Distributivity and complementarity of quasiorder lattices of monounary algebras

Danica Jakubíková-Studenovská

P.J.Šafárik University, Košice, Slovakia

Třešť, Czech republic 31.8. – 6.9.2008

 \bullet an algebra ${\cal A}$

- ullet an algebra ${\mathcal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is

 ${\scriptstyle \bullet}$ an algebra ${\cal A}$

\bullet quasiorder of $\mathcal{A}=\mathsf{a}$ binary relation on $\mathcal{A},$ which is

reflexive

 ${\scriptstyle \bullet}$ an algebra ${\cal A}$

• quasiorder of $\mathcal{A}=\mathsf{a}$ binary relation on $\mathcal{A},$ which is

- reflexive
- transitive

- ${\scriptstyle \bullet}$ an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive
 - $\bullet\,$ compatible with all fundamental operations of ${\cal A}$

- ullet an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive
 - $\bullet\,$ compatible with all fundamental operations of ${\cal A}$
- common generalization of congruences and compatible partial orders of an algebra

- ullet an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive
 - $\bullet\,$ compatible with all fundamental operations of ${\cal A}$
- common generalization of congruences and compatible partial orders of an algebra

- ullet an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive
 - $\bullet\,$ compatible with all fundamental operations of ${\cal A}$
- common generalization of congruences and compatible partial orders of an algebra

the lattice $\operatorname{Quord} \mathcal A$ of all quasiorders of an algebra $\mathcal A$

• M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a **set**
 - atomistic
 - dually atomistic

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a **set**
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a **set**
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):
 - quasiorder lattice of a majority algebra is always distributive

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):
 - quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):
 - quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:
 - how endomorphisms of quasiorders behave

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):
 - quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:
 - how endomorphisms of quasiorders behave
 - when End q ⊆ End q' for quasiorders q, q' on a set A (End q is the set of all mappings preserving q)

- M. Erné and J. Reinhold (1995): lattices of all quasiorders on a set
 - atomistic
 - dually atomistic
 - complemented
- I. Chajda and G. Czédli (1996), A. G. Pinus (1995):
 - every algebraic lattice is isomorphic to the quasiorder lattice of a suitable algebra
- G. Czédli and A. Lenkehegyi (1983), A. G. Pinus and I. Chajda (1993):
 - quasiorder lattice of a majority algebra is always distributive
- R. Pöschel and S. Radeleczki:
 - how endomorphisms of quasiorders behave
 - when End q ⊆ End q' for quasiorders q, q' on a set A (End q is the set of all mappings preserving q)
 - description of the quasiorder lattice of the algebra $(A, \operatorname{End} q)$

AIM

Find necessary and sufficient conditions for a monounary algebra (A,f), under which the lattice ${\rm Quord\,}(A,f)$ is

- modular or
- distributive or
- complementary, respectively.

(J. Berman, 1972) If $n \in N$, then θ is a congruence relation of an n-element cycle (C, f) if and only if there is $d \in N$ such that d divides n and for each $x \in C$,

$$[x]_{\theta} = \left\{ x, f^{d}(x), \dots, f^{\left(\frac{n}{d} - 1\right)d}(x) \right\}.$$

- denoted θ_d
- θ_d is the smallest congruence containing the pair $(x, f^d(x))$

(J. Berman, 1972) If $n \in N$, then θ is a congruence relation of an n-element cycle (C, f) if and only if there is $d \in N$ such that d divides n and for each $x \in C$,

$$[x]_{\theta} = \left\{ x, f^{d}(x), \dots, f^{\left(\frac{n}{d} - 1\right)d}(x) \right\}.$$

- denoted θ_d
- θ_d is the smallest congruence containing the pair $(x, f^d(x))$

Lemma

Let
$$(A, f)$$
 be an *n*-element cycle, $n \in N$. Then
Quord $(A, f) = Con (A, f) = \{\theta_d : d/n\}.$

Corollary

Let (A, f) be an n-element cycle, $n \in N$. Then the lattice Quord(A, f) is distributive.

Corollary

Let (A, f) be an n-element cycle, $n \in N$. Then the lattice Quord(A, f) is distributive.

