
On literal varieties of languages
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Syntactic structures

Let L⊆ A∗ be a regular language. We define the following relations on
A∗ and A2 = all finite subsets of A∗, respectively :
for u,v ,u1, . . . ,uk ,v1, . . . ,v` ∈ A∗,

u ∼L v if and only if ( ∀ x ,y ∈ A∗ )( xuy ∈ L⇔ xvy ∈ L ) ,

{u1, . . . ,uk} ≈L {v1, . . . ,v`} if and only if

( ∀ x ,y ∈ A∗ )( xu1y , . . . ,xuky ∈ L⇔ xv1y , . . . ,xv`y ∈ L ) .

The quotient structures

(O(L), ·) = (A∗, ·)/∼L and (S(L), ·,∨) = (A2, ·,∪)/≈L

are called the syntactic monoid and the syntactic semiring of the
language L.
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The assignments

φL : u 7→ u ∼L and ψL : {u1, . . . ,uk} 7→ {u1, . . . ,uk} ≈L

are called syntactic monoid/semiring homomorphisms.

The monoid (O(L), ·) is ordered by the relation

v ∼L ≤ u ∼L iff ( ∀ x ,y ∈ A∗ ) ( xuy ∈ L⇒ xvy ∈ L ) .
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Eilenberg type theorems

Theorem
(i) (Eilenberg) Boolean varieties of languages correspond to
pseudovarieties of finite monoids. Here L 7→ syntactic monoid of L.
(ii) (Ésik & Co., Straubing) Literal boolean varieties of languages
correspond to literal pseudovarieties of homomorphisms from finitely
generated free monoids onto finite monoids. Here L 7→ syntactic
homomorphism of L.
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“Varieties” of languages

A class of (regular) languages is an operator V assigning to each finite
set A a set V(A) of regular languages over the alphabet A. Such a
class is a positive variety if
(0) for each A, we have /0, A∗ ∈ V(A),
(i) each V(A) is closed with respect to finite unions, finite

intersections and quotients, and
(ii) for each finite sets A and B and a homomorphism

f : B∗→ A∗, K ∈ V(A) implies f−1(K ) ∈ V(B).
Adding the condition
(iii) each V(A) is closed with respect to complements,
we get a boolean variety.
A modification of (ii) to
(ii’) for each finite sets A and B and a homomorphism f : B∗→ A∗ with

f (B)⊆ A, K ∈ V(A) implies f−1(K ) ∈ V(B)

leads to the notions of a literal positive/boolean variety of languages.
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C-universal algebra

Let V be a variety of algebras of a fixed signature. Let WA be the free
V -algebra over the set A. We consider a category C of free
V -algebras, that is, the objects are all WA’s for sets A, and the homsets
C(WB,WA) consist of certain homomorphisms from WB into WA.

Basic example :
V = all monoids, WA = A∗, p ∈ Clit(B∗,A∗) iff, for each b ∈ B, p(b) ∈ A -
literal homomorphisms.

Let
V = { φ : WA � S | A is a set and S ∈ V }

be the class of all surjective homomorphisms from free V -algebras
onto V -algebras; we speak about V -homomorphisms.
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Let U⊆V. We define :

HU = {σφ : WA � T |

T ∈ V , (φ : WA � S) ∈ U, σ : S � T a surj. homom.} ,

SCU = {φp : WB � im(φp) |

B a set, p ∈ C(WB,WA), (φ : WA � S) ∈ U} ,

PU = {(φγ)γ∈Γ : WA � im((φγ)γ∈Γ) |

A,Γ sets, (φγ : WA � Sγ) ∈ U for γ ∈ Γ} ,

(φγ)γ∈Γ : WA → ∏
γ∈Γ

Sγ , u 7→ (φγ(u))γ∈Γ .

A class U⊆V is called a C-variety of V -homomorphisms if it is closed
with respect to the operators H, SC and P.
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We define the generalized C-varieties as classes of
V -homomorphisms U⊆V closed with respect to H, SC, Pf (products of
finite families) and PoC.
Similarly, C-pseudovarieties of finite V -homomorphisms are classes
X⊆ FinV closed with respect to H, SC, and Pf.
An n-ary V -identity is a pair u = v where u,v ∈Wn.
A V -homomorphism φ : WA � S C-satisfies u = v if

( ∀ p ∈ C(Wn,WA) ) (φp)(u) = (φp)(v) .

The invention of equational logic for C-pseudovarieties of finite
V -homomorphisms was possible only after a deep understanding of
categories of such homomorphisms - see Kunc. Here we recall only
the right definition of morphisms :

σ : (φ : WA � S)→ (ψ : WB � T )

if σ : S � T is a surjective homomorphism and there exists
p ∈ C(WA,WB) such that σφ = ψp.
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Theorem
1. (LP) C-varieties of V -homomorphisms are exactly classes of
homomorphisms determined by V -identities.
2. (LP) Generalized C-varieties of V -homomorphisms are exactly
directed unions of C-varieties of V -homomorphisms.
3. (LP) C-pseudovarieties of finite V -homomorphisms are exactly
classes of the form FinU where U is a directed union of C-varieties of
V -homomorphisms. If the type is finite we can restrict ourselves to
unions of chains.
4. (Kunc) C-pseudovarieties of finite V -homomorphisms are exactly
classes of finite V -homomorphisms C-determined by
(FinV )-pseudoidentities.

L.P., On varieties, generalized varieties and pseudovarieties of
homomorphisms, Contributions to General Algebra 16, Verlag
Johannes Heyn, Klagenfurt 2005, pp. 173-187



Theorem
1. (LP) C-varieties of V -homomorphisms are exactly classes of
homomorphisms determined by V -identities.
2. (LP) Generalized C-varieties of V -homomorphisms are exactly
directed unions of C-varieties of V -homomorphisms.
3. (LP) C-pseudovarieties of finite V -homomorphisms are exactly
classes of the form FinU where U is a directed union of C-varieties of
V -homomorphisms. If the type is finite we can restrict ourselves to
unions of chains.
4. (Kunc) C-pseudovarieties of finite V -homomorphisms are exactly
classes of finite V -homomorphisms C-determined by
(FinV )-pseudoidentities.

L.P., On varieties, generalized varieties and pseudovarieties of
homomorphisms, Contributions to General Algebra 16, Verlag
Johannes Heyn, Klagenfurt 2005, pp. 173-187



Theorem
1. (LP) C-varieties of V -homomorphisms are exactly classes of
homomorphisms determined by V -identities.
2. (LP) Generalized C-varieties of V -homomorphisms are exactly
directed unions of C-varieties of V -homomorphisms.
3. (LP) C-pseudovarieties of finite V -homomorphisms are exactly
classes of the form FinU where U is a directed union of C-varieties of
V -homomorphisms. If the type is finite we can restrict ourselves to
unions of chains.
4. (Kunc) C-pseudovarieties of finite V -homomorphisms are exactly
classes of finite V -homomorphisms C-determined by
(FinV )-pseudoidentities.

L.P., On varieties, generalized varieties and pseudovarieties of
homomorphisms, Contributions to General Algebra 16, Verlag
Johannes Heyn, Klagenfurt 2005, pp. 173-187



Theorem
1. (LP) C-varieties of V -homomorphisms are exactly classes of
homomorphisms determined by V -identities.
2. (LP) Generalized C-varieties of V -homomorphisms are exactly
directed unions of C-varieties of V -homomorphisms.
3. (LP) C-pseudovarieties of finite V -homomorphisms are exactly
classes of the form FinU where U is a directed union of C-varieties of
V -homomorphisms. If the type is finite we can restrict ourselves to
unions of chains.
4. (Kunc) C-pseudovarieties of finite V -homomorphisms are exactly
classes of finite V -homomorphisms C-determined by
(FinV )-pseudoidentities.

L.P., On varieties, generalized varieties and pseudovarieties of
homomorphisms, Contributions to General Algebra 16, Verlag
Johannes Heyn, Klagenfurt 2005, pp. 173-187



Varieties of group languages

Languages over Xn = {x1, . . . ,xn} corresponding to finite members of
certain varieties of groups are well-known :
1. Boolean combinations of

{u ∈ X ∗
n | |u|i ≡ `′ mod `}, i ∈ {1, . . . ,n}, ` ∈ N, `′ ∈ {0, . . . , `−1}

for the class of all abelian groups.
2. Boolean combinations of

{u ∈ X ∗
n | |u|i ≡ `′ mod `}, i ∈ {1, . . . ,n}, `′ ∈ {0, . . . , `−1}

for the class of all abelian groups satisfying x ` = 1.
3. Boolean combinations of

{u ∈ X ∗
n |

(
u
v

)
≡ r ′ mod r}, v ∈ X ∗

n , r ∈ N, r ′ ∈ {0, . . . , r −1}

for the class of all nilpotent groups.
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4. Boolean combinations of

{u ∈ X ∗
n |

(
u
v

)
≡ r ′ mod r}, v ∈ X ∗

n , |v | ≤ c, r ∈ N, r ′ ∈ {0, . . . , r −1}

for the class of all nilpotent groups of class ≤ c.

