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Basic concepts and remarks

A = (A, f )
monounary algebra

• for x , y ∈ A we put x ∼ y if there are
n, m ∈ N ∪ {0} such that f n(x) = f m(y)

• elements of A/ ∼ are called connected
components of (A, f )

• (A, f ) is connected if it has only one connected
component

• c ∈ A is cyclic if f k(c) = c for some k ∈ N

• the set of all cyclic elements of some connected
component of (A, f ) is a cycle of (A, f )
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Danica
Jakub́ıková-
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Basic concepts and remarks

A = (A, f )
monounary algebra

α
quasiorder of (A, f )

reflexive, transitive and compatible with all operations of (A, f )

Quord (A, f )
all quasiorders of (A, f )

(Quord (A, f ),⊆)
lattice of all quasiorders of (A, f )

I = {(a, a) : a ∈A} . . . the smallest quasiorder
A2 . . . the greatest quasiorder
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Primitive lattices
J. Ježek and V. Slav́ık: Primitive lattices, Czech.M.J., 1979.

Definition

A lattice L is called primitive, if the class of all lattices
that do not contain a sublattice isomorphic to L is
a variety.

Example: pentagon . . . variety of modular lattices
primitive lattice

J. Ježek and V. Slav́ık: Some examples of primitive lattices,

Mathematica et physica, 1973.

Theorem

A lattice L is primitive iff it is non-trivial (i.e. of
cardinality ≥ 2), finite, subdirectly irreducible and
satisfies the following condition:
Whenever there exists a homomorphism of some lattice
A onto L, then A contains a sublattice isomorphic to L.
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Primitive lattices

In
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Small algebras and
primitive sublattices

small algebras...(A, f ), |A| = 1 or 2 or 3

How look like (Quord (A, f ),⊆)?

Which types of primitive lattices are contained by
(Quord (A, f ),⊆)?
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Basic
concepts and
remarks

Primitive
lattices

Small algebras
and primitive
sublattices

Summary

Complementarity

Small algebras and
primitive sublattices

A = (A, f ) . . . monounary algebra

• if |A| = 1, then Quord (A, f ) is a 1-element lattice
• if |A| = 2 and

• (A, f ) is a 2-element cycle, then Quord (A, f ) is
a 2-element lattice

• (A, f ) is not a cycle, then Quord (A, f ) ∼= M2
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• if |A| = 3 and an unary operation f is:
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Studenovská
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Mária
Petrejč́ıková,
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Summary
Let A = (A, f ) be an monounary algebra of three
elements.

Theorem

If A doesn’t contain any singleton (an 1-element cycle),
then (Quord (A, f ),⊆) contains only one type of primitive
sublattice, namely A1.

Theorem

If A contains an 1-element cycle, (Quord (A, f ),⊆)
contains just two types of primitive sublattices, namely
A1 and A5.
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Complementarity of Quord (A, f )
Assumption:
A = (A, f ) . . . monounary algebra
Quord (A, f ) . . . complementary lattice

Lemma 1

If B = (B, f ) is a subalgebra of A, then Quord (B, f ) also
is a complementary lattice.

Proof:

β ∈Quord (B, f ) ⇒ β ∪ IA = α ∈Quord (A, f ) ⇒
∃ α’∈Quord (A, f ) ⇒

⇒ denote β’= α’∩B2 ⇒
⇒ β’∈Quord (B, f ) and β ∨ β’= B2, β ∧ β’= IB ,
i.e. β’ is a complement of a β in Quord (B, f ).♦

IA . . . the smallest quasiorder of Quord (A, f ),

α ∨ α’= A2, α ∧ α’ = IA
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Complementarity of Quord (A, f )
Lemma 2

If x0 ∈A, then exists m ∈N such that f m+1(x0) = f (x0).

Proof:
Let x0 ∈A, arbitrary. We take α ∈Quord (A, f ) such that:

Quord (A, f ) . . . complementary lattice ⇒ ∃α’∈Quord (A, f ), such
that α ∨ α’= A2 and α ∧ α’= IA.

How look like complementary quasiorder α’?

∀a ∈A ∃i : f i (x0)α’a, because α ∨ α’= A2

↓
also for x0, x0 ∈A ∃i , such that:

f i (x0)α’x0 ⇒ f i+1(x0)α’f (x0) ⇒ f i+1(x0) α ∧ α’f (x0).
α ∧ α’= IA and so f i+1(x0) = f (x0).♦
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Complementarity of Quord (A, f )

Lemma 3

All cycles have the same length.

Proof:
Suppose, on the contrary k 6= l ; k , l ∈N and

k number of elements of cycle l
B cycles of A C

Let k < l ,

• l isn’t a multiple of k . We take a binary relation α:

α = IA ∪ θB
1 ∪ θC

l ref., tran., compat.⇒ α ∈Quord (A, f )
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Complementarity of Quord (A, f )
Quord (A, f ) . . . complementary lattice ⇒ ∃α’∈Quord (A, f ), α’
complement of α.

How look like complementary quasiorder α’?
...

@α’ complement of α
(in contradiction with complementarity of Quord (A, f ))

• l is a multiple of k , i.e. ∃u ∈N − {1}; l = u · k .
We take a binary relation α:

α = IA ∪ θB
k ∪ θC

1 ref., tran., compat.⇒ α ∈Quord (A, f )
How look like complementary quasiorder α’?

...
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Complementarity of Quord (A, f )

Lemma 4

If a subalgebra B is cycle of n elements, then n is
square-free.
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Complementarity of Quord (A, f )

Theorem

Let A = (A, f ) be a monounary algebra. If Quord (A, f )
is a complementary lattice, then the following conditions
are satisfied:

1 Each connected component of (A, f ) contains
a cycle.

2 There is n ∈N such that each cycle of (A, f ) has n
elements.

3 The number n is square-free.

4 The element f (a) is cyclic, for each a ∈A.
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THANK YOU FOR YOUR ATTENTION!
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Studenovská
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