;

## Corollary

There exist commutative A-loops with trivial center for any size $2^{k}$ with $k>2$.

## Commutative A-loops of Order 8 - Constructions

## Examples

The commutative A-loops of order 8 are
(1) $G=\mathbb{Z}_{4}, f: x \mapsto 3 x$ and $t=0$ or 2 ;
(2) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ neutral;
(C) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ not neutral.
(ㄷ) $G=\mathbb{Z}_{2}^{2}, f$ of order 3 and $t$ neutral;

## Corollary

There exist commutative A-loops with trivial center for any size $2^{k}$ with $k>2$.

## Commutative A-loops of Order 8 - Constructions

## Examples

The commutative A-loops of order 8 are
(1) $G=\mathbb{Z}_{4}, f: x \mapsto 3 x$ and $t=0$ or 2 ;
(2) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ neutral;
(0) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ not neutral.

- $G=\mathbb{Z}_{2}^{2}, f$ of order 3 and $t$ neutral;


## Corollary

There exist commutative A-loops with trivial center for any size $2^{k}$ with $k>2$.

## Commutative A-loops of Order 8 - Constructions

## Examples

The commutative A-loops of order 8 are
(1) $G=\mathbb{Z}_{4}, f: x \mapsto 3 x$ and $t=0$ or 2 ;
(2) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ neutral;
(3) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ not neutral.
(4) $G=\mathbb{Z}_{2}^{2}, f$ of order 3 and $t$ neutral;

## Corollary

There exist commutative A-loops with trivial center for any size $2^{k}$ with $k>2$.

## Commutative A-loops of Order 8 - Constructions

## Examples

The commutative A-loops of order 8 are
(1) $G=\mathbb{Z}_{4}, f: x \mapsto 3 x$ and $t=0$ or 2 ;
(2) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ neutral;
(3) $G=\mathbb{Z}_{2}^{2}, f$ of order 2 and $t$ not neutral.
(4) $G=\mathbb{Z}_{2}^{2}, f$ of order 3 and $t$ neutral;

## Corollary

There exist commutative A-loops with trivial center for any size $2^{k}$ with $k>2$.

## Cocycles in Groups

## Definition

Let $G$ be a group and $V$ an abelian group. A mapping $\theta: G^{2} \rightarrow V$ is called a group cocycle if, for all $g, h, k$ in $G$,

$$
\begin{aligned}
\theta(g, 1) & =\theta(1, g)=0, \\
\theta(g, h k)+\theta(h, k) & =\theta(g, h)^{k}+\theta(g h, k) .
\end{aligned}
$$

## Theorem

Ler $G$ be a group and $V$ an abelian group. The set $G \times V$ with the operation

$$
(g, u) \cdot(h, v)=\left(g h, \theta(g, h)+u^{h}+v\right)
$$

is a group denoted by $E(\theta, G, V)$.
On the other hand, every group $E$, with a normal abelian
subgroup $V$ is isomorphic to $E(\theta, E / V, V)$, for some cocycle $\theta$.

## Cocycles in Groups

## Definition

Let $G$ be a group and $V$ an abelian group. A mapping $\theta: G^{2} \rightarrow V$ is called a group cocycle if, for all $g, h, k$ in $G$,

$$
\begin{aligned}
\theta(g, 1) & =\theta(1, g)=0 \\
\theta(g, h k)+\theta(h, k) & =\theta(g, h)^{k}+\theta(g h, k) .
\end{aligned}
$$

## Theorem

Ler $G$ be a group and $V$ an abelian group. The set $G \times V$ with the operation

$$
(g, u) \cdot(h, v)=\left(g h, \theta(g, h)+u^{h}+v\right)
$$

is a group denoted by $E(\theta, G, V)$.
On the other hand, every group $E$, with a normal abelian subgroup $V$ is isomorphic to $E(\theta, E / V, V)$, for some cocycle $\theta$.

## Normal Subloops

## Definition

A subloop $S$ of a loop $L$ is called normal if it is preserved by any inner mapping of $L$.

## Proposition

The center of a loop is a normal subgroup.

Proof.
Any inner mapping fixes the center pointwise.

