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Syntactic structures

Let L C A* be a regular language. We define the following relations on
A* and A" = all finite subsets of A*, respectively :
for u,v,uq,..., Uk, Vy,...,Vp € A,

u~ vifandonlyif (Vx,ye A" )(xuyelsxvwel),
{u,...,ux} =L {v1,...,v} if and only if
(Vx,ye A )( xuyy,....,xuxy € Le xviy,....xvgy e L) .
The quotient structures
(O(L),") = (A",-)/~ and (S(L),-,V) = (A7, ,,U)/~1

are called the syntactic monoid and the syntactic semiring of the
language L.



The assignments

¢ :U— U~; and l[/L:{U1,...,Uk} b—>{U1,...,Uk} |

are called syntactic monoid/semiring homomorphisms.



The assignments

Op:U— U~y and l[/L:{U1,...,Uk} b—>{U1,...,Uk}%L

are called syntactic monoid/semiring homomorphisms.

The monoid (O(L),-) is ordered by the relation

Ve < unyp ff (VX ye A" ) (xuyel=xvyel).
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Eilenberg type theorems

Theorem

(i) (Eilenberg) Boolean varieties of languages correspond to
pseudovarieties of finite monoids. Here L — syntactic monoid of L.
(i) (Esik & Co., Straubing) Literal boolean varieties of languages

correspond to literal pseudovarieties of homomorphisms from finitely
generated free monoids onto finite monoids. Here L — syntactic
homomorphism of L.




“Varieties” of languages

A class of (regular) languages is an operator ¥ assigning to each finite
set A a set ¥(A) of regular languages over the alphabet A. Such a
class is a positive variety if

(0) for each A, we have 0, A* € ¥/ A),

(i) each #(A) is closed with respect to finite unions, finite
intersections and quotients, and

(i) for each finite sets A and B and a homomorphism
f:B*— A", K € #(A) implies f~1(K) € /B).
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A class of (regular) languages is an operator ¥ assigning to each finite
set A a set ¥(A) of regular languages over the alphabet A. Such a
class is a positive variety if

(0) for each A, we have 0, A* € #(A),

(i) each #(A) is closed with respect to finite unions, finite
intersections and quotients, and

(i) for each finite sets A and B and a homomorphism
f:B*— A", K € #(A) implies f~1(K) € /B).

Adding the condition

(i) each #(A) is closed with respect to complements,

we get a boolean variety.

A modification of (ii) to

(i) for each finite sets A and B and a homomorphism f : B* — A* with
f(B) C A, K € #(A) implies f~'(K) € #B)

leads to the notions of a literal positive/boolean variety of languages.
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C-universal algebra

Let V be a variety of algebras of a fixed signature. Let Wy be the free
V-algebra over the set A. We consider a category C of free
V-algebras, that is, the objects are all Wj,’s for sets A, and the homsets
C(Wpg, W,) consist of certain homomorphisms from Wp into Wj.

Basic example :
V = all monoids, W, = A%, p € Cy(B*, A*) iff, for each be B, p(b) € A -
literal homomorphisms.

Let
LV={¢:Wy—»S|Aisasetand Sec V }

be the class of all surjective homomorphisms from free V-algebras
onto V-algebras; we speak about V-homomorphisms.
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Let $1 C 5. We define :
HiUu={oc¢: Wy— T |

TeV,(p:Wp—S)ei, 0:S— T asurj. homom.},

Sci={¢p: Wg—im(¢p) |
Baset, pe C(Wp,Wa), (¢ : Wa— S) € il},

PU = {(dy)yer : Wa —im((dy)yer) |
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yer

A class 4 C Y is called a C-variety of V-homomorphisms if it is closed
with respect to the operators H, S¢ and P.
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We define the generalized C-varieties as classes of
V-homomorphisms i C U closed with respect to H, S¢, Ps (products of
finite families) and Poc.

Similarly, C-pseudovarieties of finite V-homomorphisms are classes

X C Fin® closed with respect to H, Sc¢, and P;.

An n-ary V-identity is a pair u = v where u,v € W,.

A V-homomorphism ¢ : Wy — S C-satisfies u = v if

(V peC(Wh, Wa)) (¢p)(u) = (¢P)(V).

The invention of equational logic for C-pseudovarieties of finite
V-homomorphisms was possible only after a deep understanding of
categories of such homomorphisms - see Kunc. Here we recall only
the right definition of morphisms :

c: (0 Wag—S)— (v:Wg—>T)

if o: S— T is a surjective homomorphism and there exists
p € C(Wy, Wg) such that c¢ = yp.



Theorem

1. (LP) C-varieties of V-homomorphisms are exactly classes of
homomorphisms determined by V -identities.

