Residuated lattices

Nikolaos Galatos

University of Denver
ngalatos@du.edu

Outline

Part I: Motivation, examples and basic theory (congruences)

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Outline

Part I: Motivation, examples and basic theory (congruences)

Part II: Subvariety lattice (atoms and joins)

Outline

Part I: Motivation, examples and basic theory (congruences)

Part II: Subvariety lattice (atoms and joins)

Part III: Representation, Logic, Decidability

RL examples

Powerset of a monoid
deals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)
Congruences
Subvariety lattice (atoms)

Subvariety lattice (joins)
Logic

Representation - Frames

Applications of frames

Undecidability

References

Boolean algebras

A Boolean algebra is a structure $\mathbf{A}=(A, \wedge, \vee, \rightarrow, 0,1)$ such

 that (we define $\neg a=a \rightarrow 0$) $[a \rightarrow b=\neg a \vee b=\neg(a \wedge \neg b)]$- $(A, \wedge, \vee, 0,1)$ is a bounded lattice,
- for all $a, b, c \in A$,

$$
a \wedge b \leq c \Leftrightarrow b \leq a \rightarrow c \text { (^-residuation) }
$$

■ for all $a \in A, \neg \neg a=a$ (alt. $a \vee \neg a=1$).

Boolean algebras

A Boolean algebra is a structure $\mathbf{A}=(A, \wedge, \vee, \rightarrow, 0,1)$ such that (we define $\neg a=a \rightarrow 0$) $[a \rightarrow b=\neg a \vee b=\neg(a \wedge \neg b)]$

- $(A, \wedge, \vee, 0,1)$ is a bounded lattice,
- for all $a, b, c \in A$,

$$
a \wedge b \leq c \Leftrightarrow b \leq a \rightarrow c \text { (^-residuation) }
$$

■ for all $a \in A, \neg \neg a=a$ (alt. $a \vee \neg a=1$).
Exercise. Distributivity (of \wedge over \vee) and complementation follow from the above conditions. Also, \wedge-residuation can be written equationally.

Boolean algebras

A Boolean algebra is a structure $\mathbf{A}=(A, \wedge, \vee, \rightarrow, 0,1)$ such that (we define $\neg a=a \rightarrow 0$) $[a \rightarrow b=\neg a \vee b=\neg(a \wedge \neg b)]$

- $(A, \wedge, \vee, 0,1)$ is a bounded lattice,
- for all $a, b, c \in A$,

$$
a \wedge b \leq c \Leftrightarrow b \leq a \rightarrow c \text { (} \wedge \text {-residuation) }
$$

■ for all $a \in A, \neg \neg a=a$ (alt. $a \vee \neg a=1$).
Exercise. Distributivity (of \wedge over \vee) and complementation follow from the above conditions. Also, \wedge-residuation can be written equationally.

Boolean algebras provide algebraic semantics for classical propositional logic.

Boolean algebras

A Boolean algebra is a structure $\mathbf{A}=(A, \wedge, \vee, \rightarrow, 0,1)$ such that (we define $\neg a=a \rightarrow 0$) $[a \rightarrow b=\neg a \vee b=\neg(a \wedge \neg b)]$

- $(A, \wedge, \vee, 0,1)$ is a bounded lattice,
- for all $a, b, c \in A$,

$$
a \wedge b \leq c \Leftrightarrow b \leq a \rightarrow c \text { (} \wedge \text {-residuation) }
$$

■ for all $a \in A, \neg \neg a=a$ (alt. $a \vee \neg a=1$).
Exercise. Distributivity (of \wedge over \vee) and complementation follow from the above conditions. Also, \wedge-residuation can be written equationally.

Boolean algebras provide algebraic semantics for classical propositional logic.

Outline

Algebras of relations

Let X be a set and $\operatorname{Rel}(X)=\mathcal{P}(X \times X)$ be the set of all binary relations on X.

Title
Outline

RL examples

Algebras of relations

Let X be a set and $\operatorname{Rel}(X)=\mathcal{P}(X \times X)$ be the set of all binary relations on X.

For relations R, and S, we denote by
■ R^{-}the complement and by R^{\cup} the converse of R

- 1 is the equality/diagonal relation on X
- R; S the relational composition of R and S
- $R \backslash S=\left(R ; S^{-}\right)^{-}$and $S / R=\left(S^{-} ; R\right)^{-}$

■ $R \rightarrow S=\left(R \cap S^{-}\right)^{-}=R^{-} \cup S$

Outline

RL examples

Algebras of relations

Let X be a set and $\operatorname{Rel}(X)=\mathcal{P}(X \times X)$ be the set of all binary relations on X.