• Let (A, f) be a monounary algebra. Then Quord (A, f) = Con (A, f) if and only if (A, f) is a cycle.

Corollary

Let (A, f) be an n-element cycle, $n \in N$. Then the lattice Quord(A, f) is distributive.

• Let (A, f) be a monounary algebra. Then Quord (A, f) = Con (A, f) if and only if (A, f) is a cycle.

Lemma

Let (A, f) be a connected monounary algebra containing an *n*-element cycle $C, |A| = n + 1 \ge 3$. Then Quord $(A, f) \cong \text{Quord}(C, f) \times M_2 = \text{Con}(C, f) \times M_2$ and Quord (A, f) is distributive.

- Assume that (A, f) is a connected monounary algebra, $|A| \ge 2$ and that none of the following conditions is valid:
 - $\bullet \ (A,f) \text{ a cycle}$
 - (A,f) contains an n-element cycle |A|=n+1

- Assume that (A, f) is a connected monounary algebra, $|A| \ge 2$ and that none of the following conditions is valid:
 - $\bullet \ (A,f) \text{ a cycle}$
 - (A, f) contains an n-element cycle |A| = n + 1

Then $\operatorname{Quord}(A, f)$ contains a pentagon, thus it fails to be modular.

Let $({\cal A},f)$ be a monounary algebra. The following conditions are equivalent:

(i) The lattice Quord(A, f) is modular.

Let (A, f) be a monounary algebra. The following conditions are equivalent:

- (i) The lattice Quord(A, f) is modular.
- (ii) The lattice Quord(A, f) is distributive.

Let (A, f) be a monounary algebra. The following conditions are equivalent:

- (i) The lattice Quord(A, f) is modular.
- (ii) The lattice Quord(A, f) is distributive.

(iii) Either $|A| \le 2$ or (A, f) is connected and there exists a cycle C of (A, f) such that $|A| \le |C| + 1$.

Complementarity - sufficient condition?

Complementarity - sufficient condition?

Assumption

• (A, f) is a monounary algebra,

- $\bullet \ (A,f)$ is a monounary algebra,
- each connected component of (A, f) contains a cycle,

- $\bullet \ (A,f)$ is a monounary algebra,
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,

- $\bullet \ (A,f)$ is a monounary algebra,
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,

- (A, f) is a monounary algebra,
- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic.

$$(b,a)\in\bar{\alpha}\iff(a,b)\in\alpha.$$

• For $\alpha \in \text{Quord}(A, f)$, define $\bar{\alpha}$:

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

• For $a \in A$ denote by C(a) the cycle, containing f(a).

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- For $a \in A$ denote by C(a) the cycle, containing f(a).
- Relation R: If B, D are cycles of (A, f), then B R D, if there are $k \in N$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}$, $(c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$.

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- For $a \in A$ denote by C(a) the cycle, containing f(a).
- Relation R: If B, D are cycles of (A, f), then B R D, if there are $k \in N$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}$, $(c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$.
- For $a, b \in A$, set

$$a \ r \ b \iff C(a) \ R \ C(b).$$

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- For $a \in A$ denote by C(a) the cycle, containing f(a).
- Relation R: If B, D are cycles of (A, f), then B R D, if there are $k \in N$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}$, $(c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$.
- For $a, b \in A$, set

$$a \ r \ b \iff C(a) \ R \ C(b).$$

• For $\alpha \in \text{Quord}(A, f)$, define $\bar{\alpha}$:

$$(b,a) \in \bar{\alpha} \iff (a,b) \in \alpha.$$

- For $a \in A$ denote by C(a) the cycle, containing f(a).
- Relation R: If B, D are cycles of (A, f), then B R D, if there are $k \in N$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}$, $(c_i, c_{i+1}) \in \alpha \cup \overline{\alpha}$.
- For $a, b \in A$, set

$$a \ r \ b \iff C(a) \ R \ C(b).$$

The relation r is an equivalence on A.

Complementarity - auxiliary results

- $\alpha \in \operatorname{Quord}{(A,f)}.$
 - A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.

