On literal varieties of languages

Ondřej Klíma and Libor Polák

Department of Mathematics

Masaryk University Brno

Třešt' 2008

Syntactic structures

Let $L \subseteq A^{*}$ be a regular language. We define the following relations on A^{*} and $A^{\square}=$ all finite subsets of A^{*}, respectively :
for $u, v, u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{l} \in A^{*}$,

$$
u \sim_{L} v \text { if and only if }\left(\forall x, y \in A^{*}\right)(x u y \in L \Leftrightarrow x v y \in L),
$$

$\left\{u_{1}, \ldots, u_{k}\right\} \approx_{L}\left\{v_{1}, \ldots, v_{\ell}\right\}$ if and only if
$\left(\forall x, y \in A^{*}\right)\left(x u_{1} y \ldots x u_{k} y \in L \& x v_{1} y, \ldots x v y, y \in L\right)$.
The quotient structures

$$
(O(L), \cdot)=\left(A^{*}, \cdot\right) / \sim_{L} \text { and }(S(L), \cdots, V)=\left(A^{\square}, \cdots, U\right) / \approx_{L}
$$

are called the syntactic monoid and the syntactic semiring of the language L.

Syntactic structures

Let $L \subseteq A^{*}$ be a regular language. We define the following relations on A^{*} and $A^{\square}=$ all finite subsets of A^{*}, respectively :
for $u, v, u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{\ell} \in A^{*}$,

$$
u \sim_{L} v \text { if and only if }\left(\forall x, y \in A^{*}\right)(x u y \in L \Leftrightarrow x v y \in L)
$$

$\left\{u_{1}, \ldots, u_{k}\right\} \approx L\left\{v_{1}, \ldots, v_{l}\right\}$ if and only if

$$
\left(\forall x, y \in A^{*}\right)\left(x u_{1} y, \ldots, x u_{k} y \in L \Leftrightarrow x v_{1} y, \ldots, x v_{\ell} y \in L\right) .
$$

The quotient structures

$$
(O(L), \cdot)=\left(A^{-},\right) / \sim_{L} \text { and }(S(L), \cdots, V)=\left(A^{\square}, \cdots, U\right) / \approx_{L}
$$

are called the syntactic monoid and the syntactic semiring of the language L.

Syntactic structures

Let $L \subseteq A^{*}$ be a regular language. We define the following relations on A^{*} and $A^{\square}=$ all finite subsets of A^{*}, respectively :
for $u, v, u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{\ell} \in A^{*}$,

$$
u \sim_{L} v \text { if and only if }\left(\forall x, y \in A^{*}\right)(x u y \in L \Leftrightarrow x v y \in L),
$$

$\left\{u_{1}, \ldots, u_{k}\right\} \approx_{L}\left\{v_{1}, \ldots, v_{\ell}\right\}$ if and only if

$$
\left(\forall x, y \in A^{*}\right)\left(x u_{1} y, \ldots, x u_{k} y \in L \Leftrightarrow x v_{1} y, \ldots, x v_{\ell} y \in L\right)
$$

The quotient structures

$$
(O(L), \cdot)=\left(A^{*}, \cdot\right) / \sim_{L} \text { and }(S(L), \cdot, \vee)=\left(A^{\square}, \cdot, \cup\right) / \approx_{L}
$$

are called the syntactic monoid and the syntactic semiring of the language L.

Syntactic structures

Let $L \subseteq A^{*}$ be a regular language. We define the following relations on A^{*} and $A^{\square}=$ all finite subsets of A^{*}, respectively :
for $u, v, u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{\ell} \in A^{*}$,

$$
u \sim_{L} v \text { if and only if }\left(\forall x, y \in A^{*}\right)(x u y \in L \Leftrightarrow x v y \in L),
$$

$\left\{u_{1}, \ldots, u_{k}\right\} \approx_{L}\left\{v_{1}, \ldots, v_{\ell}\right\}$ if and only if

$$
\left(\forall x, y \in A^{*}\right)\left(x u_{1} y, \ldots, x u_{k} y \in L \Leftrightarrow x v_{1} y, \ldots, x v_{\ell} y \in L\right) .
$$

The quotient structures

$$
(\mathrm{O}(L), \cdot)=\left(A^{*}, \cdot\right) / \sim_{L} \text { and }(\mathrm{S}(L), \cdot, \vee)=\left(A^{\square}, \cdot, \cup\right) / \approx_{L}
$$

are called the syntactic monoid and the syntactic semiring of the language L.

The assignments

$$
\phi_{L}: u \mapsto u \sim_{L} \text { and } \psi_{L}:\left\{u_{1}, \ldots, u_{k}\right\} \mapsto\left\{u_{1}, \ldots, u_{k}\right\} \approx_{L}
$$

are called syntactic monoid/semiring homomorphisms.
The monoid (O(L) .) is ordered by the relation

$$
v \sim_{L} \leq u \sim_{L} \text { iff }\left(\forall x, y \in A^{*}\right)(x u y \in L \Rightarrow x v y \in L) .
$$

The assignments

$$
\phi_{L}: u \mapsto u \sim_{L} \text { and } \psi_{L}:\left\{u_{1}, \ldots, u_{k}\right\} \mapsto\left\{u_{1}, \ldots, u_{k}\right\} \approx_{L}
$$

are called syntactic monoid/semiring homomorphisms.
The monoid $(\mathrm{O}(L), \cdot)$ is ordered by the relation

$$
v \sim_{L} \leq u \sim_{L} \text { iff }\left(\forall x, y \in A^{*}\right)(x u y \in L \Rightarrow x v y \in L) .
$$

Eilenberg type theorems

Theorem
(i) (Eilenberg) Boolean varieties of languages correspond to pseudovarieties of finite monoids. Here $L \mapsto$ syntactic monoid of L.
(ii) (Ésik \& Co., Straubing) Literal boolean varieties of languages correspond to literal pseudovarieties of homomorphisms from finitely generated free monoids onto finite monoids. Here $L \mapsto$ syntactic homomorphism of L.

Eilenberg type theorems

Theorem

(i) (Eilenberg) Boolean varieties of languages correspond to pseudovarieties of finite monoids. Here $L \mapsto$ syntactic monoid of L. (ii) (Ésik \& Co., Straubing) Literal boolean varieties of languages correspond to literal pseudovarieties of homomorphisms from finitely generated free monoids onto finite monoids. Here $L \mapsto$ syntactic homomorphism of L.

A class of (regular) languages is an operator \mathscr{V} assigning to each finite set A a set $\mathscr{H} A)$ of regular languages over the alphabet A. Such a class is a positive variety if
(0) for each A, we have $\emptyset, A^{*} \in \mathscr{H}(A)$,
(i) each $\mathscr{H}(A)$ is closed with respect to finite unions, finite intersections and quotients, and
(ii) for each finite sets A and B and a homomorphism $f: B^{*} \rightarrow A^{*}, K \in \mathscr{H} A$ implies $f^{-1}(K) \in \mathscr{H}(B)$.
Adding the condition
(iii) each $\nVdash(A)$ is closed with respect to complements,
we get a boolean variety.
A modification of (il) to
(iti) for each finite sets A and B and a homomorphism $f: B^{*} \rightarrow A^{*}$ with $f(B) \subseteq A, K \in \mathscr{H}(A)$ implies $\left.f^{-1}(K) \in \mathbb{H} B\right)$
eads to the notions of a literal positive/boolean variety of languages.