Such results can be refined as follows :

1’. Disjoint unions

{u ∈ X ∗
n | |u|1 ≡ `1, . . . , |u|n ≡ `n mod `}, ` ∈N, `1, . . . , `n ∈ {0, . . . , `−1} ,

` fixed, for the class of all abelian groups.

It is not difficult to refine the results 2,3 and 4 in a similar way.

Our goal :
A. Find all literal varieties of homomorphisms onto abelian groups and
describe the corresponding languages (in the finer form) – done 2005.
B. Find all (or at least some hierarchy) of literal varieties of
homomorphisms onto nilpotent groups of class ≤ 2 and describe the
corresponding languages.
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Literal varieties of homomorphisms onto abelian groups and the
corresponding languages

Our basic ingredients are the following languages :
Let n, `,k ∈ N with k | `,
let `′ ∈ {0, . . . , `−1},
let k1, . . . ,kn ∈ {0, . . . ,k −1} satisfy k1 + · · ·+kn ≡ `′ mod k ,

L(n;`,`′;k ,k1, . . . ,kn) =

= { u ∈ X ∗
n | |u| ≡ `′ mod `, |u|1 ≡ k1, . . . , |u|n ≡ kn mod k } .



Theorem (LP)
The following are pairwise different literal varieties of
homomorphisms from free monoids onto abelian groups :

V (`,k) = Modlit( xy = yx , x ` = 1, xk = yk )

where `,k ∈ N, k | `. The corresponding literally invariant
congruences on X ∗ are of the form

ρ(`,k) = { (u,v) ∈ X ∗×X ∗ | |u| ≡ |v | mod `,

|u|i ≡ |v |i mod k for i ∈ N}.

For fixed `,k, the corresponding languages on Xn are exactly the
disjoint unions of L(n;`,`′;k ,k1, . . . ,kn).
L.P., Literal varieties and pseudovarieties of homomorphisms onto
abelian groups, Proc. Int. Conf. on Semigroups and Languages,
Lisboa 2005, World Scientific Publishing, Singapore 2007, pp. 255-264
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Literal varieties of homomorphisms onto nilpotent groups and the
corresponding languages

Our basic ingredients are the following languages :
Let n, `,k , r ∈ N with r | k | `,
let `′ ∈ {0, . . . , `−1},
let k1, . . . ,kn ∈ {0, . . . ,k −1} satisfy k1 + · · ·+kn ≡ `′ mod k ,
let rj ,i ∈ {0, . . . , r −1} for 1≤ i < j ≤ n. We put

L(n;`,`′;k ,k1, . . . ,kn; r , r2,1, . . . , rn,1, . . . , rn,n−1) =

= { u ∈ X ∗
n | |u| ≡ `′ mod `, |u|1 ≡ k1, . . . , |u|n ≡ kn mod k ,

|u|j ,i ≡ rj ,i mod r for all 1≤ i < j ≤ n } .



Theorem (OK & LP)
The following are pairwise different literal varieties of
homomorphisms from free monoids onto nilpotent groups of class
≤ 2 :

V (`,k , r) = Modlit( [x , [y ,z]] = 1, x ` = 1, xk = yk , [x ,y ]r = 1 )

where `,k , r ∈ N, r | k | `.
The corresponding literally invariant congruences on X ∗ are of the
form

ρ(`,k , r) = { (u,v) ∈ X ∗×X ∗ | |u| ≡ |v | mod `,

|u|i ≡ |v |i mod k for i ∈ N, |u|j ,i ≡ |v |j ,i mod r for 1≤ i < j } .

For fixed `,k , r , the corresponding languages on Xn are exactly
the disjoint unions of

L(n;`,`′;k ,k1, . . . ,kn; r , r2,1, . . . , rn,1, . . . , rn,n−1) .
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Reminding type of identities :

([x ,y ][y ,z][z,x ])α = 1, xβ y−β = [x ,y ]γ .



Literally idempotent languages and their varieties

A regular language L over a finite alphabet A is literally idempotent if
its syntactic homomorphism φL : A∗→O(L) satisfies the pseudoidentity
x2 = x literally, which means

( ∀ a ∈ A ) a2 ∼L a

or equivalently

( ∀ u,v ∈ A∗, a ∈ A ) ( uav ∈ L ⇔ ua2v ∈ L ) . (∗)

We denote the class of all such languages by L.



Literally idempotent languages and their varieties

A regular language L over a finite alphabet A is literally idempotent if
its syntactic homomorphism φL : A∗→O(L) satisfies the pseudoidentity
x2 = x literally, which means

( ∀ a ∈ A ) a2 ∼L a

or equivalently

( ∀ u,v ∈ A∗, a ∈ A ) ( uav ∈ L ⇔ ua2v ∈ L ) . (∗)

We denote the class of all such languages by L.



We can introduce a string rewriting system which is given by rules
pa2q → paq for each a ∈ A, p,q ∈ A∗. Let →∗ be the reflexive-transitive
closure of the relation →. We say that a word u ∈ A∗ is the normal form
of a word w if it satisfies the properties

w →∗ u and (u →∗ v implies u = v ) .

This system is confluent and terminating. Consequently, for any word
w ∈ A∗, there exists the unique normal form −→w ∈ A∗ of the word w . We
will denote by ∼ the equivalence relation on A∗ generated by the
relation →. In fact, it is a congruence on A∗.
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For any language L⊆ A∗, we define

L = {w ∈ A∗ | ( ∃ u ∈ L ) u ∼ w }

which is
{w ∈ A∗ | ( ∃ u ∈ L )

−→u =
−→w } .

Lemma

For a regular L⊆ A∗, the language L is regular, too.

A complete deterministic automaton A = (Q,A, ·, i ,T ) is called literally
idempotent if for each q ∈Q and a ∈ A we have q ·a2 = q ·a.
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Lemma
For a regular L⊆ A∗, the following statements are equivalent :

(i) L is literally idempotent,
(ii) L = L,
(iii) ∼ ⊆ ∼L,
(iv) L is accepted by a literally idempotent complete deterministic finite

automaton,
(v) the (canonical) minimal DFA for L is literally idempotent,
(vi) L is a (disjoint) union (not necessarily finite !) of the languages of

the form

a+
1 a+

2 . . .a+
k , k ∈ N0, a1, . . . ,ak ∈ A, a1 6= a2 6= · · · 6= ak .



The literally idempotent languages over A = {a} are exactly: /0,{1},a+

and a∗.
Now consider a regular language L over A = {a} with the minimal
deterministic automaton A = (Q,A, ·, i ,T ). Choose the minimal d ∈ N
and then the minimal k ∈ N0 such that i ·ak = i ·ak+d . Let

M = L∩{1,a, . . . ,ak−1} and N = L∩ak{1,a, . . . ,ad−1} .

Then M ∪N(ad)∗ is a “canonical” regular expression for L.
The situation for literally idempotent languages over A = {a,b} is
similar. Each regular language L over A is a disjoint union of the sets

L∩ (a{a,b}∗a∪a), L∩a{a,b}∗b,

L∩b{a,b}∗a, L∩ (b{a,b}∗b∪b),L∩1 .

If L is literally idempotent each of the first four summands behaves
similarly as a regular language over a single letter alphabet.
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We consider the first summand (the reasonings about the remaining
ones are analogous). Let A = (Q,A, ·, i ,T ) be the minimal
deterministic automaton for L. Choose the minimal d ∈ N and then the
minimal k ∈ N0 such that i ·a(ba)k = i ·a(ba)k+d . Let

M = L∩a{1,ba, . . . ,(ba)k−1} and N = L∩a(ba)k{1,ba, . . . ,(ba)d−1} .

Then M ∪N((b+a+)d)∗ is a “canonical” regular expression for the first
summand of L.



We are interested in literal positive/boolean varieties consisting of
literally idempotent languages. These varieties can be induced by
classical varieties in two natural ways. At first, for a class of languages
V, we can consider the class of languages from V which are also
literally idempotent languages, i.e. the intersection V∩L.
The second possibility is to consider the following operator on classes
of languages: V 7→ V where

V(A) = {L | L ∈ V(A)} .



The languages of the level 1/2 over A are exactly finite unions of
languages of the form

A∗a1A∗a2 . . .akA∗, k ∈ N0, a1, . . . ,ak ∈ A . (1/2)

We denote this positive variety of languages by V1/2.
The languages of the level 1 over A are exactly boolean combinations
of languages of the form (1/2). We denote this variety of languages by
V1



Theorem (OK & LP)
(i) Finite unions of languages

A∗a1A∗a2 . . .akA∗, k ∈ N0, a1, . . . ,ak ∈ A, a1 6= a2 6= · · · 6= ak . (L 1/2)

form a literal positive variety which is equal both to V1/2∩L and V1/2.
(ii) Finite unions of languages

B∗
1B∗

2 . . .B∗
k , k ∈ N0, B1, . . . ,Bk ⊆ A . (L 1/2 c)

form a literal positive variety which is equal both to (V1/2)
c∩L and

(V1/2)c.
(iii) Boolean combinations of languages of the form (L 1/2) form a
literal boolean variety which is equal both to V1∩L and V1.
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In general, for a positive/boolean variety V, the class V∩L is a literal
positive/boolean variety but we have only V∩L⊆ V and V need not to
be a literal positive/boolean variety.
For more, see O. Klı́ma and L. Polák, On varieties of literally
idempotent languages, RAIRO - Theoretical Informatics and
Applications Vol. 42 No. 3, p. 583 - 598



Two variable case

Let Mn be monoid with the presentation

< a1, . . . ,an | a2
1 = a1, . . . ,a2

n = an >

and let Mn = {a1, . . . ,an}∗/≈.

Each π ∈ ConA∗ with π ⊇ ≈ defines π/≈ ∈ ConMn by u ≈ π/≈ v ≈ iff
u π v .

Theorem (OK & LP)

V({a1, . . . ,an})’s for equational literal varieties of literally idempotent
languages correspond to literally invariant congruences on Mn; we
write V({a1, . . . ,an}) 7→ κV({a1,...,an}).
More precisely, κV({a1,...,an}) is the greatest literally invariant
congruence on Mn containing all ∼L /≈, L ∈ V({a1, . . . ,an}).
Moreover,
L ∈ V({a1, . . . ,an}) if and only if ∼L /≈ ⊇ κV({a1,...,an}).



From now on, let n = 2. We write a = a1, b = a2 an we identify the
elements of M2 with

1, u2`+1 = a(ba)`, u2`+2 = (ab)`+1,

v2`+1 = b(ab)`, v2`+2 = (ba)`+1, ` ∈ N0 .

On M2 we have:
the trivial congruence ∆ = {(w ,w) ∈M2×M2 | w ∈M2 }
and the universal congruence ∇ = M2×M2.

For k ∈ N, d ∈ N, we put

Uk ,d = {uk ,uk+2d , . . .} and Vk ,d = {vk ,vk+2d , . . .} ;

and we write simply Uk instead of Uk ,1 and Vk instead of Vk ,1.



For k ,d ∈ N, consider the following equivalences on the set M2:
ρk ,d with non-trivial (= non-singleton) classes

Uk ,d , Uk+1,d , . . . ,Uk+2d−1,d ,Vk ,d , Vk+1,d , . . . ,Vk+2d−1,d ,

σk with the non-trivial classes Uk ∪Uk+1 and Vk ∪Vk+1,
τk with the non-trivial classes Uk ∪Vk+1 and Uk+1∪Vk ,
νk with the non-trivial class Uk ∪Uk+1∪Vk ∪Vk+1.

Theorem (OK & LP)
Proper literally invariant congruences of the monoid M2 are exactly the
relations listed above. They are generated by

uk = uk+2d , uk = uk+1, uk = vk+1, uk = vk , respectively .

The congruence ∇ is generated by a = 1.



A part of the dual of the k -th level of the lattice of all literally invariant
congruences on M2 is depicted below.
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k

k

ρk,3

τ

ρ
k,2

ρ
k,4

k,5

k,6
ρ

ρ
k,1

k,9
ρ

The whole lattice is the product of such a level with the chain
1 < 2 < .. . of all positive natural numbers with ∇ and ∆ adjoined. We
draw the dual since we are primarily interested in the corresponding
varieties of languages.



Let L be a literally idempotent language over the alphabet {a,b}. Let
A = (Q,{a,b}, ·, i ,T ) be the minimal complete deterministic automaton
for L. We would like to find the smallest possible V({a,b}) containing L.
So we are looking for the greatest literally invariant congruence on M2
contained in ∼L.
It is well-known that the syntactic homomorphism φL can be identified
with the mapping which maps u ∈ {a,b}∗ onto the transformation of Q
induced by the word u.
Recall that the automaton A is literally idempotent.



We distinguish several cases:

(i) There is the only cycle in A and it is of length 1.
(ii) There are exactly two cycles in A , both of the length 1.
(iii) There is the only cycle in A and it is of length 2.
(iv) There is the only cycle in A and it is of length 2d where d ≥ 2

or there are exactly two cycles of lengths 2d1 and 2d2 where
d1,d2 ∈ N
or there are exactly two cycles of lengths 2d and 1.



Notice that exactly one case of (i) – (iv) happens. Let k be the smallest
such that all words w of length ≥ k transform the initial state i into a
cycle. In the second subcase of (iv), let d equal to the least common
multiple of d1 and d2.

Theorem (OK & LP)
The literally invariant congruence on M2 corresponding to the
language L is

νk in the case (i),
σk in the case (ii),
τk in the case (iii),
ρk ,d in the case (iv).

The last results are from
OK & LP, Literally idempotent languages and their varieties - two letter
case, Proceedings AFL 2008.
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