Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

On some properties of quasiorder lattices of monounary algebras

Mária Petrejčíková Danica Jakubíková-Studenovská

P.J.Šafárik University, Košice, Slovakia

SSAOS, Třešť, 2008

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Basic concepts and remarks

 $\mathcal{A} = (\mathcal{A}, f)$ monounary algebra

- for $x, y \in A$ we put $x \sim y$ if there are $n, m \in N \cup \{0\}$ such that $f^n(x) = f^m(y)$
- elements of A/ ~ are called connected components of (A, f)
- (*A*, *f*) is **connected** if it has only one connected component
- $c \in A$ is **cyclic** if $f^k(c) = c$ for some $k \in N$
- the set of all cyclic elements of some connected component of (A, f) is a **cycle** of (A, f)

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Basic concepts and remarks

 $\mathcal{A} = (\mathcal{A}, f)$ monounary algebra

quasiorder of (A, f)

reflexive, transitive and compatible with all operations of (A, f)

Quote (A, f)all quasiorders of (A, f)

> (Quord $(A, f), \subseteq$) **lattice** of all quasiorders of (A, f)

 $I = \{(a, a) : a \in A\}$... the smallest quasiorder A^2 ... the greatest quasiorder

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Primitive lattices

J. Ježek and V. Slavík: Primitive lattices, Czech.M.J., 1979.

Definition

A lattice L is called **primitive**, if the class of all lattices that do **not contain** a sublattice isomorphic to L is a variety.

Example: pentagon ... variety of modular lattices primitive lattice

J. Ježek and V. Slavík: Some examples of primitive lattices, Mathematica et physica, 1973.

Theorem

A lattice L is primitive iff it is non-trivial (i.e. of cardinality ≥ 2), finite, subdirectly irreducible and satisfies the following condition: Whenever there exists a homomorphism of some lattice A onto L, then A contains a sublattice isomorphic to L.

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Primitive lattices

11.2. Theorem. The following lattices are (up to isomorphism) just the only primitive lattices:

(i) A_1 . (ii) A_5 . (iii) $Z(R(A_5); c_{A_5}; e_1, ..., e_k)$ where $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (iv) $Z(I_n; b_n; e_1, ..., e_k)$ where $n \ge 2$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (v) $Z(I_n^*; b_n; e_1, ..., e_k)$ where $n \ge 2$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (vi) $Z(J_n; b_n; e_1, ..., e_k)$ where $n \ge 2$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (vii) $Z(J_n^*; b_n; e_1, ..., e_k)$ where $n \ge 2$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (viii) A_2 . (ix) $Z(R(A_2); c_{A_2}; e_1, ..., e_k)$ where $n \ge 1$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (x) $Z(H_n; b_n; e_1, ..., e_k)$ where $n \ge 1$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (xi) $Z(H_n^*; b_n; e_1, ..., e_k)$ where $n \ge 1$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (xii) $Z(K_n; b_n; e_1, ..., e_k)$ where $n \ge 3$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (xiii) $Z(K_n^*; b_n; e_1, ..., e_k)$ where $n \ge 3$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (xiii) $Z(K_n^*; b_n; e_1, ..., e_k)$ where $n \ge 3$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*. (xiii) $Z(K_n^*; b_n; e_1, ..., e_k)$ where $n \ge 3$, $k \ge 0$, $e_i \in \{1, 2, 3\}$ for all *i*.