For relations R, and S, we denote by

- R^{-}the complement and by R^{\cup} the converse of R

■ 1 is the equality/diagonal relation on X

- R; S the relational composition of R and S
- $R \backslash S=\left(R ; S^{-}\right)^{-}$and $S / R=\left(S^{-} ; R\right)^{-}$

■ $R \rightarrow S=\left(R \cap S^{-}\right)^{-}=R^{-} \cup S$

We have

- $\left(\operatorname{Rel}(X), \cap, \cup, \rightarrow, \emptyset, X^{2}\right)$ is a Boolean algebra
- $(\operatorname{Rel}(X), ;, 1)$ is a monoid

■ for all $R, S, T \in \operatorname{Rel}(X)$,

$$
R ; S \subseteq T \Leftrightarrow S \subseteq R \backslash T \Leftrightarrow R \subseteq T / S
$$

Outline

RL examples

Relation algebras

A Relation algebra is a structure

$\mathbf{A}=\left(A, \wedge, \vee, ;, \backslash, /, 0,1,\left(_\right)^{-}\right)$such that $\left(0=1^{-}\right)$

- $\left(A, \wedge, \vee, \perp, \top,()^{-}\right)$is a Boolean algebra (we define $\perp=1 \wedge 1^{-}$and $\top=1 \vee 1^{-}$),
- $(A, ;, 1)$ is a monoid
- for all $a, b, c \in A$,

$$
a ; b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b \text { (residuation) }
$$

■ for all $a \in A, \neg \neg a=a$ (we define $\neg a=a \backslash 0=0 / a$)
■ $\neg\left(a^{-}\right)=(\neg a)^{-}$and $\neg(\neg x ; \neg y)=\left(x^{-} ; y^{-}\right)^{-}$.

Title

Outline

८-groups

A lattice-ordered group is a lattice with a compatible group structure. Alternatively, a lattice-ordered group is an algebra $\mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid
- for all $a, b, c \in L$,

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b
$$

■ for all $a \in L, a \cdot a^{-1}=1$ (we define $x^{-1}=x \backslash 1=1 / x$).

Outline

८-groups

A lattice-ordered group is a lattice with a compatible group structure. Alternatively, a lattice-ordered group is an algebra $\mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid
- for all $a, b, c \in L$,

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b .
$$

■ for all $a \in L, a \cdot a^{-1}=1$ (we define $x^{-1}=x \backslash 1=1 / x$).
Example. The set of real numbers under the usual order, addition and subtraction.

Powerset of a monoid

Let $\mathbf{M}=(M, \cdot, e)$ be a monoid and $X, Y \subseteq M$.
We define $X \cdot Y=\{x \cdot y: x \in X, y \in Y\}$, $X \backslash Y=\{z \in M: X \cdot\{z\} \subseteq Y\}$, $Y / X=\{z \in M:\{z\} \cdot X \subseteq Y\}$.

Title

Outline

RL examples
Boolean algebras
Algebras of relations
Relation algebras
ℓ-groups

Powerset of a monoid

Let $\mathbf{M}=(M, \cdot, e)$ be a monoid and $X, Y \subseteq M$.
We define $X \cdot Y=\{x \cdot y: x \in X, y \in Y\}$, $X \backslash Y=\{z \in M: X \cdot\{z\} \subseteq Y\}$,
$Y / X=\{z \in M:\{z\} \cdot X \subseteq Y\}$.
For the powerset $\mathcal{P}(M)$, we have

- $(\mathcal{P}(M), \cap, \cup)$ is a lattice
- $(\mathcal{P}(M), \cdot,\{e\})$ is a monoid

■ for all $X, Y, Z \subseteq M$,

$$
X \cdot Y \subseteq Z \Leftrightarrow Y \subseteq X \backslash Z \Leftrightarrow X \subseteq Z / Y
$$

Outline

Ideals of a ring

Let \mathbf{R} be a ring with unit and let $\mathcal{I}(\mathbf{R})$ be the set of all (two-sided) ideals of \mathbf{R}.
For $I, J \in \mathcal{I}(\mathbf{R})$, we write $I J=\left\{\sum_{f i n} i j: i \in I, j \in J\right\}$
$I \backslash J=\{k: I k \subseteq J\}$,
$J / I=\{k: k I \subseteq J\}$.

Title

Outline

RL examples
Boolean algebras
Algebras of relations
Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences
Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Ideals of a ring

Let \mathbf{R} be a ring with unit and let $\mathcal{I}(\mathbf{R})$ be the set of all (two-sided) ideals of \mathbf{R}.
For $I, J \in \mathcal{I}(\mathbf{R})$, we write $I J=\left\{\sum_{f i n} i j: i \in I, j \in J\right\}$
$I \backslash J=\{k: I k \subseteq J\}$,
$J / I=\{k: k I \subseteq J\}$.
For the powerset $\mathcal{I}(\mathbf{R})$, we have

- ($\mathcal{I}(\mathbf{R}), \cap, \cup)$ is a lattice
- $(\mathcal{I}(\mathbf{R}), \cdot, R)$ is a monoid
- for all ideals I, J, K of \mathbf{R},

$$
I \cdot J \subseteq K \Leftrightarrow J \subseteq I \backslash K \Leftrightarrow I \subseteq K / J
$$

Title

Outline

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid and
- for all $a, b, c \in L$,

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b
$$

We have $a \backslash c=\max \{b: a b \leq c\}$.
\qquad

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid and
- for all $a, b, c \in L$,

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b .
$$

We have $a \backslash c=\max \{b: a b \leq c\}$.
A pointed residuated lattice an extension of a residuated lattice with a new constant 0 . ($\sim x=x \backslash 0$ and $-x=0 / x$.)

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid and
- for all $a, b, c \in L$,

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b
$$

We have $a \backslash c=\max \{b: a b \leq c\}$.
A pointed residuated lattice an extension of a residuated lattice with a new constant $0 .(\sim x=x \backslash 0$ and $-x=0 / x$.)

A (pointed) residuated lattice is called

- commutative, if $(L, \cdot, 1)$ is commutative $(x y=y x)$.
- distributive, if (L, \wedge, \vee) is distibutive

Outline

- contractive, if it satisfies $x \leq x^{2}$

■ involutive, if it satisfies $\sim-x=x=-\sim x$.

Properties

1. $x(y \vee z)=x y \vee x z$ and $(y \vee z) x=y x \vee z x$
2. $x \backslash(y \wedge z)=(x \backslash y) \wedge(x \backslash z)$ and $(y \wedge z) / x=(y / x) \wedge(z / x)$
3. $x /(y \vee z)=(x / y) \wedge(x / z)$ and $(y \vee z) \backslash x=(y \backslash x) \wedge(z \backslash x)$
4. $(x / y) y \leq x$ and $y(y \backslash x) \leq x$
5. $x(y / z) \leq(x y) / z$ and $(z \backslash y) x \leq z \backslash(y x)$
6. $(x / y) / z=x /(z y)$ and $z \backslash(y \backslash x)=(y z) \backslash x$
7. $x \backslash(y / z)=(x \backslash y) / z$;
8. $x / 1=x=1 \backslash x$
9. $1 \leq x / x$ and $1 \leq x \backslash x$
10. $x \leq y /(x \backslash y)$ and $x \leq(y / x) \backslash y$
11. $y /((y / x) \backslash y)=y / x$ and $(y /(x \backslash y)) \backslash y=x \backslash y$
12. $x /(x \backslash x)=x$ and $(x / x) \backslash x=x$;
13. $(z / y)(y / x) \leq z / x$ and $(x \backslash y)(y \backslash z) \leq x \backslash z$

Multiplication is order preserving in both coordinates. Each division operation is order preserving in the numerator and order reversing in the denominator.

Outline

Properties

Properties (proofs)

Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Properties (proofs)

$$
\begin{aligned}
x(y \vee z) \leq w & \Leftrightarrow y \vee z \leq x \backslash w \\
& \Leftrightarrow y, z \leq x \backslash w \\
& \Leftrightarrow x y, x z \leq w \\
& \Leftrightarrow x y \vee x z \leq w
\end{aligned}
$$

Title

Outline

RL examples
Boolean algebras
Algebras of relations
Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties

Properties (proots)

Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References

Properties (proofs)

$$
\begin{aligned}
x(y \vee z) \leq w & \Leftrightarrow y \vee z \leq x \backslash w \\
& \Leftrightarrow y, z \leq x \backslash w \\
& \Leftrightarrow x y, x z \leq w \\
& \Leftrightarrow x y \vee x z \leq w \\
x / y \leq x / y & \Leftrightarrow(x / y) y \leq x
\end{aligned}
$$

Title

Outline

RL examples
Boolean algebras Algebras of relations Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties

Properties (proots)

Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Properties (proofs)

$$
\begin{aligned}
& x(y \vee z) \leq w \Leftrightarrow y \vee z \leq x \backslash w \\
& \Leftrightarrow y, z \leq x \backslash w \\
& \Leftrightarrow x y, x z \leq w \\
& \Leftrightarrow x y \vee x z \leq w \\
& x / y \leq x / y \Rightarrow(x / y) y \leq x \\
& x(y / z) z \leq x y \Rightarrow x(y / z) \leq(x y) / z
\end{aligned}
$$

Title

Outline

RL examples
Boolean algebras Algebras of relations Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties

Properties (proots)

Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences
Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Properties (proofs)

$$
\begin{aligned}
x(y \vee z) \leq w & \Leftrightarrow y \vee z \leq x \backslash w \\
& \Leftrightarrow y, z \leq x \backslash w \\
& \Leftrightarrow x y, x z \leq w \\
& \Leftrightarrow x y \vee x z \leq w \\
x / y \leq x / y & \Rightarrow(x / y) y \leq x \\
x(y / z) z \leq x y & \Rightarrow x(y / z) \leq(x y) / z \\
{[(x / y) / z](z y) \leq x } & \Rightarrow(x / y) / z \leq x /(z y) \\
{[x /(z y)] z y \leq x } & \Rightarrow x /(z y) \leq(x / y) / z
\end{aligned}
$$

Title

Outline

RL examples
Boolean algebras Algebras of relations Relation algebras ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties

Properties (proofs)

Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Properties (proofs)

$$
\begin{aligned}
x(y \vee z) \leq w & \Leftrightarrow y \vee z \leq x \backslash w \\
& \Leftrightarrow y, z \leq x \backslash w \\
& \Leftrightarrow x y, x z \leq w \\
& \Leftrightarrow x y \vee x z \leq w \\
x / y \leq x / y & \Rightarrow(x / y) y \leq x \\
x(y / z) z \leq x y \Rightarrow & x(y / z) \leq(x y) / z \\
{[(x / y) / z](z y) \leq x } & \Rightarrow(x / y) / z \leq x /(z y) \\
{[x /(z y)] z y \leq x \Rightarrow } & x /(z y) \leq(x / y) / z \\
w \leq x \backslash(y / z) & \Leftrightarrow x w \leq y / z \\
& \Leftrightarrow x w z \leq y \\
& \Leftrightarrow w z \leq x \backslash y \\
& \Leftrightarrow w \leq(x \backslash y) / z
\end{aligned}
$$

Title

Outline

RL examples
Boolean algebras Algebras of relations Relation algebras ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties

Properties (proofs)

Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Lattice/monoid properties

$$
(z / y)(y / x) x \leq(z / y) y \leq z \Rightarrow(z / y)(y / x) \leq z / x
$$

Title

Outline

RL examples
Boolean algebras Algebras of relations Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Lattice/monoid properties

$$
(z / y)(y / x) x \leq(z / y) y \leq z \Rightarrow(z / y)(y / x) \leq z / x
$$

RL's satisfy no special purely lattice-theoretic or monoid-theoretic property.

Title

Outline

Lattice/monoid properties

$$
(z / y)(y / x) x \leq(z / y) y \leq z \Rightarrow(z / y)(y / x) \leq z / x
$$

RL's satisfy no special purely lattice-theoretic or monoid-theoretic property.

Every lattice can be embedded in a (cancellative) residuated lattice.

Every monoid can be embedded in a (distributive) residuated lattice.

Title

Outline

Linguistics (verbs)

We want to assign (a limited number of) linquistic types to English words, as well as to phrases, in such a way that we will be able to tell if a given phrase is a (syntacticly correct) sentence.

We will use n for 'noun phrase' and s for 'sentence'.
Outline

Linguistics (verbs)

We want to assign (a limited number of) linquistic types to English words, as well as to phrases, in such a way that we will be able to tell if a given phrase is a (syntacticly correct) sentence.

We will use n for 'noun phrase' and s for 'sentence'.
For phrases we use the rule: if $A: a$ and $B: b$, then $A B: a b$.
We write $C: a \backslash b$ if $A: a$ implies $A C: b$, for all A.
Likewise, $C: b / a$ if $A: a$ implies $C A: b$, for all A.

Linguistics (verbs)

We want to assign (a limited number of) linquistic types to English words, as well as to phrases, in such a way that we will be able to tell if a given phrase is a (syntacticly correct) sentence.

We will use n for 'noun phrase' and s for 'sentence'.
For phrases we use the rule: if $A: a$ and $B: b$, then $A B: a b$.
We write $C: a \backslash b$ if $A: a$ implies $A C: b$, for all A.
Likewise, $C: b / a$ if $A: a$ implies $C A: b$, for all A.
We assign type n to 'John.' Clearly, 'plays' has type $n \backslash s$, as all intransitive verbs.

John plays
$n \quad n \backslash s$

$$
n(n \backslash s) \leq s
$$

Outline

Linguistics (adverbs)

(John	plays)	here	$[n(n \backslash s)](s \backslash s) \leq s(s \backslash s) \leq s$
n	$n \backslash s$	$s \backslash s$	
John	(plays	here)	$s \backslash s \leq(n \backslash s) \backslash(n \backslash s)$
n	$n \backslash s$	$(n \backslash s) \backslash(n \backslash s)$	

Title
Outline

RL examples
Boolean algebras Algebras of relations Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

```
Applications of frames
```


Linguistics (adverbs)

(John plays) here

$$
n \quad n \backslash s \quad s \backslash s
$$

$$
[n(n \backslash s)](s \backslash s) \leq s(s \backslash s) \leq s
$$

John (plays here)

$$
n \quad n \backslash s \quad(n \backslash s) \backslash(n \backslash s)
$$

$$
s \backslash s \leq(n \backslash s) \backslash(n \backslash s)
$$

Note that 'plays' is also a transitive verb, so it has type $(n \backslash s) / n$.

John (plays football)

$$
\begin{array}{lccc}
n & (n \backslash s) / n & n & {[n((n \backslash s) / n)] n \leq s}
\end{array}
$$

(John plays) football $(n \backslash s) / n \leq n \backslash(s / n)$
n
$n \backslash(s / n)$
n
n

$$
n[(n \backslash(s / n)) n] \leq s
$$

Also, for 'John definitely plays football', note that we need to have $s \backslash s \leq(n \backslash s) /(n \backslash s)$.

Outline

Linguistics (adverbs)

(John plays) here

$$
n \quad n \backslash s \quad s \backslash s
$$

$$
[n(n \backslash s)](s \backslash s) \leq s(s \backslash s) \leq s
$$

John (plays here)

$$
n \quad n \backslash s \quad(n \backslash s) \backslash(n \backslash s)
$$

$$
s \backslash s \leq(n \backslash s) \backslash(n \backslash s)
$$

Note that 'plays' is also a transitive verb, so it has type $(n \backslash s) / n$.