A class of (regular) languages is an operator \mathscr{V} assigning to each finite set A a set $\mathscr{H} A)$ of regular languages over the alphabet A. Such a class is a positive variety if
(0) for each A, we have $\emptyset, A^{*} \in \mathscr{H}(A)$,
(i) each $\mathscr{(A)}$ is closed with respect to finite unions, finite intersections and quotients, and
(ii) for each finite sets A and B and a homomorphism $f: B^{*} \rightarrow A^{*}, K \in \mathcal{H}(A)$ implies $f^{-1}(K) \in \mathcal{H}(B)$.
Adding the condition
(iii) each $\mathscr{H} A$) is closed with respect to complements, we get a boolean variety.
A modification of (ii) to
$\left(\mathrm{ti}^{\prime}\right)$ for each finite sets A and B and a homomorphism $f: B^{*} \rightarrow A^{*}$ with $f(B) \subseteq A, K \in \mathcal{H}(A)$ implies $\left.f^{-1}(K) \in \mathcal{H} B\right)$
eads to the notions of a literal positive/boolean variety of languages.

A class of (regular) languages is an operator \mathscr{V} assigning to each finite set A a set $\mathscr{H} A)$ of regular languages over the alphabet A. Such a class is a positive variety if
(0) for each A, we have $\emptyset, A^{*} \in \mathscr{H}(A)$,
(i) each $\mathscr{H}(A)$ is closed with respect to finite unions, finite intersections and quotients, and
(ii) for each finite sets A and B and a homomorphism
$\left.f: B^{*} \rightarrow A^{*}, K \in \mathscr{H} A\right)$ implies $f^{-1}(K) \in \mathscr{H}(B)$.
Adding the condition
(iii) each $\mathscr{H} A$) is closed with respect to complements,
we get a boolean variety.
A modification of (ii) to
(ii') for each finite sets A and B and a homomorphism $f: B^{*} \rightarrow A^{*}$ with $f(B) \subseteq A, K \in \mathscr{H}(A)$ implies $f^{-1}(K) \in \mathscr{H}(B)$
leads to the notions of a literal positive/boolean variety of languages.

C-universal algebra

Let \boldsymbol{V} be a variety of algebras of a fixed signature. Let W_{A} be the free \boldsymbol{V}-algebra over the set A. We consider a category C of free
\boldsymbol{V}-algebras, that is, the objects are all W_{A} 's for sets A, and the homsets $\mathrm{C}\left(W_{B}, W_{A}\right)$ consist of certain homomorphisms from W_{B} into W_{A}.

Basic example :
$\boldsymbol{V}=$ all monoids, $W_{A}=A^{*}, p \in \mathrm{Clit}_{\text {lit }}\left(B^{*}, A^{*}\right)$ iff, for each $b \in B, p(b) \in A$ literal homomorphisms.

Let

$$
\mathfrak{V}=\left\{\phi: W_{A} \rightarrow S \mid A \text { is a set and } S \in V\right\}
$$

be the class of all surjective homomorphisms from free V-algebras onto \boldsymbol{V}-algebras; we speak about \boldsymbol{V}-homomorphisms.

C-universal algebra

Let \boldsymbol{V} be a variety of algebras of a fixed signature. Let W_{A} be the free \boldsymbol{V}-algebra over the set A. We consider a category C of free
\boldsymbol{V}-algebras, that is, the objects are all W_{A} 's for sets A, and the homsets
$\mathrm{C}\left(W_{B}, W_{A}\right)$ consist of certain homomorphisms from W_{B} into W_{A}.
Basic example :
$\boldsymbol{V}=$ all monoids, $W_{A}=A^{*}, p \in \mathrm{C}_{\mathrm{lit}}\left(B^{*}, A^{*}\right)$ iff, for each $b \in B, p(b) \in A$ literal homomorphisms.

Let

$$
\mathfrak{V}=\left\{\phi: W_{A} \rightarrow S \mid A \text { is a set and } S \in V\right\}
$$

be the class of all surjective homomorphisms from free \boldsymbol{V}-algebras onto \boldsymbol{V}-algebras; we speak about \boldsymbol{V}-homomorphisms.

C-universal algebra

Let \boldsymbol{V} be a variety of algebras of a fixed signature. Let W_{A} be the free \boldsymbol{V}-algebra over the set A. We consider a category C of free
\boldsymbol{V}-algebras, that is, the objects are all W_{A} 's for sets A, and the homsets
$\mathrm{C}\left(W_{B}, W_{A}\right)$ consist of certain homomorphisms from W_{B} into W_{A}.
Basic example :
$\boldsymbol{V}=$ all monoids, $W_{A}=A^{*}, p \in \mathrm{C}_{\mathrm{lit}}\left(B^{*}, A^{*}\right)$ iff, for each $b \in B, p(b) \in A$ literal homomorphisms.

Let

$$
\mathfrak{V}=\left\{\phi: W_{A} \rightarrow S \mid A \text { is a set and } S \in \boldsymbol{V}\right\}
$$

be the class of all surjective homomorphisms from free \boldsymbol{V}-algebras onto \boldsymbol{V}-algebras; we speak about \boldsymbol{V}-homomorphisms.

Let $\mathfrak{U} \subseteq \mathfrak{V}$. We define :

$$
\mathrm{HU}=\left\{\sigma \phi: W_{A} \rightarrow T \mid\right.
$$

$$
\left.T \in \boldsymbol{V},\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}, \sigma: S \rightarrow T \text { a surj. homom. }\right\}
$$

$$
\begin{gathered}
\mathrm{S}_{\mathrm{C}} \mathfrak{U}=\left\{\phi p: W_{B} \rightarrow \operatorname{im}(\phi p) \mid\right. \\
\left.B \text { a set, } p \in \mathrm{C}\left(W_{B}, W_{A}\right),\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}\right\}, \\
\mathrm{P} \mathfrak{U}=\left\{\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \operatorname{im}\left(\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}\right) \mid\right. \\
\left.A, \Gamma \text { sets, }\left(\phi_{\gamma}: W_{A} \rightarrow S_{\gamma}\right) \in \mathfrak{U} \text { for } \gamma \in \Gamma\right\}, \\
\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \prod_{\gamma \in \Gamma} S_{\gamma}, u \mapsto\left(\phi_{\gamma}(u)\right)_{\gamma \in \Gamma} .
\end{gathered}
$$

A class $\mathfrak{U} \subseteq \mathfrak{V}$ is called a C-variety of V-homomorphisms if it is closed with respect to the operators $\mathrm{H}, \mathrm{S}_{\mathrm{C}}$ and P .

Let $\mathfrak{U} \subseteq \mathfrak{V}$. We define :

$$
\mathrm{HU}=\left\{\sigma \phi: W_{A} \rightarrow T \mid\right.
$$

$T \in \boldsymbol{V},\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}, \sigma: S \rightarrow T$ a surj. homom. $\}$,

$$
\begin{gathered}
\mathrm{S}_{\mathrm{C}} \mathfrak{U}=\left\{\phi p: W_{B} \rightarrow \operatorname{im}(\phi p) \mid\right. \\
\left.B \text { a set, } p \in \mathrm{C}\left(W_{B}, W_{A}\right),\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}\right\}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{P} \mathfrak{U}=\left\{\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \operatorname{im}\left(\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}\right) \mid\right. \\
\left.A, \Gamma \text { sets, }\left(\phi_{\gamma}: W_{A} \rightarrow S_{\gamma}\right) \in \mathfrak{U} \text { for } \gamma \in \Gamma\right\}, \\
\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \prod_{\gamma \in \Gamma} S_{\gamma}, u \mapsto\left(\phi_{\gamma}(u)\right)_{\gamma \in \Gamma} .
\end{gathered}
$$

Let $\mathfrak{U} \subseteq \mathfrak{V}$. We define :

$$
\mathrm{HU}=\left\{\sigma \phi: W_{A} \rightarrow T \mid\right.
$$

$T \in \boldsymbol{V},\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}, \sigma: S \rightarrow T$ a surj. homom. $\}$,

$$
\begin{gathered}
\mathrm{S}_{\mathrm{C}} \mathfrak{U}=\left\{\phi p: W_{B} \rightarrow \operatorname{im}(\phi p) \mid\right. \\
\left.B \text { a set, } p \in \mathrm{C}\left(W_{B}, W_{A}\right),\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}\right\}
\end{gathered}
$$

$$
\mathrm{P} \mathfrak{U}=\left\{\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \operatorname{im}\left(\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}\right) \mid\right.
$$