- $\alpha \in \text{Quord}\,(A,f).$
 - A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
 - ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \overline{\alpha}).$

- $\alpha \in \text{Quord}\,(A,f).$
 - A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
 - ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \dots, u_k = b$ elements of A' such that $(\forall i \in \{0, \dots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \overline{\alpha}).$

• ρ is an equivalence on A',

- $\alpha \in \text{Quord}\,(A,f).$
 - A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
 - ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \dots, u_k = b$ elements of A' such that $(\forall i \in \{0, \dots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \overline{\alpha}).$
 - ρ is an equivalence on A',
 - for each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

- $\alpha \in \operatorname{Quord}{(A,f)}.$
 - A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
 - ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \overline{\alpha}).$
 - ρ is an equivalence on A',
 - for each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

$$(\forall x \in D \setminus P(D)) (\exists y \in P(D)) ((x,y) \in \alpha, (y,x) \in \alpha);$$

- $\alpha \in \text{Quord}\,(A,f).$
 - A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
 - ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \dots, u_k = b$ elements of A' such that $(\forall i \in \{0, \dots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \overline{\alpha}).$
 - ρ is an equivalence on A',
 - for each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

$$(\forall x \in D \setminus P(D)) (\exists y \in P(D)) ((x,y) \in \alpha, (y,x) \in \alpha);$$

$$(\forall x, y \in P(D))((x, y) \in \alpha \Rightarrow (y, x) \notin \alpha).$$

• Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.

- Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let x ∈ C₁, y ∈ C₂, where C₁ and C₂ are distinct cycles. We put (x, y) ∈ β if and only if there are a ∈ C₁ and b ∈ C₂ with (b, a) ∈ α, (a, b) ∉ α.

- Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let x ∈ C₁, y ∈ C₂, where C₁ and C₂ are distinct cycles. We put (x, y) ∈ β if and only if there are a ∈ C₁ and b ∈ C₂ with (b, a) ∈ α, (a, b) ∉ α.
- Step (c). Suppose that $x, y \in P(D)$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

- Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let x ∈ C₁, y ∈ C₂, where C₁ and C₂ are distinct cycles. We put (x, y) ∈ β if and only if there are a ∈ C₁ and b ∈ C₂ with (b, a) ∈ α, (a, b) ∉ α.
- Step (c). Suppose that $x, y \in P(D)$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.
- Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \notin A'$, then $(x, y) \in \beta$ if and only if $(f^n(y), y) \notin \alpha, (y, f^n(y)) \in \alpha, x = f^k(y), e/k$.

- Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let α ↾ C = θ_d, d/n, e = n/d. If x ∉ A', then (x, y) ∈ β if and only if (fⁿ(x), x) ∈ α, (x, fⁿ(x)) ∉ α, y = f^k(x), e/k.
- Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in P(D), x = f^k(y), e/k$ and $(y, p(D)) \in \alpha$.
- Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in P(D), y = f^k(x), e/k$ and $(x, p(D)) \in \alpha$.
- Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^n(x)) \in \beta, (f^n(x), f^n(y)) \in \beta, (f^n(y), y) \in \beta.$

Complementarity - main result

$$A/r = \{A_j : j \in J\}$$

Complementarity - main result

$$A/r = \{A_j : j \in J\}$$

Theorem

Let $\alpha \in \text{Quord}(A, f)$, $j \in J$. Then there exists a complement β_j of $\alpha_j = \alpha \upharpoonright A_j$ in the lattice $\text{Quord}(A_j, f)$.

Complementarity - main result

$$A/r = \{A_j : j \in J\}$$

Theorem

Let $\alpha \in \text{Quord}(A, f)$, $j \in J$. Then there exists a complement β_j of $\alpha_j = \alpha \upharpoonright A_j$ in the lattice $\text{Quord}(A_j, f)$.

Theorem

If $\alpha \in$ Quord (A, f) and |A/r| = 1, then the conditions

- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic

are necessary and sufficient for the existence of a complement of α in the lattice Quord(A, f).

HYPOTHESIS

Theorem

Let (A,f) be a monounary algebra. The lattice ${\rm Quord\,}(A,f)$ is complementary if and only if

- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic.