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— e for x,y € A we put x ~ y if there are
i n,m € N U {0} such that f"(x) = f™(y)
e elements of A/ ~ are called connected
components of (A, f)
e (A, f) is connected if it has only one connected
component
e c € Ais cyclic if f¥(c) = c for some k € N
e the set of all cyclic elements of some connected
component of (A, f) is a cycle of (A, f)
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Basic concepts and remarks

A=(Af)

monounary algebra

«

quasiorder of (A, f)
reflexive, transitive and compatible with all operations of (A, f)

Quord (A, f)
all quasiorders of (A, f)

(Quord (A, ), C)
lattice of all quasiorders of (A, )

I ={(a,a): a €A} ... the smallest quasiorder
A? ... the greatest quasiorder
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Primitive lattices
J. Jezek and V. Slavik: Primitive lattices, Czech.M.J., 1979.
Definition
A lattice L is called primitive, if the class of all lattices
that do not contain a sublattice isomorphic to L is
a variety.

Example:  pentagon .. variety of modular lattices
primitive lattice

J. JeZek and V. Slavik: Some examples of primitive lattices,

Mathematica et physica, 1973.

Theorem

A lattice L is primitive iff it is non-trivial (i.e. of
cardinality > 2), finite, subdirectly irreducible and
satisfies the following condition:

Whenever there exists a homomorphism of some lattice
A onto L, then A contains a sublattice isomorphic to L.
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Primitive lattices

11.2. Theorem. The following lattices are (up to isomorphism) just the only primi-
tive lattices:

(i) A,.

(ii) As.

(iii) Z(R(As): €y,: €1 ..os €) where k = 0, e;€ {1,2, 3} for all i.

(iv) Z(L; by ey ..., &) where n = 2, k 2 0, e;e {1,2,3} for all i.

(v) Z(I¥; bys ey, ..o @) where n 22, k =0, ;e e{1,2, 3} forall i.
(vi) Z(J,5 byi €4, ...s€) Wheren 22, k 20, ¢, €{1,2,3} forall i.
(vii) Z(J%; by €ys 2.0y &) where n 22, k =0, e,E{ ,2,3} forall i.
viii) A;.
((ixg Z(R(A2); €43 €ys +-s &) where k 2 0, e;€{1,2,3} forall i,

(x) Z(Hy: by; €15..008) where n2 1, k2 0, g€ {1,2,3} forall i.
(xi) Z(H", by €y, .o €) where n =2 1, k 20, e,e{1,2,3} forall i.
(xii) Z(K, b,,, €1, ..oe) where n 23, k20, ¢;e{1,2,3} forall i.
(xiii) Z(K¥; by eyy...oey) where n 2 3, k=0, e;e{1,2,3} forall i.
(xiv) Z(A.,, ey, ...oe)) where k =0, e,€{1,2,3} forall iand e, +3if k + 0.

In
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(Xv) Z(Ag; 65 e, ..., &) where k 2 1, e;€{1,2,3} foralliand e, = 3.
(xvi) Z(B,; 3; ey, ....e,) where n 2 1, k 2 0, e;€{1,2,3} for all i and e, * 3
i k0.
(xvii) Z(B,; 10; ey, ..., &) where n = 1, k 2 1, e, {1,2, 3} for all i and ¢, = 3.
(xviii) Z(BY: 3; ey, ..., &) where n 2 1, k 2 0, e;€ {1, 2,3} for all i and e, % 2
if k0.
(xix) Z(By; 105 ey, ..., &) where n 2 1, k 2 1, ;€ {1, 2,3} for all i and ¢, =2
(xx) Z(Cidiers ..o &) where n = 1, k 2 0, e;e{1,2,3} for all i and e, + 3
if k4 0.
(xxi) Z(C,3 3;ey, .-, ¢) wheren 2 1, k2 1, e;e{1,2,3} for all i and ¢, = 3.
(xxii) Z(C¥: dyiers..ne) wheren 21, k 2 0, e;€ {1,2,3} for all i and e, + 2
if k0.
(xxiii) Z(Cy: 3; ey, ..., &) where n 2 1, k 2 1, e;€{1,2,3} for all i and e, = 2.
(xxiv) Zf(i,; 6i)e., ne) where n 20, k20, e;e{1,2,3} for all i and ¢, = 1
i * 0.
(xxv) Z(Do; 6; ¢y, ..., &) where k = 1, e;€{1, 2,3} for all i and e, = 2.
(xxvi) Z(Dy; 6; ey, ..oy &) where n 20, k =0, ¢;e{1,2,3} for all i and ¢, = 1
if k=+0.
(xxvii) Z(D3; 6; ey, ..., ¢) where k 2 1, e;€ {1,2,3} for all i and ¢, = 3.
(xxviii) Z(E,; 2; e;, ..., ) where n = 0, k 2 0, e;€{1,2,3} for all i and e,
if k+0.
(xxix) Z(Ex;2; ey, ...,¢) where n 2 0, k 2 0, e; €{1,2,3} for all i and e, = 1
if k0.
(xxx) Z(F,; 25 €1, ..., €) where n 22, k=20, e;e{1,2,3} for all i and ¢, = 1
if K+ 0.
(xxxi) Z(Fy;2; e, ..., &) where n 2 3, k 2 0, e,e{1,2,3} for all i and e, = 1
if k+0.
(xxxii) Z(Gy; 2; €1, .0 ) where n 22, k2 0. e;e{1,2,3} for all i and ¢; = 1
if k + 0.
(xxxiii) Z(Gy; 2; ey, ..., &) where n 2 2, k 20, e;€{1,2,3} for all i and e, = 1
if k% 0.