John (plays football) $n \quad(n \backslash s) / n \quad n \quad[n((n \backslash s) / n)] n \leq s$
(John plays) football $(n \backslash s) / n \leq n \backslash(s / n)$
n
$n \backslash(s / n)$
n
$n[(n \backslash(s / n)) n] \leq s$
Also, for 'John definitely plays football', note that we need to have $s \backslash s \leq(n \backslash s) /(n \backslash s)$.

Outline

Q: Can we decide (in)equations in residuated lattices?

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames
Applications of frames
Undecidability

References

Congruences G, B

Definition. A congruence on an algebra \mathbf{A} is an equivalence relation on A that is compatible with the operations of \mathbf{A}. (Alt.the kernel of a homomorphism out of A.)

Congruences G, B

Definition. A congruence on an algebra \mathbf{A} is an equivalence relation on A that is compatible with the operations of \mathbf{A}. (Alt.the kernel of a homomorphism out of A.)

Congruences in groups correspond to normal subgroups.
Given a congruence θ on a group \mathbf{G}, the congruence class $[1]_{\theta}$ of 1 is a normal subgroup.
Given a normal subgroup N of a group G, the relation θ_{N} is a congruence, where $(a, b) \in \theta_{N}$ iff $a \backslash b \in N$ iff $\{a \backslash b, b \backslash a\} \subseteq N$.

Congruences G, B

Definition. A congruence on an algebra \mathbf{A} is an equivalence relation on A that is compatible with the operations of \mathbf{A}. (Alt.the kernel of a homomorphism out of A.)

Congruences in groups correspond to normal subgroups.
Given a congruence θ on a group G , the congruence class $[1]_{\theta}$ of 1 is a normal subgroup.
Given a normal subgroup N of a group \mathbf{G}, the relation θ_{N} is a congruence, where $(a, b) \in \theta_{N}$ iff $a \backslash b \in N$ iff $\{a \backslash b, b \backslash a\} \subseteq N$.

Congruences in Boolean algebras correspond to filters.
Given a congruence θ on a Boolean algebra A, the congruence class $[1]_{\theta}$ of 1 is a filter of \mathbf{A}.
Given a filter F of a Boolean algebra \mathbf{A}, θ_{F} is a congruence, where $(a, b) \in \theta_{F}$ iff $a \leftrightarrow b \in F$ iff $\{a \rightarrow b, b \rightarrow a\} \subseteq F$.
Note that a filter is a subset of A closed under $\{\wedge, \vee, \rightarrow, 1\}$ that is convex ($x \leq y \leq z$ and $x, z \in F$ implies $y \in F$).

Congruences R, M

Congruences on rings correspond to ideals.

Title
Outline

RL examples

Congruences
Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames

Applications of frames

Undecidability

References

Congruences R, M

Congruences on rings correspond to ideals.
Congruences on ℓ-groups correspond to convex ℓ-subgroups.

Title

Outline

RL examples

Congruences
Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames
Applications of frames

Undecidability

References

Congruences R, M

Congruences on rings correspond to ideals.
Congruences on ℓ-groups correspond to convex ℓ-subgroups.
Congruences on monoids do not correspond to any particular kind of subset.

Correspondence

Congruences R, M

Congruences on rings correspond to ideals.
Congruences on ℓ-groups correspond to convex ℓ-subgroups.
Congruences on monoids do not correspond to any particular kind of subset.

Do congruences on residuated lattices correspond to certain subsets?

CNM to CNS
CNS to congruence
CNS to congruence Lattice isomorphism Compositions

Congruences and sets

Let \mathbf{A} be a residuated lattice and $a, x \in A$. We define the conjugates $\lambda_{a}(x)=[a \backslash(x a)] \wedge 1$ and $\rho_{a}(x)=a x / a \wedge 1$. An iterated conjugate is a composition $\gamma_{a_{1}}\left(\gamma_{a_{2}}\left(\ldots \gamma_{a_{n}}(x)\right)\right)$, where $n \in \omega, a_{1}, a_{2}, \ldots, a_{n} \in A$ and $\gamma_{a_{i}} \in\left\{\lambda_{a_{i}}, \rho_{a_{i}}\right\}$, for all i.

Congruences and sets

Let \mathbf{A} be a residuated lattice and $a, x \in A$. We define the conjugates $\lambda_{a}(x)=[a \backslash(x a)] \wedge 1$ and $\rho_{a}(x)=a x / a \wedge 1$. An iterated conjugate is a composition $\gamma_{a_{1}}\left(\gamma_{a_{2}}\left(\ldots \gamma_{a_{n}}(x)\right)\right)$, where $n \in \omega, a_{1}, a_{2}, \ldots, a_{n} \in A$ and $\gamma_{a_{i}} \in\left\{\lambda_{a_{i}}, \rho_{a_{i}}\right\}$, for all i.
$X \subseteq A$ is called normal, if it is closed under conjugates.