A, Γ sets, $\left(\phi_{\gamma}: W_{A} \rightarrow S_{\gamma}\right) \in \mathfrak{U}$ for $\left.\gamma \in \Gamma\right\}$,

$$
\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \prod_{\gamma \in \Gamma} S_{\gamma}, u \mapsto\left(\phi_{\gamma}(u)\right)_{\gamma \in \Gamma}
$$

Let $\mathfrak{U} \subseteq \mathfrak{V}$. We define :

$$
\mathrm{HU}=\left\{\sigma \phi: W_{A} \rightarrow T \mid\right.
$$

$$
\left.T \in V,\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}, \sigma: S \rightarrow T \text { a surj. homom. }\right\}
$$

$$
\begin{gathered}
\mathrm{S}_{\mathrm{C}} \mathfrak{U}=\left\{\phi p: W_{B} \rightarrow \operatorname{im}(\phi p) \mid\right. \\
\left.B \text { a set, } p \in \mathrm{C}\left(W_{B}, W_{A}\right),\left(\phi: W_{A} \rightarrow S\right) \in \mathfrak{U}\right\}, \\
\mathrm{P} \mathfrak{U}=\left\{\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \operatorname{im}\left(\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}\right) \mid\right. \\
\left.A, \Gamma \text { sets, }\left(\phi_{\gamma}: W_{A} \rightarrow S_{\gamma}\right) \in \mathfrak{U} \text { for } \gamma \in \Gamma\right\}, \\
\left(\phi_{\gamma}\right)_{\gamma \in \Gamma}: W_{A} \rightarrow \prod_{\gamma \in \Gamma} S_{\gamma}, u \mapsto\left(\phi_{\gamma}(u)\right)_{\gamma \in \Gamma} .
\end{gathered}
$$

A class $\mathfrak{U} \subseteq \mathfrak{V}$ is called a C-variety of \boldsymbol{V}-homomorphisms if it is closed with respect to the operators $\mathrm{H}, \mathrm{S}_{\mathrm{C}}$ and P .

We define the generalized C-varieties as classes of
\boldsymbol{V}-homomorphisms $\mathfrak{U} \subseteq \mathfrak{V}$ closed with respect to $\mathrm{H}, \mathrm{S}_{\mathrm{C}}, \mathrm{P}_{\mathrm{f}}$ (products of finite families) and Po_{C}.
Similarly, C-pseudovarieties of finite \boldsymbol{V}-homomorphisms are classes $\mathfrak{X} \subseteq$ FinV closed with respect to H, S_{C}, and P_{f}.
An n-ary V-identity is a pair $u=v$ where $u, v \in W_{n}$.
A V-homomorphism $\phi: W_{A} \rightarrow S \quad$ C-satisfies $u=v$ if

$$
\left(\forall p \in C\left(W_{n}, W_{A}\right)\right)(\phi p)(u)=(\phi p)(v) .
$$

The invention of equational logic for C-pseudovarieties of finite V-homomorphisms was possible only after a deep understanding of categories of such homomorphisms - see Kunc. Here we recall only the right definition of morphisms :

$$
\sigma:\left(\phi: W_{A} \rightarrow S\right) \rightarrow\left(\psi: W_{B} \rightarrow T\right)
$$

if $\sigma: S \rightarrow T$ is a surjective homomorphism and there exists $p \in \mathrm{C}\left(W_{A}, W_{B}\right)$ such that $\sigma \phi=\psi p$.

We define the generalized C -varieties as classes of
\boldsymbol{V}-homomorphisms $\mathfrak{U} \subseteq \mathfrak{V}$ closed with respect to $\mathrm{H}, \mathrm{S}_{\mathrm{C}}, \mathrm{P}_{\mathrm{f}}$ (products of finite families) and Po_{C}.
Similarly, C-pseudovarieties of finite \boldsymbol{V}-homomorphisms are classes $\mathfrak{X} \subseteq$ FinV closed with respect to $\mathrm{H}, \mathrm{S}_{\mathrm{C}}$, and P_{f}.
An n-ary V-identity is a pair $u=v$ where $u, v \in W_{n}$.
A V-homomorphism $\phi: W_{A} \rightarrow S \quad$ C-satisfies $u=v$ if

$$
\left(\forall p \in \mathrm{C}\left(W_{n}, W_{A}\right)\right)(\phi p)(u)=(\phi p)(v) .
$$

The invention of equational logic for C -pseudovarieties of finite V-homomorphisms was possible only after a deep understanding of categories of such homomorphisms - see Kunc. Here we recall only the right definition of morphisms :

$$
\sigma:\left(\phi: W_{A} \rightarrow S\right) \rightarrow\left(\psi: W_{B} \rightarrow T\right)
$$

if $\sigma: S \rightarrow T$ is a surjective homomorphism and there exists $p \in \mathrm{C}\left(W_{A}, W_{B}\right)$ such that $\sigma \phi=\psi p$.

We define the generalized C-varieties as classes of
\boldsymbol{V}-homomorphisms $\mathfrak{U} \subseteq \mathfrak{V}$ closed with respect to $H, S_{C}, \mathrm{P}_{\mathrm{f}}$ (products of finite families) and Po_{C}.
Similarly, C-pseudovarieties of finite \boldsymbol{V}-homomorphisms are classes $\mathfrak{X} \subseteq$ FinV closed with respect to $\mathrm{H}, \mathrm{S}_{\mathrm{C}}$, and P_{f}.
An n-ary V-identity is a pair $u=v$ where $u, v \in W_{n}$.
A V-homomorphism $\phi: W_{A} \rightarrow S \quad$ C-satisfies $u=v$ if

$$
\left(\forall p \in \mathrm{C}\left(W_{n}, W_{A}\right)\right)(\phi p)(u)=(\phi p)(v)
$$

The invention of equational logic for C-pseudovarieties of finite \boldsymbol{V}-homomorphisms was possible only after a deep understanding of categories of such homomorphisms - see Kunc. Here we recall only the right definition of morphisms :

$$
\sigma:\left(\phi: W_{A} \rightarrow S\right) \rightarrow\left(\psi: W_{B} \rightarrow T\right)
$$

if $\sigma: S \rightarrow T$ is a surjective homomorphism and there exists $p \in \mathrm{C}\left(W_{A}, W_{B}\right)$ such that $\sigma \phi=\psi p$.

```
Theorem
1. (LP) C-varieties of \(\boldsymbol{V}\)-homomorphisms are exactly classes of homomorphisms determined by \(\boldsymbol{V}\)-identities.
2. (LP) Generalized C-varieties of V-homomorphisms are exactly directed unions of C-varieties of V-homomorphisms.
3. (LP) C-pseudovarieties of finite V-homomorphisms are exactly classes of the form Fin \(\mathfrak{U}\) where \(\mathfrak{U}\) is a directed union of C-varieties of \(V\)-homomorphisms. If the type is finite we can restrict ourselves to unions of chains.
4. (Kunc) C-pseudovarieties of finite V-homomorphisms are exactly classes of finite V-homomorphisms C-determined by (Fin V)-pseudoidentities.
```

L.P., On varieties, generalized varieties and pseudovarieties of homomorphisms, Contributions to General Algebra 16, Verlag Johannes Heyn, Klagenfurt 2005, pp. 173-187

Theorem
 1. (LP) C-varieties of \boldsymbol{V}-homomorphisms are exactly classes of homomorphisms determined by \boldsymbol{V}-identities.
 2. (LP) Generalized C-varieties of V-homomorphisms are exactly directed unions of C-varieties of V-homomorphisms.
 3. (LP) C-pseudovarieties of finite V-homomorphisms are exactly classes of the form Fin \mathfrak{U} where \mathfrak{U} is a directed union of C -varieties of V-homomorphisms. If the type is finite we can restrict ourselves to unions of chains.
 4. (Kunc) C-pseudovarieties of finite V-homomorphisms are exactly classes of finite V-homomorphisms C-determined by (Fin V)-pseudoidentities.

Theorem

1. (LP) C -varieties of \boldsymbol{V}-homomorphisms are exactly classes of homomorphisms determined by \mathbf{V}-identities.
2. (LP) Generalized C-varieties of V-homomorphisms are exactly directed unions of C -varieties of \boldsymbol{V}-homomorphisms.
3. (LP) C-pseudovarieties of finite \boldsymbol{V}-homomorphisms are exactly classes of the form Fin \mathfrak{U} where \mathfrak{U} is a directed union of C -varieties of \boldsymbol{V}-homomorphisms. If the type is finite we can restrict ourselves to unions of chains.

$$
\begin{aligned}
& \text { 4. (Kunc) C-pseudovarieties of finite V-homomorphisms are exactly } \\
& \text { classes of finite V-homomorphisms C-determined by }
\end{aligned}
$$

(Fin V)-pseudoidentities.

Theorem
 1. (LP) C-varieties of \boldsymbol{V}-homomorphisms are exactly classes of homomorphisms determined by V-identities.
 2. (LP) Generalized C-varieties of V-homomorphisms are exactly directed unions of C-varieties of V-homomorphisms.
 3. (LP) C-pseudovarieties of finite V-homomorphisms are exactly classes of the form Fin \mathfrak{U} where \mathfrak{U} is a directed union of C-varieties of \boldsymbol{V}-homomorphisms. If the type is finite we can restrict ourselves to unions of chains.
 4. (Kunc) C-pseudovarieties of finite \mathbf{V}-homomorphisms are exactly classes of finite V-homomorphisms C-determined by (Fin V)-pseudoidentities.

L.P., On varieties, generalized varieties and pseudovarieties of homomorphisms, Contributions to General Algebra 16, Verlag Johannes Heyn, Klagenfurt 2005, pp. 173-187

Varieties of group languages

Languages over $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ corresponding to finite members of certain varieties of groups are well-known :

1. Boolean combinations of

$$
\left\{\left.u \in X_{n}^{*}| | u\right|_{i} \equiv \ell^{\prime} \bmod \ell\right\}, i \in\{1, \ldots, n\}, \ell \in \mathbb{N}, \ell^{\prime} \in\{0, \ldots, \ell-1\}
$$

for the class of all abelian groups.
2. Boolean combinations of

$$
\left\{\left.u \in X_{n}^{*}| | u\right|_{i} \equiv \ell^{\prime} \bmod \ell\right\}, i \in\{1, \ldots, n\}, \ell^{\prime} \in\{0, \ldots, \ell-1\}
$$

for the class of all abelian groups satisfying $x^{\ell}=1$.
3. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*}, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

Varieties of group languages

Languages over $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ corresponding to finite members of certain varieties of groups are well-known :

1. Boolean combinations of

$$
\left\{\left.u \in X_{n}^{*}| | u\right|_{i} \equiv \ell^{\prime} \bmod \ell\right\}, i \in\{1, \ldots, n\}, \ell \in \mathbb{N}, \ell^{\prime} \in\{0, \ldots, \ell-1\}
$$

for the class of all abelian groups.
2. Boolean combinations of

$$
\left\{\left.u \in X_{n}^{*}| | u\right|_{i} \equiv \ell^{\prime} \bmod \ell\right\}, i \in\{1, \ldots, n\}, \ell^{\prime} \in\{0, \ldots, \ell-1\}
$$

for the class of all abelian groups satisfying $x^{\ell}=1$.
3. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*}, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

Varieties of group languages

Languages over $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ corresponding to finite members of certain varieties of groups are well-known :

1. Boolean combinations of

$$
\left\{\left.u \in X_{n}^{*}| | u\right|_{i} \equiv \ell^{\prime} \bmod \ell\right\}, i \in\{1, \ldots, n\}, \ell \in \mathbb{N}, \ell^{\prime} \in\{0, \ldots, \ell-1\}
$$

for the class of all abelian groups.
2. Boolean combinations of

$$
\left\{\left.u \in X_{n}^{*}| | u\right|_{i} \equiv \ell^{\prime} \bmod \ell\right\}, i \in\{1, \ldots, n\}, \ell^{\prime} \in\{0, \ldots, \ell-1\}
$$

for the class of all abelian groups satisfying $x^{\ell}=1$.
3. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*}, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

for the class of all nilpotent groups.
4. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*},|v| \leq c, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

for the class of all nilpotent groups of class $\leq c$.
Such results can be refined as follows :
1'. Disjoint unions
$\left\{u \in X_{n}^{*}| | u l_{1}=\ell_{1}, \ldots, \mid U_{n} \equiv l_{n} \bmod \ell\right\}, l \in \mathbb{N}, \ell_{1}, \ldots, l_{n} \in\{0, \ldots, l-1\}$,
ℓ fixed, for the class of all abelian groups.
It is not difficult to refine the results 2,3 and 4 in a similar way.
Our goal :
A. Find all liferal varieties of homomorphisms onto abelian groups and describe the corresponding languages (in the finer form) - done 2005.
B. Find all (or at least some hierarchy) of literal varieties of homomorphisms onto nilpotent groups of class ≤ 2 and desc ribe the corresponding languages.
4. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*},|v| \leq c, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

for the class of all nilpotent groups of class $\leq c$.
Such results can be refined as follows :
1'. Disjoint unions
$\left\{\left.u \in X_{n}^{*}| | u\right|_{1} \equiv \ell_{1}, \ldots,|u|_{n} \equiv \ell_{n} \bmod \ell\right\}, \ell \in \mathbb{N}, \ell_{1}, \ldots, \ell_{n} \in\{0, \ldots, \ell-1\}$, ℓ fixed, for the class of all abelian groups.

It is not difficult to refine the results 2,3 and 4 in a similar way.
Our goal :
A. Find all liferal varieties of homomorphisms onto abelian groups and describe the corresponding languages (in the finer form) - done 2005.
B. Find all (or at least some hierarchy) of literal varieties of homomorphisms onto nilpotent groups of class ≤ 2 and describe the corresponding languages.
4. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*},|v| \leq c, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

for the class of all nilpotent groups of class $\leq c$.
Such results can be refined as follows :
1'. Disjoint unions
$\left\{\left.u \in X_{n}^{*}| | u\right|_{1} \equiv \ell_{1}, \ldots,|u|_{n} \equiv \ell_{n} \bmod \ell\right\}, \ell \in \mathbb{N}, \ell_{1}, \ldots, \ell_{n} \in\{0, \ldots, \ell-1\}$,
ℓ fixed, for the class of all abelian groups.
It is not difficult to refine the results 2,3 and 4 in a similar way.
Our goal :
A. Find all literal varieties of homomorphisms onto abelian groups and describe the corresponding languages (in the finer form) - done 2005.
B. Find all (or at least some herarchy) of iliteral varieties of
homomorphisms onto nilpotent groups of class ≤ 2 and describe the corresponding languages.
4. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*},|v| \leq c, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

for the class of all nilpotent groups of class $\leq c$.
Such results can be refined as follows :
1'. Disjoint unions
$\left\{\left.u \in X_{n}^{*}| | u\right|_{1} \equiv \ell_{1}, \ldots,|u|_{n} \equiv \ell_{n} \bmod \ell\right\}, \ell \in \mathbb{N}, \ell_{1}, \ldots, \ell_{n} \in\{0, \ldots, \ell-1\}$,
ℓ fixed, for the class of all abelian groups.
It is not difficult to refine the results 2,3 and 4 in a similar way.
Our goal :
A. Find all literal varieties of homomorphisms onto abelian groups and describe the corresponding languages (in the finer form) - done 2005.
B. Find all (or at least some hierarchy) of literal varieties of
homomorphisms onto nilpotent groups of class ≤ 2 and describe the corresponding languages.
4. Boolean combinations of

$$
\left\{u \in X_{n}^{*} \left\lvert\,\binom{ u}{v} \equiv r^{\prime} \bmod r\right.\right\}, v \in X_{n}^{*},|v| \leq c, r \in \mathbb{N}, r^{\prime} \in\{0, \ldots, r-1\}
$$

for the class of all nilpotent groups of class $\leq c$.
Such results can be refined as follows :
1'. Disjoint unions
$\left\{\left.u \in X_{n}^{*}| | u\right|_{1} \equiv \ell_{1}, \ldots,|u|_{n} \equiv \ell_{n} \bmod \ell\right\}, \ell \in \mathbb{N}, \ell_{1}, \ldots, \ell_{n} \in\{0, \ldots, \ell-1\}$,
ℓ fixed, for the class of all abelian groups.
It is not difficult to refine the results 2,3 and 4 in a similar way.
Our goal :
A. Find all literal varieties of homomorphisms onto abelian groups and describe the corresponding languages (in the finer form) - done 2005.
B. Find all (or at least some hierarchy) of literal varieties of homomorphisms onto nilpotent groups of class ≤ 2 and describe the corresponding languages.