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

(xv) $Z(A_4; 6; e_1, ..., e_k)$ where $k \ge 1$, $e_i \in \{1, 2, 3\}$ for all i and $e_1 = 3$. (xvi) $Z(B_n; 3; e_1, ..., e_k)$ where $n \ge 1, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_i \ne 3$ if $k \neq 0$. (xvii) $Z(B_n; 10; e_1, ..., e_k)$ where $n \ge 1, k \ge 1, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 3$. (xviii) $Z(B_n^*; 3; e_1, ..., e_k)$ where $n \ge 1, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 \ne 2$ if $k \neq 0$. (xix) $Z(B_n^*; 10; e_1, \dots, e_k)$ where $n \ge 1, k \ge 1, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 2$ $(xx) Z(C_n; d_n; e_1, ..., e_k)$ where $n \ge 1, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 \ne 3$ if $k \neq 0$. (xxi) $Z(C_n; 3; e_1, ..., e_k)$ where $n \ge 1, k \ge 1, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 3$. (xxii) $Z(C_n^*; d_n; e_1, ..., e_k)$ where $n \ge 1, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 \ne 2$ if $k \neq 0$. (xxiii) $Z(C_n^*; 3; e_1, ..., e_k)$ where $n \ge 1, k \ge 1, e_1 \in \{1, 2, 3\}$ for all i and $e_1 = 2$. (xxiv) $Z(D_n; 6; e_1, \dots, e_k)$ where $n \ge 0, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_i = 1$ if $k \neq 0$. (xxv) $Z(D_0; 6; e_1, ..., e_k)$ where $k \ge 1$, $e_i \in \{1, 2, 3\}$ for all i and $e_1 = 2$. (xxvi) $Z(D_n^*; 6; e_1, ..., e_k)$ where $n \ge 0, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 1$ if $k \neq 0$. (xxvii) $Z(D_0^*; 6; e_1, ..., e_k)$ where $k \ge 1$, $e_i \in \{1, 2, 3\}$ for all i and $e_1 = 3$. (xxviii) $Z(E_n; 2; e_1, ..., e_k)$ where $n \ge 0, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 1$ if $k \neq 0$. $(xxix) Z(E_n^*; 2; e_1, \dots, e_k)$ where $n \ge 0, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 1$ if $k \neq 0$. $(xxx) Z(F_{n}; 2; e_{1}, ..., e_{k})$ where $n \ge 2, k \ge 0, e_{i} \in \{1, 2, 3\}$ for all i and $e_{1} = 1$ if $k \neq 0$. (xxxi) $Z(F_n^*; 2; e_1, ..., e_k)$ where $n \ge 3, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 1$ if $k \neq 0$. (xxxii) $Z(G_n; 2; e_1, ..., e_k)$ where $n \ge 2, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_1 = 1$ if $k \neq 0$. $(xxxiii) Z(G_n^*; 2; e_1, ..., e_k)$ where $n \ge 2, k \ge 0, e_i \in \{1, 2, 3\}$ for all i and $e_i = 1$ if $k \neq 0$.

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Small algebras and primitive sublattices

small algebras...
$$(A, f)$$
, $|A| = 1$ or 2 or 3

How look like (*Quord* $(A, f), \subseteq$)?

Which types of primitive lattices are contained by $(Quord (A, f), \subseteq)$?

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Small algebras and primitive sublattices

- $\mathcal{A} = (\mathcal{A}, f) \dots$ monounary algebra
 - if |A| = 1, then Quord (A, f) is a 1-element lattice
 if |A| = 2 and
 - (A, f) is a 2-element cycle, then Quord (A, f) is a 2-element lattice

$$f: a \frown b \qquad (Quord(A, f), \subseteq): \qquad \int_{I}^{\alpha = A^2}$$

• (A, f) is not a cycle, then Quord $(A, f) \cong M_2$

$$(Quord(A, f), \underline{\subset}):$$

f: a\) b\)

f: a

Mária Petrejčíková. Danica lakuhíková-Studenovská

Small algebras and primitive sublattices

Complementarity

Small algebras and primitive sublattices

 $\mathcal{A} = (\mathcal{A}, f) \dots$ monounary algebra

f

cC

- if |A| = 1, then Quord (A, f) is a 1-element lattice • if |A| = 2 and
 - (A, f) is a 2-element cycle, then Quord (A, f) is a 2-element lattice

• (A, f) is not a cycle, then Quord $(A, f) \cong M_2$

t: a

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Small algebras and primitive sublattices

• if |A| = 3 and an unary operation f is:

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Small algebras and primitive sublattices

(11 quasiorders)

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Small algebras and primitive sublattices

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

(20 quasiorders)

(29 quasiorders)

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

α

α.

Summary

Complementarity

(20 quasiorders)

(29 quasiorders)

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Summary

Let $\mathcal{A} = (\mathcal{A}, f)$ be an monounary algebra of three elements.

Theorem

If A doesn't contain any singleton (an 1-element cycle), then (Quord $(A, f), \subseteq$) contains only one type of primitive sublattice, namely A_1 .

Theorem

If A contains an 1-element cycle, $(Quord (A, f), \subseteq)$ contains just two types of primitive sublattices, namely A_1 and A_5 .

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Complementarity of Quord(A, f)Assumption:

 $\mathcal{A} = (\mathcal{A}, f) \dots$ monounary algebra Quord $(\mathcal{A}, f) \dots$ complementary lattice

Lemma 1

If $\mathcal{B} = (B, f)$ is a subalgebra of \mathcal{A} , then Quord (B, f) also is a complementary lattice.

Proof:

$$\begin{array}{l} \beta \in \textit{Quord} \ (B, f) \Rightarrow \beta \cup I_A = \alpha \in \textit{Quord} \ (A, f) \Rightarrow \\ \exists \ \alpha' \in \textit{Quord} \ (A, f) \Rightarrow \\ \Rightarrow \text{ denote } \beta' = \alpha' \cap B^2 \Rightarrow \\ \Rightarrow \ \beta' \in \textit{Quord} \ (B, f) \text{ and } \beta \lor \beta' = B^2, \ \beta \land \beta' = I_B, \\ \text{i.e. } \beta' \text{ is a complement of a } \beta \text{ in }\textit{Quord} \ (B, f). \\ \end{array}$$

 I_A ... the smallest quasiorder of Quord (A, f), $\alpha \lor \alpha' = A^2$, $\alpha \land \alpha' = I_A$

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Complementarity of Quord (A, f)

Lemma 2

If $x_0 \in A$, then exists $m \in N$ such that $f^{m+1}(x_0) = f(x_0)$.

Proof:

Let $x_0 \in A$, arbitrary. We take $\alpha \in Quord(A, f)$ such that:

$$\overbrace{f(x_0) \quad f^2(x_0) \quad f^3(x_0) \quad \cdot \quad \cdot}_{x_0}$$

Quord (A, f) ... complementary lattice $\Rightarrow \exists \alpha' \in Quord (A, f)$, such that $\alpha \lor \alpha' = A^2$ and $\alpha \land \alpha' = I_A$.

How look like complementary quasiorder α' ? $\forall a \in A \exists i: f^i(x_0) \alpha' a$, because $\alpha \lor \alpha' = A^2$ \downarrow also for $x_0, x_0 \in A \exists i$, such that: $f^i(x_0) \alpha' x_0 \Rightarrow f^{i+1}(x_0) \alpha' f(x_0) \Rightarrow f^{i+1}(x_0) \alpha \land \alpha' f(x_0)$. $\alpha \land \alpha' = I_A$ and so $f^{i+1}(x_0) = f(x_0)$. \Diamond

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Complementarity of Quord(A, f)

Lemma 3

All cycles have the same length.

Proof:

Suppose, on the contrary $k \neq l$; $k, l \in N$ and

 $\begin{array}{ccc} & & & \\$

Let k < l,

• l isn't a multiple of k. We take a binary relation α :

 $\alpha = \textit{I}_{\textit{A}} \cup \theta_{1}^{\textit{B}} \cup \theta_{l}^{\textit{C}} \text{ ref., tran., compat.} \Rightarrow \alpha \in \textit{Quord}(\textit{A},\textit{f})$

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Complementarity of Quord(A, f)

Quord (A, f) ... complementary lattice $\Rightarrow \exists \alpha' \in Quord (A, f), \alpha'$ complement of α .

How look like complementary quasiorder α '?

 $\nexists \alpha'$ complement of α (in contradiction with complementarity of *Quord* (A, f))

l is a multiple of *k*, i.e. ∃*u* ∈ *N* − {1}; *l* = *u* · *k*.
 We take a binary relation *α*:

 $\alpha = I_{\mathcal{A}} \cup \theta_{\hat{k}}^{\mathcal{B}} \cup \theta_{1}^{\mathcal{C}} \text{ ref., tran., compat.} \Rightarrow \alpha \in Quord (\mathcal{A}, f)$ How look like complementary quasiorder α' ?

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Complementarity of Quord(A, f)

Lemma 4

If a subalgebra \mathcal{B} is cycle of n elements, then n is square-free.

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Complementarity of Quord(A, f)

Theorem

Let A = (A, f) be a monounary algebra. If Quord (A, f) is a complementary lattice, then the following conditions are satisfied:

- Each connected component of (A, f) contains a cycle.
- 2 There is $n \in N$ such that each cycle of (A, f) has n elements.
- The number n is square-free.
- The element f(a) is cyclic, for each $a \in A$.

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

THANK YOU FOR YOUR ATTENTION!

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

Mária Petrejčíková, Danica Jakubíková-Studenovská

Basic concepts and remarks

Primitive lattices

Small algebras and primitive sublattices

Summary

Complementarity