L.P., On varieties, generalized varieties and pseudovarieties of
homomorphisms, Contributions to General Algebra 16, Verlag
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Theorem

1. (LP) C-varieties of V-homomorphisms are exactly classes of
homomorphisms determined by V -identities.

2. (LP) Generalized C-varieties of V-homomorphisms are exactly
directed unions of C-varieties of V-homomorphisms.

3. (LP) C-pseudovarieties of finite V-homomorphisms are exactly
classes of the form Fini where A is a directed union of C-varieties of
V-homomorphisms. If the type is finite we can restrict ourselves to
unions of chains.

4. (Kunc) C-pseudovarieties of finite V-homomorphisms are exactly
classes of finite V-homomorphisms C-determined by

(FinV )-pseudoidentities.

L.P, On varieties, generalized varieties and pseudovarieties of
homomorphisms, Contributions to General Algebra 16, Verlag
Johannes Heyn, Klagenfurt 2005, pp. 173-187
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4. Boolean combinations of
{ue X; | <5> =rmodr}, ve X, |v|<c, reN, re{0,....,r—1}

for the class of all nilpotent groups of class < c.

Such results can be refined as follows :

1’. Disjoint unions

{ue X, ||lul1=4,...,|uljn=¢pmod ¢}, LeN, ¢q,...,0,€{0,....0—1},
¢ fixed, for the class of all abelian groups.

It is not difficult to refine the results 2,3 and 4 in a similar way.

Our goal :

A. Find all literal varieties of homomorphisms onto abelian groups and
describe the corresponding languages (in the finer form) — done 2005.
B. Find all (or at least some hierarchy) of literal varieties of

homomorphisms onto nilpotent groups of class < 2 and describe the
corresponding languages.



Literal varieties of homomorphisms onto abelian groups and the
corresponding languages

Our basic ingredients are the following languages :

Let n, ¢,k € N with k | ¢,

let ¢/ €{0,...,0—1},

let ky,...,kn€{0,...,k—1} satisfy k1 +--- + k, = ¢’ mod K,

L(n 0,0 Kk ky,... kn) =

—{ueX||u=¢mod? |uly =ki,...|ulp=ky mod k} .



Theorem (LP)

The following are pairwise different literal varieties of
homomorphisms from free monoids onto abelian groups :

¥(£,k) =Modir( xy = yx, x' =1, x = y¥)
where (,k €N, Kk | L.

abellan groups, Proc. Int. Conf. on Semigroups and Languages,
Lisboa 2005, World Scientific Publishing, Singapore 2007, pp. 255-264
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homomorphisms from free monoids onto abelian groups :
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Theorem (LP)

The following are pairwise different literal varieties of
homomorphisms from free monoids onto abelian groups :

¥ (€,k) =Mody( xy = yx, x' =1, x¥ = yk)

where ¢,k € N, k | £. The corresponding literally invariant
congruences on X* are of the form

p(L,k) = { (u,v) € X*x X* | |u| = |v| mod ¢,

|ulj=|v|;mod k forie N}.
For fixed ¢, k, the corresponding languages on X, are exactly the
disjoint unions of L(n; ¢,0'; K, Ky, ..., Kn).
L.P., Literal varieties and pseudovarieties of homomorphisms onto

abelian groups, Proc. Int. Conf. on Semigroups and Languages,
Lisboa 2005, World Scientific Publishing, Singapore 2007, pp. 255-264



Literal varieties of homomorphisms onto nilpotent groups and the
corresponding languages

Our basic ingredients are the following languages :

Let n,¢,k,r e Nwith r | k| ¢,

let ¢ € {0,...,0—1},

let kq,...,kn€{0,...,k—1} satisfy k1 +---+ k, = ¢’ mod k,

letrj; € {0,...,r—1}for1 <i<j<n. We put
L(n;E,E’;k,k1,...,kn;r,r271,...,r,,71,...,r,,7,,_1) =

={ueX:||u=¢mod? |uly=ki,...,|uln=ky mod k,

lulji=rimodrforall1<i<j<n}.



Theorem (OK & LP)

The following are pairwise different literal varieties of

homomorphisms from free monoids onto nilpotent groups of class
<2:
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Theorem (OK & LP)

The following are pairwise different literal varieties of
homomorphisms from free monoids onto nilpotent groups of class
<2:

Yk, r)=Modi( [x,[y,z]] =1, x' =1, xk=y¥ [x,y]"=1)

where (,k,re N, r | k| £.
The corresponding literally invariant congruences on X* are of the
form

p(lk,ry={(u,v) € X* x X* | |u| =|v| mod ¢,
|ulj=|v|jmod k forie N, |u|j;=|v|jj mod rfor1 <i<j}.