Literal varieties of homomorphisms onto abelian groups and the corresponding languages

Our basic ingredients are the following languages :
Let $n, \ell, k \in \mathbb{N}$ with $k \mid \ell$,
let $\ell^{\prime} \in\{0, \ldots, \ell-1\}$,
let $k_{1}, \ldots, k_{n} \in\{0, \ldots, k-1\}$ satisfy $k_{1}+\cdots+k_{n} \equiv \ell^{\prime} \bmod k$,

$$
L\left(n ; \ell, \ell^{\prime} ; k, k_{1}, \ldots, k_{n}\right)=
$$

$$
=\left\{u \in X_{n}^{*}| | u\left|\equiv \ell^{\prime} \bmod \ell,|u|_{1} \equiv k_{1}, \ldots,|u|_{n} \equiv k_{n} \bmod k\right\} .\right.
$$

Theorem (LP)
The following are pairwise different literal varieties of homomorphisms from free monoids onto abelian groups :

$$
\mathscr{V}(\ell, k)=\operatorname{Mod}_{\text {lit }}\left(x y=y x, x^{\ell}=1, x^{k}=y^{k}\right)
$$

where $\ell, k \in \mathbb{N}, k \mid \ell$. The corresponding literally invariant congruences on X^{*} are of the form

For fixed ℓ, k, the corresponding languages on X_{n} are exactly the disjoint unions of $L\left(n ; \ell, \ell^{\prime} ; k, k_{1}, \ldots, k_{n}\right)$.
L.E. interal valielies ano pseuoovantelies of homomor pilisms onto abelian groups, Proc. Int. Conf. on Semigroups and Languages, Lisboa 2005, World Scientific Publishing, Singapore 2007, pp. 255-264

Theorem (LP)
The following are pairwise different literal varieties of homomorphisms from free monoids onto abelian groups :

$$
\mathscr{V}(\ell, k)=\operatorname{Mod}_{\text {lit }}\left(x y=y x, x^{\ell}=1, x^{k}=y^{k}\right)
$$

where $\ell, k \in \mathbb{N}, k \mid \ell$. The corresponding literally invariant congruences on X^{*} are of the form

$$
\begin{gathered}
\rho(\ell, k)=\left\{(u, v) \in X^{*} \times X^{*}| | u|\equiv| v \mid \bmod \ell,\right. \\
\left.|u|_{i} \equiv|v|_{i} \bmod k \text { for } i \in \mathbb{N}\right\} .
\end{gathered}
$$

For fixed ℓ, k, the corresponding languages on X_{n} are exactly the disjoint unions of $L\left(n ; \ell, \ell^{\prime} ; k, k_{1}, \ldots, k_{n}\right)$.
A., Literal varielles and oseurovarielles of mommomponismis onto abelian groups, Proc. Int. Conf. on Semigroups and Languages,

Theorem (LP)

The following are pairwise different literal varieties of homomorphisms from free monoids onto abelian groups :

$$
\mathscr{V}(\ell, k)=\operatorname{Mod}_{\mathrm{lit}}\left(x y=y x, x^{\ell}=1, x^{k}=y^{k}\right)
$$

where $\ell, k \in \mathbb{N}, k \mid \ell$. The corresponding literally invariant congruences on X^{*} are of the form

$$
\begin{gathered}
\rho(\ell, k)=\left\{(u, v) \in X^{*} \times X^{*}| | u|\equiv| v \mid \bmod \ell,\right. \\
\left.|u|_{i} \equiv|v|_{i} \bmod k \text { for } i \in \mathbb{N}\right\} .
\end{gathered}
$$

For fixed ℓ, k, the corresponding languages on X_{n} are exactly the disjoint unions of $L\left(n ; \ell, \ell^{\prime} ; k, k_{1}, \ldots, k_{n}\right)$.

Theorem (LP)

The following are pairwise different literal varieties of homomorphisms from free monoids onto abelian groups :

$$
\mathscr{V}(\ell, k)=\operatorname{Mod}_{\text {lit }}\left(x y=y x, x^{\ell}=1, x^{k}=y^{k}\right)
$$

where $\ell, k \in \mathbb{N}, k \mid \ell$. The corresponding literally invariant congruences on X^{*} are of the form

$$
\begin{gathered}
\rho(\ell, k)=\left\{(u, v) \in X^{*} \times X^{*}| | u|\equiv| v \mid \bmod \ell,\right. \\
\left.|u|_{i} \equiv|v|_{i} \bmod k \text { for } i \in \mathbb{N}\right\} .
\end{gathered}
$$

For fixed ℓ, k, the corresponding languages on X_{n} are exactly the disjoint unions of $L\left(n ; \ell, \ell^{\prime} ; k, k_{1}, \ldots, k_{n}\right)$.
L.P., Literal varieties and pseudovarieties of homomorphisms onto abelian groups, Proc. Int. Conf. on Semigroups and Languages, Lisboa 2005, World Scientific Publishing, Singapore 2007, pp. 255-264

Literal varieties of homomorphisms onto nilpotent groups and the corresponding languages

Our basic ingredients are the following languages : Let $n, \ell, k, r \in \mathbb{N}$ with $r|k| \ell$,
let $\ell^{\prime} \in\{0, \ldots, \ell-1\}$, let $k_{1}, \ldots, k_{n} \in\{0, \ldots, k-1\}$ satisfy $k_{1}+\cdots+k_{n} \equiv \ell^{\prime} \bmod k$, let $r_{j, i} \in\{0, \ldots, r-1\}$ for $1 \leq i<j \leq n$. We put

$$
\begin{gathered}
L\left(n ; \ell, \ell^{\prime} ; k, k_{1}, \ldots, k_{n} ; r, r_{2,1}, \ldots, r_{n, 1}, \ldots, r_{n, n-1}\right)= \\
=\left\{u \in X _ { n } ^ { * } | | u \left|\equiv \ell^{\prime} \bmod \ell,|u|_{1} \equiv k_{1}, \ldots,|u|_{n} \equiv k_{n} \bmod k,\right.\right. \\
\left.|u|_{j, i} \equiv r_{j, i} \bmod r \text { for all } 1 \leq i<j \leq n\right\} .
\end{gathered}
$$

Theorem (OK \& LP)

The following are pairwise different literal varieties of homomorphisms from free monoids onto nilpotent groups of class ≤ 2 :

$$
\mathscr{V}(\ell, k, r)=\operatorname{Mod}_{\text {lit }}\left([x,[y, z]]=1, x^{\ell}=1, x^{k}=y^{k},[x, y]^{r}=1\right)
$$

where $\ell, k, r \in \mathbb{N}, r|k| \ell$.
The corresponding literally invariant congruences on X^{*} are of the form

For fixed ℓ, k, r, the corresponding languages on X_{n} are exactly the disjoint unions of

