Rank of divisors on tropical curves

Jan Hladký
Department of Applied Mathematics
Charles University Prague
Daniel Král'
Institute for Theoretical Computer Science (ITI)
Charles University Prague
Serguei Norine
Department of Mathematics
Princeton University

Overview of the talk

Divisors on Riemann surfaces
Divisors on tropical curves
Our results

Divisors on Riemann surfaces

Riemann surfaces

- A Riemann surface is a second countable connected Hausdorff space with a complex structure.
- genus $g=0$, Riemann sphere
- compact Riemann surfaces every compact Riemann surface is diffeomorphic to the g-holed torus
- a meromorphic function is a function which is analytic except for finetely many poles

Divisors on Riemann surfaces

- a divisor is a formal sum of finitely many points of the surface
- a divisor is effective if all its coefficients are non-negative
- a principal divisor is a divisor $D(f)$ associated with a meromorphic function f :

$$
D(f)=\sum_{\text {zeroes } w} w-\sum_{\text {poles } w} w
$$

multiplicities are counted in the sum

- $L\left(D_{0}\right)$ is the class of meromorphic functions f such that $D(f)+D_{0}$ is effective
- $L\left(D_{0}\right)$ is a finite dimensional \mathbb{C}-vector space

Riemann-Roch theorem

$$
\operatorname{dim}(L(D))-\operatorname{dim}(L(K-D))=\operatorname{deg}(D)+1-g
$$

- g is the genus of the Riemann surface X
- K is the canonical divisor of X
- the degree of D, denoted by $\operatorname{deg}(D)$, is $\sum_{v \in \operatorname{supp}(D)} D(v)$

Reformulation of Riemann-Roch theorem

- $L\left(D_{0}\right)$ is the class of meromorphic functions f such that $D(f)+D_{0}$ is effective
- two divisors are equivalent if their difference is a principal divisor
- $|D|$ is the class of all effective divisors equivalent to D
- the rank of D is $r(D)=\operatorname{dim}(|D|)=\operatorname{dim}(L(D))-1$

$$
r(D)-r(K-D)=\operatorname{deg}(D)+1-g
$$

Divisors on tropical curves

Tropical curves and graphs

- a graph is a set of vertices and edges joining pairs of vertices
- a tropical curve can be viewed as a metric graph each edge is associated with a segment of a certain length which defines a topology on the curve/graph edges incident with degree-one vertices can have infinite lengths and their end-points are called unbounded ends
- a tropical curve with all segments of the same length and no infinite segments is understood as a graph

RiEmann surfaces vs. Tropical curves

Riemann surfaces	Tropical curves
Meromorphic functions	Rational functions
(piecewise linear functions)	
Divisors	Divisors
$D(f)=\sum$ zeroes $-\sum$ poles	$D(f)(v)=\sum$ slopes at v
Genus	Cyclomatic number
Divisor equivalence	$D-D^{\prime}$ is principal
Canonical divisor	$K(v)=\operatorname{deg}(v)-2$

RiEmann surfaces vs. GRAPHS

Riemann surfaces	Graphs
Meromorphic functions	Integer potential functions
	In-/Out-going current for voltages
Divisors	Divisors
$D(f)=\sum$ zeroes $-\sum$ poles	$D: V(G) \rightarrow \mathbb{Z}$
Genus	Cyclomatic number
Divisor equivalence	$D-D^{\prime}$ is principal
Canonical divisor	$K(v)=\operatorname{deg}(v)-2$

Chip-FiRING GAME

- an equivalance of divisors on graphs definied in a different way
- vertices are assigned chips (negative numbers allowed)
- at each move, a selected vertex sends one chip to each neighbors
- the goal is to have only non-negative numbers of chips
- divisors describe the game configurations
- two divisors are equivalent if they can be reached

Analogue of Riemann-Roch theorem

Riemann-Roch theorem [Baker and Norine 2006]

$$
r(D)-r(K-D)=\operatorname{deg}(D)-g+1
$$

- the rank $r(D)$ is the maximal non-negative integer K such that $D-E$ is equivalent to an effective divisor for every effective divisor E of degree K if $|D|=\emptyset$, then $r(D)=-1$
- Corollary: if there are at least g chips, the game can be won

Our results

DIVISORS ON GRAPHS AND TROPICAL CURVES

- a natural correspondance between graphs and tropical curves
- let G be a graph and Γ the corresponding tropical curve
- let D be a divisor on G and thus on Γ
- What is the relation between $r_{G}(D)$ and $r_{\Gamma}(D)$? no inequality apriori clear We prove that the ranks are the same.
- Corollary:

If G^{\prime} is a uniform subdivision of G, then $r_{G}(D)=r_{G^{\prime}}(D)$.

Rank of divisors of tropical curves

- algorithmic corollary of our structural results
- the rank of a divisor on a graph can be computed What about divisors on tropical curves?
The definition involves infinite objects.
- the rank of a divisor on a tropical curve can be computed

Thank you for your attention!