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M

Congruences and sets

Let \mathbf{A} be a residuated lattice and $a, x \in A$. We define the conjugates $\lambda_{a}(x)=[a \backslash(x a)] \wedge 1$ and $\rho_{a}(x)=a x / a \wedge 1$.
An iterated conjugate is a composition $\gamma_{a_{1}}\left(\gamma_{a_{2}}\left(\ldots \gamma_{a_{n}}(x)\right)\right)$, where $n \in \omega, a_{1}, a_{2}, \ldots, a_{n} \in A$ and $\gamma_{a_{i}} \in\left\{\lambda_{a_{i}}, \rho_{a_{i}}\right\}$, for all i.
$X \subseteq A$ is called normal, if it is closed under conjugates.
We will be considering correspondences between:

- Congruences on A
- Convex, normal subalgebras (CNSs) of A

■ Convex, normal (in A) submonoids (CNMs) of $\mathbf{A}^{-}=\downarrow 1$

- Deductive filters of $\mathbf{A}: F \subseteq A$
- $\uparrow 1 \subseteq F$
- $a, a \backslash b \in F$ implies $b \in F$ (eqv. $\uparrow F=F$)
- $a \in F$ implies $a \wedge 1 \in F$ (eqv. F is \wedge-closed)
- $a \in F$ implies $b \backslash a b, b a / b \in F$

Correspondence

If S is a CNS of \mathbf{A}, M a CNM of \mathbf{A}^{-}, θ a congruence on \mathbf{A} and F a DF of \mathbf{A}, then

1. $M_{s}(S)=S^{-}, M_{c}(\theta)=[1]_{\theta}^{-}$and $M_{f}(F)=F^{-}$are CNMs of \mathbf{A}^{-},
2. $S_{m}(M)=\Xi(M), S_{c}(\theta)=[1]_{\theta}$ and $S_{f}(F)=\Xi\left(F^{-}\right)$are CNSs of A,
3. $F_{s}(S)=\uparrow S, F_{m}(M)=\uparrow M$, and $F_{c}(\theta)=\uparrow[1]_{\theta}$ are DFs of A.
4. $\Theta_{s}(S)=\{(a, b) \mid a \leftrightarrow b \in S\}, \Theta_{m}(M)=\{(a, b) \mid a \leftrightarrow b \in M\}$ and $\Theta_{f}(F)=\{(a, b) \mid a \leftrightarrow b \in F\}=\{(a, b) \mid a \backslash b, b \backslash a \in F\}$ are congruences of \mathbf{A}.
$a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1$
$\Xi(X)=\{a \in A: x \leq a \leq x \backslash 1$, for some $x \in X\}$.

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.

Title
Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNS to congruence CNS to congruence Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames
Applications of frames

Undecidability

References

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.
Convexity: If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that $x \leq a \leq x \backslash 1$ and $y \leq b \leq y \backslash 1$.
If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \backslash 1$, so $c \in \Xi(M)$.

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNM to CNS

CNS to congruence
CNS to congruence Lattice isomorphism Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames

Applications of frames

Undecidability

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.
Convexity: If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that $x \leq a \leq x \backslash 1$ and $y \leq b \leq y \backslash 1$.
If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \backslash 1$, so $c \in \Xi(M)$.
Subalg.: $x y \leq x \wedge y \leq a \wedge b \leq x \backslash 1 \wedge y \backslash 1=(x \vee y) \backslash 1 \leq x \backslash 1$
Outline

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.
Convexity: If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that $x \leq a \leq x \backslash 1$ and $y \leq b \leq y \backslash 1$.
If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \backslash 1$, so $c \in \Xi(M)$.
Subalg.: $x y \leq x \wedge y \leq a \wedge b \leq x \backslash 1 \wedge y \backslash 1=(x \vee y) \backslash 1 \leq x \backslash 1$

$$
x \leq x \vee y \leq a \vee b \leq x \backslash 1 \vee y \backslash 1 \leq(x \wedge y) \backslash 1 \leq(x y) \backslash 1
$$

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.
Convexity: If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that $x \leq a \leq x \backslash 1$ and $y \leq b \leq y \backslash 1$.
If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \backslash 1$, so $c \in \Xi(M)$.
Subalg.: $x y \leq x \wedge y \leq a \wedge b \leq x \backslash 1 \wedge y \backslash 1=(x \vee y) \backslash 1 \leq x \backslash 1$

$$
\begin{gathered}
x \leq x \vee y \leq a \vee b \leq x \backslash 1 \vee y \backslash 1 \leq(x \wedge y) \backslash 1 \leq(x y) \backslash 1 \\
x y \leq a b \leq(x \backslash 1)(y \backslash 1) \leq x \backslash(y \backslash 1)=(y x) \backslash 1
\end{gathered}
$$

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.
Convexity: If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that $x \leq a \leq x \backslash 1$ and $y \leq b \leq y \backslash 1$.
If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \backslash 1$, so $c \in \Xi(M)$.
Subalg.: $x y \leq x \wedge y \leq a \wedge b \leq x \backslash 1 \wedge y \backslash 1=(x \vee y) \backslash 1 \leq x \backslash 1$

$$
\begin{gathered}
x \leq x \vee y \leq a \vee b \leq x \backslash 1 \vee y \backslash 1 \leq(x \wedge y) \backslash 1 \leq(x y) \backslash 1 \\
x y \leq a b \leq(x \backslash 1)(y \backslash 1) \leq x \backslash(y \backslash 1)=(y x) \backslash 1 \\
\lambda_{a}(y x) \leq a \backslash y x a \leq a \backslash[y /(x \backslash 1)] a \leq a \backslash[b / a] a \leq a \backslash b \leq x \backslash(y \backslash 1)=y x \text { stericesenation - Frames }
\end{gathered}
$$

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.
Convexity: If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that $x \leq a \leq x \backslash 1$ and $y \leq b \leq y \backslash 1$.
If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \backslash 1$, so $c \in \Xi(M)$.
Subalg.: $x y \leq x \wedge y \leq a \wedge b \leq x \backslash 1 \wedge y \backslash 1=(x \vee y) \backslash 1 \leq x \backslash 1$

$$
\begin{aligned}
& x \leq x \vee y \leq a \vee b \leq x \backslash 1 \vee y \backslash 1 \leq(x \wedge y) \backslash 1 \leq(x y) \backslash 1 \\
& x y \leq a b \leq(x \backslash 1)(y \backslash 1) \leq x \backslash(y \backslash 1)=(y x) \backslash 1 \\
& x y \leq x /(y \backslash 1) \leq a / b \leq(x \backslash 1) / y \leq\left[x \rho_{(x \backslash 1) / y}(y)\right] \backslash 1 \\
& \text { (for } u=(x \backslash 1) / y \text { we have } x \rho_{u}(y) u \leq x\{u y / u\} u \leq x u y \leq 1 \text {) }
\end{aligned}
$$

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNM to CNS

CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

CNM to CNS

$\Xi(M)=\{a \in A \mid x \leq a \leq x \backslash 1$, for some $x \in M\}$ is a CNS.
Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \backslash 1$. Indeed, $y z \leq y \leq a \leq z \backslash 1 \leq y z \backslash 1$ and $y z \in M$.
Convexity: If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that $x \leq a \leq x \backslash 1$ and $y \leq b \leq y \backslash 1$.
If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \backslash 1$, so $c \in \Xi(M)$.
Subalg.: $x y \leq x \wedge y \leq a \wedge b \leq x \backslash 1 \wedge y \backslash 1=(x \vee y) \backslash 1 \leq x \backslash 1$

$$
\begin{gathered}
x \leq x \vee y \leq a \vee b \leq x \backslash 1 \vee y \backslash 1 \leq(x \wedge y) \backslash 1 \leq(x y) \backslash 1 \\
x y \leq a b \leq(x \backslash 1)(y \backslash 1) \leq x \backslash(y \backslash 1)=(y x) \backslash 1 \\
\lambda_{a}(y x) \leq a \backslash y x a \leq a \backslash[y /(x \backslash 1)] a \leq a \backslash[b / a] a \leq a \backslash b \leq x \backslash(y \backslash 1)=y x x_{\text {Aerepesenalion - Fames }}^{\text {Logic }}
\end{gathered}
$$

Outline
RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNM to CNS

CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM

$$
x y \leq x /(y \backslash 1) \leq a / b \leq(x \backslash 1) / y \leq\left[x \rho_{(x \backslash 1) / y}(y)\right] \backslash 1
$$

$$
\text { (for } u=(x \backslash 1) / y \text { we have } x \rho_{u}(y) u \leq x\{u y / u\} u \leq x u y \leq 1 \text {) }
$$

Normality: As $\lambda_{c}(x) \lambda_{c}(x \backslash 1) \leq c \backslash x(x \backslash 1) c \wedge 1 \leq c \backslash c \wedge 1=1$,

$$
\lambda_{c}(x) \leq \lambda_{c}(a) \leq \lambda_{c}(x \backslash 1) \leq \lambda_{c}(x) \backslash 1
$$

CNS to congruence

$$
\begin{aligned}
& \Theta_{s}(S)=\{(a, b) \mid a \leftrightarrow b \in S\} \text { is a congruence. } \\
& a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1
\end{aligned}
$$

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References

CNS to congruence

$\Theta_{s}(S)=\{(a, b) \mid a \leftrightarrow b \in S\}$ is a congruence.
$a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1$
Equivalence: $\Theta_{s}(S)$ is reflexive and symmetric. If $a \leftrightarrow b, b \leftrightarrow c \in S$, we have

$$
\begin{gathered}
(a \leftrightarrow b)(b \leftrightarrow c) \wedge(b \leftrightarrow c)(a \leftrightarrow b) \leq \\
\leq(a \backslash b)(b \backslash c) \wedge(c \backslash b)(b \backslash a) \wedge 1 \leq(a \leftrightarrow c) \leq 1
\end{gathered}
$$

Compatibility: Assume $a \leftrightarrow b \in S$ and $c \in A$.

$$
a \backslash b \leq c a \backslash c b \text { implies } a \leftrightarrow b \leq c a \leftrightarrow c b \leq 1
$$