Il
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small algebras...(A, f), |[A|=1or 2 or 3

Small algebras How look like (Quord (A, f),C)?

and primitive
sublattices

Which types of primitive lattices are contained by
(Quord (A, f), Q)7
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A= (A, f) ... monounary algebra

o if |[A| =1, then Quord (A, f) is a 1-element lattice
e if |[A| =2 and
e (A, f)is a 2-element cycle, then Quord (A, f) is
a 2-element lattice
a=A

s @D

1
o (A, f)is not a cycle, then Quord (A, f) = M,

£ ? N
61 (Quit(A N9 <>

fi a0 60
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A= (A, f) ... monounary algebra

o if |[A| =1, then Quord (A, f) is a 1-element lattice
e if |[A| =2 and
e (A, f)is a 2-element cycle, then Quord (A, f) is
a 2-element lattice
a=A

s @D

‘I
o (A, f)is not a cycle, then Quord (A, f) = M,

; ? R
6) (Quort (A, f).0): IU{(Q,5»/>

fi a0 60
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e if |[A| = 3 and an unary operation f is:

I II. 1. Iv.
ﬁ{ﬁ-ﬂﬁﬁﬁa f o6 O
c ¢ ;
VII.

ﬁé@ ﬁQEQ £
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1. II.
fd f afjﬁ

(Quord (A, 1),©):

Q

~

I11. V.
£ F o6 <O

b

c

X ¢

(11 quasiorders)



On some
properties
of quasiorder
lattices
of monounary
algebras

Maria
Petrejtikova,
Danica
Jakubikova-
Studenovska

Basic
concepts and
remarks

Primitive)
lattices

Small algebras
and primitive
sublattices

Summaryj

[Complementarity

Small algebras and
primitive sublattices

1. II. I1II. V.
b
fa J: o6 fa fr a6 <O
‘ c b
c

(Quord (A, 1),©):

Primitive lattices:

(11 quasiorders)
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I

(20 quasiorders) (29 quasiorders)
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Let A = (A, f) be an monounary algebra of three
elements.
Theorem
If A doesn't contain any singleton (an 1-element cycle),
then (Quord (A, f), C) contains only one type of primitive
sublattice, namely A;.

Theorem

If A contains an I-element cycle, (Quord (A, f),C)
contains just two types of primitive sublattices, namely
A1 and As.
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Complementarity of Quord (A, f)
Assumption:
A= (A, f) ... monounary algebra
Quord (A, f) ... complementary lattice

Lemma 1

If B= (B, f) is a subalgebra of A, then Quord (B, f) also
is a complementary lattice.

Proof:

B €Quord (B,f) = fUlx=a € Quord (A, f) =
3 a'€ Quord (A, f) =
= denote 3'= a'NB? =
= '€ Quord (B, f) and BV 3'= B2, BAB'= Ig,
i.e. A" is a complement of a 3 in Quord (B, f).{

Ia ... the smallest quasiorder of Quord (A, f),

a\/a’:A2,a/\a’:IA



On some
properties
of quasiorder
lattices
of monounary
algebras

Maria
Petrejtikova,
Danica
Jakubikova-
Studenovska

Complementarity|

Complementarity of Quord (A, f)
Lemma 2
If xo €A, then exists m € N such that f™1(xg) = f(x0).

Proof:
Let xg €A, arbitrary. We take o € Quord (A, f) such that:

Xo

Quord (A, f) ...complementary lattice = Ja' € Quord (A, f), such

that @ Va'= A? and a A a'= 4.
How look like complementary quasiorder o' ?
Ya €A Ji: fi(xg)a'a, because a vV a'= A2
!
also for xp, xg €A 3i, such that:
fi(xo)a'xg = FHl(xo)a'f(x0) = FT1(x0) a A a'f(x).
aAa'=laand so Ftl(xg) = f(x0).<
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Lemma 3

All cycles have the same length.

Proof:
Suppose, on the contrary K # [; K,[ € N and

K number of elements of cycle [

B cycles of A C
Let K < [,
e [ isn't a multiple of K. We take a binary relation a:
B C
0] 0°

a=Ila4U 915 U 9[C ref., tran., compat.= & € Quord (A, f)
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of g;:g::;ary Quord (A, f) ... complementary lattice = Ja' € Quord (A, f), o
Méria complement of a.
Petrejtikova,
Danica How look like complementary quasiorder o' ?
Jakubikova-
Studenovska :
#a’ complement of «
(in contradiction with complementarity of Quord (A, f))
e [is a multiple of £, i.e. JueN —{1}; [ =u-k.
We take a binary relation a:
C B
Complementarity| ©
0c 02

3

a=I4U QE @) 01C ref., tran., compat.= « € Quord (A, f)

How look like complementary quasiorder o' ?
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Complementarity of Quord (A, f)

Theorem

Let A= (A, f) be a monounary algebra. If Quord (A, f)
is a complementary lattice, then the following conditions

are satisfied:
Each connected component of (A, f) contains
a cycle.
There is n € N such that each cycle of (A, f) has n
elements.
The number n is square-free.
The element f(a) is cyclic, for each a € A.
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THANK YOU FOR YOUR ATTENTION!
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