For fixed ¢, k, r, the corresponding languages on X, are exactly
the disjoint unions of

L(n;f,ﬂl;k,/ﬂ,...,kn;f,l’271,...,fn’1,...,fn’n_1) .




Reminding type of identities :

([X,y][y,Z][Z,X])a =1, Xﬁy_ﬁ — [va]y -



Literally idempotent languages and their varieties

A regular language L over a finite alphabet A is literally idempotent if

its syntactic homomorphism ¢, : A* — O(L) satisfies the pseudoidentity
x? = x literally, which means

(VacA)ad ~, a



Literally idempotent languages and their varieties

A regular language L over a finite alphabet A is literally idempotent if
its syntactic homomorphism ¢, : A* — O(L) satisfies the pseudoidentity

x? = x literally, which means
(VacA)ad ~, a
or equivalently
(VuveA, acA)(uavel « uavel). (%)

We denote the class of all such languages by .#.



We can introduce a string rewriting system which is given by rules
pa?q — paq for each ac A, p,q € A*. Let —* be the reflexive-transitive
closure of the relation —. We say that a word u € A* is the normal form
of a word w if it satisfies the properties

w—*u and (u—"vimpliesu=v).



We can introduce a string rewriting system which is given by rules
pa?q — paq for each ac A, p,q € A*. Let —* be the reflexive-transitive
closure of the relation —. We say that a word u € A* is the normal form
of a word w if it satisfies the properties

w—*u and (u—"vimpliesu=v).

This system is confluent and terminating. Consequently, for any word
w € A*, there exists the unique normal form w € A* of the word w. We
will denote by ~ the equivalence relation on A* generated by the
relation —. In fact, it is a congruence on A*.



A complete deterministic automaton .« = (Q, A, -,i, T) is called literally
idempotent if for each g€ Qand ac Awe have q-a° = q- a.



Lemma

For a regular L C A*, the language L is regular, too.

A complete deterministic automaton .« = (Q, A, -,i, T) is called literally
idempotent if for each g € Qand ac Awe have q-a° = qg- a.



Lemma

For a regular L C A*, the language L is regular, too.




Lemma
For a regular L C A*, the following statements are equivalent :
(i) L is literally idempotent,
(i) L
(ii)) ~ C ~p,
)

(iv) L is accepted by a literally idempotent complete deterministic finite
automaton,

(v) the (canonical) minimal DFA for L is literally idempotent,

(vi) L is a (disjoint) union (not necessarily finite !) of the languages of
the form

afay..al,keNy, ai,....,ak €A a1 #£ax# - #a.




The literally idempotent languages over A = {a} are exactly: 0,{1},a"
and a*.



The literally idempotent languages over A = {a} are exactly: 0,{1},a"
and a*.

Now consider a regular language L over A= {a} with the minimal
deterministic automaton & = (Q, A,-,i, T). Choose the minimal d € N
and then the minimal k € Ny such that i- & = i- a*+9. Let

M=Ln{1,a,....8 "Yand N=Lna{1,a,...,a%"}.

Then MU N(a%)* is a “canonical” regular expression for L.



The literally idempotent languages over A = {a} are exactly: 0,{1},a"
and a*.

Now consider a regular language L over A= {a} with the minimal
deterministic automaton & = (Q, A,-,i, T). Choose the minimal d € N
and then the minimal k € Ny such that i- & = i- a*+9. Let

M=Ln{1,a,....8 "Yand N=Lna{1,a,...,a%"}.

Then MU N(a%)* is a “canonical” regular expression for L.
The situation for literally idempotent languages over A= {a, b} is
similar. Each regular language L over A is a disjoint union of the sets

Ln(a{a,b}*aua), Lna{a,b}*b,

Lnb{a,b}*a, LN (b{a,b}*bUb),LN1.

If Lis literally idempotent each of the first four summands behaves
similarly as a regular language over a single letter alphabet.



We consider the first summand (the reasonings about the remaining
ones are analogous). Let & = (Q, A,-,i, T) be the minimal
deterministic automaton for L. Choose the minimal d € N and then the
minimal k € Ng such that i-a(ba)k = i - a(ba)**9. Let

M=Lna{l,ba,...,(ba) '} and N = Lna(ba)*{1,ba,...,(ba)? '} .

Then MUN((btat)?)" is a “canonical” regular expression for the first
summand of L.



We are interested in literal positive/boolean varieties consisting of
literally idempotent languages. These varieties can be induced by
classical varieties in two natural ways. At first, for a class of languages
¥, we can consider the class of languages from ¥ which are also
literally idempotent languages, i.e. the intersection YN ..

The second possibility is to consider the following operator on classes
of languages: #+— 7 where

HA) ={L|LeNA)}.



The languages of the level 1/2 over A are exactly finite unions of
languages of the form

A‘aiA*ay...akA", keNp, ay,...,ak€A. (1/2)

We denote this positive variety of languages by 73 5.

The languages of the level 1 over A are exactly boolean combinations
of languages of the form (1/2). We denote this variety of languages by
4



Theorem (OK & LP)
(i) Finite unions of languages

AaiA'ay...aA", KeNp, a1,...,ak €A, a1 #a#--#ac. (£1/2)

form a literal positive variety which is equal both to 74,1 .% and 74 /5.
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Theorem (OK & LP)
(i) Finite unions of languages

AatA*ap...akA", keNp, ay,...,ak €A, a1 #a #---#ax. (£1/2)

form a literal positive variety which is equal both to 74,1 .% and 74 /5.
(ii) Finite unions of languages

BiB;...B}, kN, By,.... BCA. (£1/2¢c)

form a literal positive variety which is equal both to (¥4 ,2)°N.¢ and

(71/2)°.
(iii) Boolean combinations of languages of the form (. 1/2) form a
literal boolean variety which is equal both to ¥; N.# and 7.




In general, for a positive/boolean variety ¥; the class ¥ .Zis a literal
positive/boolean variety but we have only N _.#C 7and 7 need not to
be a literal positive/boolean variety.

For more, see O. Klima and L. Polak, On varieties of literally
idempotent languages, RAIRO - Theoretical Informatics and
Applications Vol. 42 No. 3, p. 583 - 598



Two variable case

Let M, be monoid with the presentation
<ai,...an|&=ay,..,a85=ap>

and let M, ={ay,...,an}*/ ~.

Each 7 € ConA* with © O ~ defines n/~ € ConM, by ur~ n/~ v = iff
umv.

Theorem (OK & LP)

{ai,...,an})’s for equational literal varieties of literally idempotent
languages correspond to literally invariant congruences on My, we
write /({&1,.--,8n}) = Ky((ay...an))-

More precise/y, Ky((ay,..an}) IS the greatest literally invariant
congruence on M, containing all ~; /~, L € #({ay,...,an}).
Moreover,

Lev({ai,....an}) ifand only if ~| [~ 2 Ky1a, a1y



From now on, let n=2. We write a= ay, b= a, an we identify the
elements of My with

1, Upp1 = a(ba)’, ugri2 = (ab)™*,

Varr1 = b(ab)", Varyp = (ba)™", £ €Ny .

On M, we have:
the trivial congruence A = {(w,w) e Mo x Mo | w € My }
and the universal congruence V = My x Mo.

For ke N, d € N, we put
Uk,d = {Uk, Uky2q,--- and Vg ={Vk, Vki2g,---} ;

and we write simply Uy instead of Uy 1 and Vj instead of V 1.



Theorem (OK & LP)

Proper literally invariant congruences of the monoid M, are exactly the
relations listed above. They are generated by

Uk = Uky2ds Uk = Uks1, Uk = Vi1, U = Vk, respectively .

The congruence V is generated by a=1.




A part of the dual of the k-th level of the lattice of all literally invariant
congruences on M, is depicted below.

The whole lattice is the product of such a level with the chain

1 <2<... of all positive natural numbers with V and A adjoined. We
draw the dual since we are primarily interested in the corresponding
varieties of languages.



Let L be a literally idempotent language over the alphabet {a,b}. Let
o/ =(Q,{a,b},-,i, T) be the minimal complete deterministic automaton
for L. We would like to find the smallest possible #({a, b}) containing L.
So we are looking for the greatest literally invariant congruence on M,
contained in ~;.

It is well-known that the syntactic homomorphism ¢; can be identified
with the mapping which maps u € {a, b}* onto the transformation of Q
induced by the word u.

Recall that the automaton <7 is literally idempotent.



We distinguish several cases:

(i) There is the only cycle in <7 and it is of length 1.
(i) There are exactly two cycles in o7, both of the length 1.
(ii) There is the only cycle in o7 and it is of length 2.
(iv) There is the only cycle in o7 and it is of length 2d where d > 2

or there are exactly two cycles of lengths 2d; and 2d, where
d1 o d2 eN

or there are exactly two cycles of lengths 2d and 1.



Theorem (OK & LP)

The literally invariant congruence on My corresponding to the
language L is

vk in the case (i),

ok in the case (ii),
Ty in the case (iii),
Pk.a In the case (iv).

The last results are from
OK & LP, Literally idempotent languages and their varieties - two letter
case, Proceedings AFL 2008.
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