Theorem (OK \& LP)

The following are pairwise different literal varieties of homomorphisms from free monoids onto nilpotent groups of class ≤ 2 :

$$
\mathscr{V}(\ell, k, r)=\operatorname{Mod}_{\text {lit }}\left([x,[y, z]]=1, x^{\ell}=1, x^{k}=y^{k},[x, y]^{r}=1\right)
$$

where $\ell, k, r \in \mathbb{N}, r|k| \ell$.
The corresponding literally invariant congruences on X^{*} are of the form

$$
\rho(\ell, k, r)=\left\{(u, v) \in X^{*} \times X^{*}| | u|\equiv| v \mid \bmod \ell\right.
$$

$$
\left.|u|_{i} \equiv|v|_{i} \bmod k \text { for } i \in \mathbb{N},|u|_{j, i} \equiv|v|_{j, i} \bmod r \text { for } 1 \leq i<j\right\} .
$$

Theorem (OK \& LP)

The following are pairwise different literal varieties of homomorphisms from free monoids onto nilpotent groups of class ≤ 2 :

$$
\mathscr{V}(\ell, k, r)=\operatorname{Mod}_{\text {lit }}\left([x,[y, z]]=1, x^{\ell}=1, x^{k}=y^{k},[x, y]^{r}=1\right)
$$

where $\ell, k, r \in \mathbb{N}, r|k| \ell$.
The corresponding literally invariant congruences on X^{*} are of the form

$$
\begin{gathered}
\rho(\ell, k, r)=\left\{(u, v) \in X^{*} \times X^{*}| | u|\equiv| v \mid \bmod \ell\right. \\
\left.|u|_{i} \equiv|v|_{i} \bmod k \text { for } i \in \mathbb{N},|u|_{j, i} \equiv|v|_{j, i} \bmod r \text { for } 1 \leq i<j\right\}
\end{gathered}
$$

For fixed ℓ, k, r, the corresponding languages on X_{n} are exactly the disjoint unions of

$$
L\left(n ; \ell, \ell^{\prime} ; k, k_{1}, \ldots, k_{n} ; r, r_{2,1}, \ldots, r_{n, 1}, \ldots, r_{n, n-1}\right)
$$

Reminding type of identities :

$$
([x, y][y, z][z, x])^{\alpha}=1, x^{\beta} y^{-\beta}=[x, y]^{\gamma} .
$$

Literally idempotent languages and their varieties

A regular language L over a finite alphabet A is literally idempotent if its syntactic homomorphism $\phi_{L}: A^{*} \rightarrow \mathrm{O}(L)$ satisfies the pseudoidentity $x^{2}=x$ literally, which means

$$
(\forall a \in A) a^{2} \sim_{L} a
$$

or equivalently

$$
\begin{equation*}
\left(\forall u, v \in A^{*}, a \in A\right)\left(u a v \in L \Leftrightarrow u a^{2} v \in L\right) \tag{*}
\end{equation*}
$$

We denote the class of all such languages by \mathscr{L}.

Literally idempotent languages and their varieties

A regular language L over a finite alphabet A is literally idempotent if its syntactic homomorphism $\phi_{L}: A^{*} \rightarrow \mathrm{O}(L)$ satisfies the pseudoidentity $x^{2}=x$ literally, which means

$$
(\forall a \in A) a^{2} \sim_{L} a
$$

or equivalently

$$
\begin{equation*}
\left(\forall u, v \in A^{*}, a \in A\right)\left(u a v \in L \Leftrightarrow u a^{2} v \in L\right) . \tag{*}
\end{equation*}
$$

We denote the class of all such languages by \mathscr{L}.

We can introduce a string rewriting system which is given by rules $p a^{2} q \rightarrow p a q$ for each $a \in A, p, q \in A^{*}$. Let \rightarrow^{*} be the reflexive-transitive closure of the relation \rightarrow. We say that a word $u \in A^{*}$ is the normal form of a word w if it satisfies the properties

$$
w \rightarrow^{*} u \text { and }\left(u \rightarrow^{*} v \text { implies } u=v\right) .
$$

This system is confluent and terminating. Consequently, for any word $w \in A^{*}$, there exists the unique normal form $\vec{w} \in A^{*}$ of the word w. We will denote by \sim the equivalence relation on A^{*} generated by the relation - . In fact, it is a congruence on A.

We can introduce a string rewriting system which is given by rules $p a^{2} q \rightarrow p a q$ for each $a \in A, p, q \in A^{*}$. Let \rightarrow^{*} be the reflexive-transitive closure of the relation \rightarrow. We say that a word $u \in A^{*}$ is the normal form of a word w if it satisfies the properties

$$
w \rightarrow^{*} u \text { and }\left(u \rightarrow^{*} v \text { implies } u=v\right) .
$$

This system is confluent and terminating. Consequently, for any word $w \in A^{*}$, there exists the unique normal form $\vec{w} \in A^{*}$ of the word w. We will denote by \sim the equivalence relation on A^{*} generated by the relation \rightarrow. In fact, it is a congruence on A^{*}.

For any language $L \subseteq A^{*}$, we define

$$
\bar{L}=\left\{w \in A^{*} \mid(\exists u \in L) u \sim w\right\}
$$

which is

$$
\left\{w \in A^{*} \mid(\exists u \in L) \vec{u}=\vec{w}\right\}
$$

Lemma

For a regular $L \subseteq A^{*}$, the language L is regular, too.

A complete deterministic automaton $\mathscr{A}=(Q, A, \cdot, i, T)$ is called literally idempotent if for each $q \in Q$ and $a \in A$ we have $q \cdot a^{2}=q \cdot a$.

For any language $L \subseteq A^{*}$, we define

$$
\bar{L}=\left\{w \in A^{*} \mid(\exists u \in L) u \sim w\right\}
$$

which is

$$
\left\{w \in A^{*} \mid(\exists u \in L) \vec{u}=\vec{w}\right\}
$$

Lemma
For a regular $L \subseteq A^{*}$, the language \bar{L} is regular, too.

A complete deterministic automaton $\mathscr{A}=(Q, A, \cdot, i, T)$ is called literally idempotent if for each $q \in Q$ and $a \in A$ we have $q \cdot a^{2}=q \cdot a$.

For any language $L \subseteq A^{*}$, we define

$$
\bar{L}=\left\{w \in A^{*} \mid(\exists u \in L) u \sim w\right\}
$$

which is

$$
\left\{w \in A^{*} \mid(\exists u \in L) \vec{u}=\vec{w}\right\}
$$

Lemma

For a regular $L \subseteq A^{*}$, the language \bar{L} is regular, too.

A complete deterministic automaton $\mathscr{A}=(Q, A, \cdot, i, T)$ is called literally idempotent if for each $q \in Q$ and $a \in A$ we have $q \cdot a^{2}=q \cdot a$.

Lemma

For a regular $L \subseteq A^{*}$, the following statements are equivalent :
(i) L is literally idempotent,
(ii) $\bar{L}=L$,
(iii) $\sim \subseteq \sim L$,
(iv) L is accepted by a literally idempotent complete deterministic finite automaton,
(v) the (canonical) minimal DFA for L is literally idempotent,
(vi) L is a (disjoint) union (not necessarily finite !) of the languages of the form

$$
a_{1}^{+} a_{2}^{+} \ldots a_{k}^{+}, k \in \mathbb{N}_{0}, a_{1}, \ldots, a_{k} \in A, a_{1} \neq a_{2} \neq \cdots \neq a_{k} .
$$

The literally idempotent languages over $A=\{a\}$ are exactly: $\emptyset,\{1\}, a^{+}$ and a^{*}.
Now consider a regular language L over $A=\{a\}$ with the minimal deterministic automaton $\mathscr{A}=(Q, A, \cdot, i, T)$. Choose the minimal $d \in \mathbb{N}$ and then the minimal $k \in \mathbb{N}_{0}$ such that $i \cdot a^{k}=i \cdot a^{k+d}$. Let

$$
M=L \cap\left\{1, a, \ldots, a^{k-1}\right\} \text { and } N=L \cap a^{k}\left\{1, a, \ldots, a^{d-1}\right\} .
$$

Then $M \cup N\left(a^{d}\right)^{*}$ is a "canonical" regular expression for L. The situation for literally idempotent languages over $A=\{a, b\}$ is similar. Each regular language L over A is a disjoint union of the sets

$$
\begin{gathered}
L \cap\left(a\{a, b\}^{*} a \cup a\right), L \cap a\{a, b\}^{*} b, \\
L \cap b\{a, b\}^{*} a, L \cap\left(b\{a, b\}^{*} b \cup b\right), L \cap 1 .
\end{gathered}
$$

If L is literally idempotent each of the first four summands behaves similarly as a regular language over a single letter alphabet.

The literally idempotent languages over $A=\{a\}$ are exactly: $\emptyset,\{1\}, a^{+}$ and a^{*}.
Now consider a regular language L over $A=\{a\}$ with the minimal deterministic automaton $\mathscr{A}=(Q, A, \cdot, i, T)$. Choose the minimal $d \in \mathbb{N}$ and then the minimal $k \in \mathbb{N}_{0}$ such that $i \cdot a^{k}=i \cdot a^{k+d}$. Let

$$
M=L \cap\left\{1, a, \ldots, a^{k-1}\right\} \text { and } N=L \cap a^{k}\left\{1, a, \ldots, a^{d-1}\right\}
$$

Then $M \cup N\left(a^{d}\right)^{*}$ is a "canonical" regular expression for L. The situation for literally idempotent languages over $A=\{a, b\}$ is similar. Each regular language L over A is a disjoint union of the sets

$$
\begin{aligned}
& \operatorname{Ln}\left(a\{a, b\}{ }^{2} a \cup a\right), \operatorname{Ln} a\{a, b\}^{*} b . \\
& \text { Lnofa,b\} } a, \operatorname{Ln}(b\{a, b\} \text { bub), Ln } 1
\end{aligned}
$$

If L is literally idempotent each of the first four summands behaves similarly as a regular language over a single letter alphabet.

The literally idempotent languages over $A=\{a\}$ are exactly: $\emptyset,\{1\}, a^{+}$ and a^{*}.
Now consider a regular language L over $A=\{a\}$ with the minimal deterministic automaton $\mathscr{A}=(Q, A, \cdot, i, T)$. Choose the minimal $d \in \mathbb{N}$ and then the minimal $k \in \mathbb{N}_{0}$ such that $i \cdot a^{k}=i \cdot a^{k+d}$. Let

$$
M=L \cap\left\{1, a, \ldots, a^{k-1}\right\} \text { and } N=L \cap a^{k}\left\{1, a, \ldots, a^{d-1}\right\}
$$

Then $M \cup N\left(a^{d}\right)^{*}$ is a "canonical" regular expression for L. The situation for literally idempotent languages over $A=\{a, b\}$ is similar. Each regular language L over A is a disjoint union of the sets

$$
\begin{gathered}
L \cap\left(a\{a, b\}^{*} a \cup a\right), L \cap a\{a, b\}^{*} b, \\
L \cap b\{a, b\}^{*} a, L \cap\left(b\{a, b\}^{*} b \cup b\right), L \cap 1 .
\end{gathered}
$$

If L is literally idempotent each of the first four summands behaves similarly as a regular language over a single letter alphabet.

We consider the first summand (the reasonings about the remaining ones are analogous). Let $\mathscr{A}=(Q, A, \cdot, i, T)$ be the minimal deterministic automaton for L. Choose the minimal $d \in \mathbb{N}$ and then the minimal $k \in \mathbb{N}_{0}$ such that $i \cdot a(b a)^{k}=i \cdot a(b a)^{k+d}$. Let

$$
M=L \cap a\left\{1, b a, \ldots,(b a)^{k-1}\right\} \text { and } N=L \cap a(b a)^{k}\left\{1, b a, \ldots,(b a)^{d-1}\right\}
$$

Then $\bar{M} \cup \bar{N}\left(\left(b^{+} a^{+}\right)^{d}\right)^{*}$ is a "canonical" regular expression for the first summand of L.

We are interested in literal positive/boolean varieties consisting of literally idempotent languages. These varieties can be induced by classical varieties in two natural ways. At first, for a class of languages \mathscr{V}, we can consider the class of languages from \mathscr{V} which are also literally idempotent languages, i.e. the intersection $\mathscr{V} \cap \mathscr{L}$. The second possibility is to consider the following operator on classes of languages: $\mathscr{V} \mapsto \bar{V}$ where

$$
\overline{\mathcal{H}}(A)=\{\bar{L} \mid L \in \mathscr{H}(A)\} .
$$

The languages of the level $1 / 2$ over A are exactly finite unions of languages of the form

$$
\begin{equation*}
A^{*} a_{1} A^{*} a_{2} \ldots a_{k} A^{*}, k \in \mathbb{N}_{0}, a_{1}, \ldots, a_{k} \in A \tag{1/2}
\end{equation*}
$$

We denote this positive variety of languages by $\mathscr{V}_{1 / 2}$. The languages of the level 1 over A are exactly boolean combinations of languages of the form ($1 / 2$). We denote this variety of languages by \mathscr{V}_{1}

Theorem (OK \& LP)
(i) Finite unions of languages
$A^{*} a_{1} A^{*} a_{2} \ldots a_{k} A^{*}, k \in \mathbb{N}_{0}, a_{1}, \ldots, a_{k} \in A, a_{1} \neq a_{2} \neq \cdots \neq a_{k} .(\mathscr{L} 1 / 2)$
form a literal positive variety which is equal both to $\mathscr{V}_{1 / 2} \cap \mathscr{L}$ and $\overline{\mathscr{1}_{1 / 2}}$. (ii) Finite unions of languages
form a literal positive variety which is equal both to $\left(\mathscr{V}_{1 / 2}\right)^{\mathrm{C}} \cap \mathscr{L}$ and (iii) Boolean combinations of languages of the form (LL $1 / 2)$ form a literal boolean variety which is equal both to $\mathscr{1}_{1} \cap \mathscr{L}$ and $\overline{V_{1}}$.

Theorem (OK \& LP)

(i) Finite unions of languages
$A^{*} a_{1} A^{*} a_{2} \ldots a_{k} A^{*}, k \in \mathbb{N}_{0}, a_{1}, \ldots, a_{k} \in A, a_{1} \neq a_{2} \neq \cdots \neq a_{k} .(\mathscr{L} 1 / 2)$ form a literal positive variety which is equal both to $\mathscr{V}_{1 / 2} \cap \mathscr{L}$ and $\overline{\mathscr{V}_{1 / 2}}$. (ii) Finite unions of languages

$$
\begin{equation*}
B_{1}^{*} B_{2}^{*} \ldots B_{k}^{*}, k \in \mathbb{N}_{0}, B_{1}, \ldots, B_{k} \subseteq A \tag{L1/2c}
\end{equation*}
$$

form a literal positive variety which is equal both to $\left(\mathscr{V}_{1 / 2}\right)^{\mathrm{C}} \cap \mathscr{L}$ and $\overline{\left(V_{1 / 2}\right)^{c}}$.
(iii) Boolean combinations of languages of the form (LL 1/2) form a literal boolean variety which is equal both to $\sqrt[1]{1} \cap \mathscr{L}$ and $\overline{1 / 1}$

Theorem (OK \& LP)

(i) Finite unions of languages
$A^{*} a_{1} A^{*} a_{2} \ldots a_{k} A^{*}, k \in \mathbb{N}_{0}, a_{1}, \ldots, a_{k} \in A, a_{1} \neq a_{2} \neq \cdots \neq a_{k} .(\mathscr{L} 1 / 2)$
form a literal positive variety which is equal both to $\mathscr{V}_{1 / 2} \cap \mathscr{L}$ and $\overline{\mathscr{V}_{1 / 2}}$. (ii) Finite unions of languages

$$
\begin{equation*}
B_{1}^{*} B_{2}^{*} \ldots B_{k}^{*}, k \in \mathbb{N}_{0}, B_{1}, \ldots, B_{k} \subseteq A \tag{L1/2c}
\end{equation*}
$$

form a literal positive variety which is equal both to $(\sqrt[1]{1 / 2})^{c} \cap \mathscr{L}$ and $\left(\mathscr{V}_{1 / 2}\right)^{c}$.
(iii) Boolean combinations of languages of the form ($\mathscr{L} 1 / 2$) form a literal boolean variety which is equal both to $\mathscr{V}_{1} \cap \mathscr{L}$ and $\overline{\mathscr{W}_{1}}$.