## Normal Subloops

## Definition

A subloop $S$ of a loop $L$ is called normal if it is preserved by any inner mapping of $L$.

Proposition
The center of a loop is a normal subgroup.

## Proof.

Any inner mapping fixes the center pointwise.

## Normal Subloops

## Definition

A subloop $S$ of a loop $L$ is called normal if it is preserved by any inner mapping of $L$.

Proposition
The center of a loop is a normal subgroup.

## Proof.

Any inner mapping fixes the center pointwise.

## Cocycle Extensions of A-loops

## Theorem (R. H. Bruck \& L. J. Paige, special version)

Let $Z$ be an elementary abelian 2-group and $K$ a commutative $A$-loop of exponent 2 . Let $\theta: K \times K \rightarrow Z$ be a loop cocycle satisfying $\theta(x, y)=\theta(y, x)$, for every $x, y \in K, \theta(x, x)=1$, for every $x \in K$, and

$$
\begin{array}{r}
\theta(x, y) \theta\left(x^{\prime}, y\right) \theta\left(x x^{\prime}, y\right) \theta\left(x, x^{\prime}\right) \theta(x y, z) \theta\left(x^{\prime} y, z\right) \theta(y, z) \theta\left(\left(x x^{\prime}\right) y, z\right)= \\
\theta(R(y, z) x, y z) \theta\left(R(y, z) x^{\prime}, y z\right) \theta\left(R(y, z)\left(x x^{\prime}\right), y z\right) \\
\theta\left(R(y, z) x, R(y, z) x, R(y, z) x^{\prime}\right)
\end{array}
$$

for every $x, y, z, x^{\prime} \in K$, where $R(y, z)=R_{y} R_{z} R_{y z}^{-1}$. Then $K \ltimes_{\theta} R$ is a commutative $A$-loop of exponent 2.
Conversely, every commutative A-loop of exponent two that is a central extension of $Z$ by $K$ can be represented in this manner.

## Enumeration

Numbers of non-associative commutative A-loops which are 2 -loops. The columns show, for each order, the number of all commutative A-loops, the number of commutative A-loops of exponent 2 with nontrivial center and the number of commutative A-loops with trivial center.

| loop order | all loops | e.2 + n.c. | trivial center |
| :---: | :---: | :---: | :---: |
| 8 | 4 | 1 | 1 |
| 16 | 46 | 10 | 2 |
| 32 | $?$ | 355 | $6+?$ |

## Questions

## Question

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a $p$-loop of order $p^{k}$, for some prime $p \neq 3$.

Question
Construct a finite commutative A-loop with trivial center and exponent different from 2.

## Question

Prove that there is no non-associative commutative A-loop of
order $p^{2}$, for any prime $p$.

## Questions

## Question

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a $p$-loop of order $p^{k}$, for some prime $p \neq 3$.

## Question

Construct a finite commutative A-loop with trivial center and exponent different from 2.

```
Question
Prove that there is no non-associative commutative A-loop of
order p}\mp@subsup{p}{}{2},\mathrm{ for any prime p
```


## Questions

## Question

Does there exist any finite simple non-associative commutative A-loop? If does, it has to be a $p$-loop of order $p^{k}$, for some prime $p \neq 3$.

## Question

Construct a finite commutative A-loop with trivial center and exponent different from 2.

## Question

Prove that there is no non-associative commutative A-loop of order $p^{2}$, for any prime $p$.

## Bibliography

周 R．H．Bruck，J．L．Paige：
Loops whose inner mappings are automorphisms
The Annals of Math．，2nd Series，63，no．2，（1956），308－323
围 P．Jedlička，M．Kinyon，P．Vojtěchovský：
Commutative A－loops：Construction and enumeration preprint

囯 P．Jedlička，M．Kinyon，P．Vojtěchovský：
The structure of commutative A－loops（preprint）
（1．M．Kinyon，K．Kunen，J．D．Phillips：
Every diassociative A－loop is Moufang
Proc．Amer．Math．Soc． 130 （2002），619－624
固 M．Kinyon，K．Kunen，J．D．Phillips：
Some notes on the structure of A－loops（preprint）