In general, for a positive/boolean variety \mathscr{V}, the class $\mathscr{Y} \cap \mathscr{L}$ is a literal positive/boolean variety but we have only $\mathscr{Y} \cap \mathscr{L} \subseteq \overline{\mathscr{V}}$ and $\overline{\mathscr{V}}$ need not to be a literal positive/boolean variety.
For more, see O. Klíma and L. Polák, On varieties of literally idempotent languages, RAIRO - Theoretical Informatics and Applications Vol. 42 No. 3, p. 583-598

Two variable case

Let M_{n} be monoid with the presentation

$$
<a_{1}, \ldots, a_{n} \mid a_{1}^{2}=a_{1}, \ldots, a_{n}^{2}=a_{n}>
$$

and let $M_{n}=\left\{a_{1}, \ldots, a_{n}\right\}^{*} / \approx$.
Each $\pi \in \operatorname{Con} A^{*}$ with $\pi \supseteq \approx$ defines $\pi / \approx \in \operatorname{Con} M_{n}$ by $u \approx \pi / \approx v \approx$ iff $u \pi v$.

Theorem (OK \& LP)

$\left.\mathscr{H}\left\{a_{1}, \ldots, a_{n}\right\}\right)$'s for equational literal varieties of literally idempotent languages correspond to literally invariant congruences on M_{n}; we write $\left.\left.\mathcal{M}\left\{a_{1}, \ldots, a_{n}\right\}\right) \mapsto \kappa_{\mathcal{M}}\left\{a_{1}, \ldots, a_{n}\right\}\right\}$.
More precisely, $\left.\left.\mathcal{K}_{\mathcal{H}}\left\{a_{1}, \ldots, a_{n}\right\}\right\}\right)$ is the greatest literally invariant congruence on M_{n} containing all $\left.\sim_{L} / \approx, L \in \mathcal{H}\left\{a_{1}, \ldots, a_{n}\right\}\right)$. Moreover,
$\left.L \in \mathscr{H}\left\{a_{1}, \ldots, a_{n}\right\}\right)$ if and only if $\left.\sim_{L} / \approx \supseteq \mathcal{K}_{\mathcal{Y}}\left(a_{1}, \ldots, a_{n}\right\}\right\}$.

From now on, let $n=2$. We write $a=a_{1}, b=a_{2}$ an we identify the elements of M_{2} with

$$
\begin{gathered}
1, u_{2 \ell+1}=a(b a)^{\ell}, u_{2 \ell+2}=(a b)^{\ell+1} \\
v_{2 \ell+1}=b(a b)^{\ell}, v_{2 \ell+2}=(b a)^{\ell+1}, \ell \in \mathbb{N}_{0}
\end{gathered}
$$

On M_{2} we have:
the trivial congruence $\Delta=\left\{(w, w) \in M_{2} \times M_{2} \mid w \in M_{2}\right\}$ and the universal congruence $\nabla=M_{2} \times M_{2}$.

For $k \in \mathbb{N}, d \in \mathbb{N}$, we put

$$
U_{k, d}=\left\{u_{k}, u_{k+2 d}, \ldots\right\} \quad \text { and } \quad V_{k, d}=\left\{v_{k}, v_{k+2 d}, \ldots\right\} ;
$$

and we write simply U_{k} instead of $U_{k, 1}$ and V_{k} instead of $V_{k, 1}$.

For $k, d \in \mathbb{N}$, consider the following equivalences on the set M_{2} :

- $\rho_{k, d}$ with non-trivial (= non-singleton) classes

$$
U_{k, d}, U_{k+1, d}, \ldots, U_{k+2 d-1, d}, V_{k, d}, V_{k+1, d}, \ldots, V_{k+2 d-1, d},
$$

- σ_{k} with the non-trivial classes $U_{k} \cup U_{k+1}$ and $V_{k} \cup V_{k+1}$,
- τ_{k} with the non-trivial classes $U_{k} \cup V_{k+1}$ and $U_{k+1} \cup V_{k}$,
- v_{k} with the non-trivial class $U_{k} \cup U_{k+1} \cup V_{k} \cup V_{k+1}$.

Theorem (OK \& LP)

Proper literally invariant congruences of the monoid M_{2} are exactly the relations listed above. They are generated by

$$
u_{k}=u_{k+2 d}, u_{k}=u_{k+1}, u_{k}=v_{k+1}, u_{k}=v_{k} \text {, respectively. }
$$

The congruence ∇ is generated by $a=1$.

A part of the dual of the k-th level of the lattice of all literally invariant congruences on M_{2} is depicted below.

The whole lattice is the product of such a level with the chain $1<2<\ldots$ of all positive natural numbers with ∇ and Δ adjoined. We draw the dual since we are primarily interested in the corresponding varieties of languages.

Let L be a literally idempotent language over the alphabet $\{a, b\}$. Let $\mathscr{A}=(Q,\{a, b\}, \cdot, i, T)$ be the minimal complete deterministic automaton for L. We would like to find the smallest possible $\mathcal{H}(\{a, b\})$ containing L. So we are looking for the greatest literally invariant congruence on M_{2} contained in \sim_{L}.
It is well-known that the syntactic homomorphism ϕ_{L} can be identified with the mapping which maps $u \in\{a, b\}^{*}$ onto the transformation of Q induced by the word u.
Recall that the automaton \mathscr{A} is literally idempotent.

We distinguish several cases:
(i) There is the only cycle in \mathscr{A} and it is of length 1.
(ii) There are exactly two cycles in \mathscr{A}, both of the length 1 .
(iii) There is the only cycle in \mathscr{A} and it is of length 2.
(iv) There is the only cycle in \mathscr{A} and it is of length $2 d$ where $d \geq 2$ or there are exactly two cycles of lengths $2 d_{1}$ and $2 d_{2}$ where $d_{1}, d_{2} \in \mathbb{N}$
or there are exactly two cycles of lengths $2 d$ and 1 .

Notice that exactly one case of (i) - (iv) happens. Let k be the smallest such that all words w of length $\geq k$ transform the initial state i into a cycle. In the second subcase of (iv), let d equal to the least common multiple of d_{1} and d_{2}.

Theorem (OK \& LP)

The literally invariant congruence on M_{2} corresponding to the language L is
v_{k} in the case (i),
σ_{k} in the case (ii),
τ_{k} in the case (iii), $\rho_{k, d}$ in the case (iv). case, Proceedings AFL 2008.

Notice that exactly one case of (i) - (iv) happens. Let k be the smallest such that all words w of length $\geq k$ transform the initial state i into a cycle. In the second subcase of (iv), let d equal to the least common multiple of d_{1} and d_{2}.

```
Theorem (OK & LP)
The literally invariant congruence on \(M_{2}\) corresponding to the language \(L\) is
\(v_{k}\) in the case (i),
\(\sigma_{k}\) in the case (ii),
\(\tau_{k}\) in the case (iii), \(\rho_{k, d}\) in the case (iv).
```

The last results are from
OK \& LP, Literally idempotent languages and their varieties - two letter case, Proceedings AFL 2008.