CNS to congruence

$\Theta_{s}(S)=\{(a, b) \mid a \leftrightarrow b \in S\}$ is a congruence.
$a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1$
Equivalence: $\Theta_{s}(S)$ is reflexive and symmetric. If $a \leftrightarrow b, b \leftrightarrow c \in S$, we have

$$
\begin{gathered}
(a \leftrightarrow b)(b \leftrightarrow c) \wedge(b \leftrightarrow c)(a \leftrightarrow b) \leq \\
\leq(a \backslash b)(b \backslash c) \wedge(c \backslash b)(b \backslash a) \wedge 1 \leq(a \leftrightarrow c) \leq 1 .
\end{gathered}
$$

Compatibility: Assume $a \leftrightarrow b \in S$ and $c \in A$.

$$
\begin{gathered}
a \backslash b \leq c a \backslash c b \text { implies } a \leftrightarrow b \leq c a \leftrightarrow c b \leq 1 \\
\lambda_{c}(a \leftrightarrow b) \leq c \backslash(a \backslash b) c \wedge c \backslash(b \backslash a) c \wedge 1 \leq a c \leftrightarrow b c \leq 1
\end{gathered}
$$

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS

CNS to congruence

CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

CNS to congruence

$\Theta_{s}(S)=\{(a, b) \mid a \leftrightarrow b \in S\}$ is a congruence.
$a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1$
Equivalence: $\Theta_{s}(S)$ is reflexive and symmetric. If $a \leftrightarrow b, b \leftrightarrow c \in S$, we have

$$
\begin{gathered}
(a \leftrightarrow b)(b \leftrightarrow c) \wedge(b \leftrightarrow c)(a \leftrightarrow b) \leq \\
\leq(a \backslash b)(b \backslash c) \wedge(c \backslash b)(b \backslash a) \wedge 1 \leq(a \leftrightarrow c) \leq 1 .
\end{gathered}
$$

Compatibility: Assume $a \leftrightarrow b \in S$ and $c \in A$.

$$
\begin{gathered}
a \backslash b \leq c a \backslash c b \text { implies } a \leftrightarrow b \leq c a \leftrightarrow c b \leq 1 \\
\lambda_{c}(a \leftrightarrow b) \leq c \backslash(a \backslash b) c \wedge c \backslash(b \backslash a) c \wedge 1 \leq a c \leftrightarrow b c \leq 1 \\
(a \wedge c) \cdot(a \leftrightarrow b) \leq a(a \leftrightarrow b) \wedge c(a \leftrightarrow b) \leq b \wedge c \text { implies } \\
a \leftrightarrow b \leq(a \wedge c) \backslash(b \wedge c) .
\end{gathered}
$$

CNS to congruence

$\Theta_{s}(S)=\{(a, b) \mid a \leftrightarrow b \in S\}$ is a congruence.
$a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1$
Equivalence: $\Theta_{s}(S)$ is reflexive and symmetric. If $a \leftrightarrow b, b \leftrightarrow c \in S$, we have

$$
\begin{gathered}
(a \leftrightarrow b)(b \leftrightarrow c) \wedge(b \leftrightarrow c)(a \leftrightarrow b) \leq \\
\leq(a \backslash b)(b \backslash c) \wedge(c \backslash b)(b \backslash a) \wedge 1 \leq(a \leftrightarrow c) \leq 1 .
\end{gathered}
$$

Compatibility: Assume $a \leftrightarrow b \in S$ and $c \in A$.

$$
\begin{gathered}
a \backslash b \leq c a \backslash c b \text { implies } a \leftrightarrow b \leq c a \leftrightarrow c b \leq 1 \\
\lambda_{c}(a \leftrightarrow b) \leq c \backslash(a \backslash b) c \wedge c \backslash(b \backslash a) c \wedge 1 \leq a c \leftrightarrow b c \leq 1 \\
(a \wedge c) \cdot(a \leftrightarrow b) \leq a(a \leftrightarrow b) \wedge c(a \leftrightarrow b) \leq b \wedge c \text { implies } \\
a \leftrightarrow b \leq(a \wedge c) \backslash(b \wedge c) \text {. Likewise, } a \leftrightarrow b \leq(b \wedge c) \backslash(a \wedge c) \text {. So, } \\
a \leftrightarrow b \leq(a \wedge c) \leftrightarrow(b \wedge c) \leq 1
\end{gathered}
$$

CNS to congruence

$\Theta_{s}(S)=\{(a, b) \mid a \leftrightarrow b \in S\}$ is a congruence.
$a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1$
Equivalence: $\Theta_{s}(S)$ is reflexive and symmetric. If $a \leftrightarrow b, b \leftrightarrow c \in S$, we have

$$
\begin{gathered}
(a \leftrightarrow b)(b \leftrightarrow c) \wedge(b \leftrightarrow c)(a \leftrightarrow b) \leq \\
\leq(a \backslash b)(b \backslash c) \wedge(c \backslash b)(b \backslash a) \wedge 1 \leq(a \leftrightarrow c) \leq 1
\end{gathered}
$$

Compatibility: Assume $a \leftrightarrow b \in S$ and $c \in A$.

$$
\begin{gathered}
a \backslash b \leq c a \backslash c b \text { implies } a \leftrightarrow b \leq c a \leftrightarrow c b \leq 1 \\
\lambda_{c}(a \leftrightarrow b) \leq c \backslash(a \backslash b) c \wedge c \backslash(b \backslash a) c \wedge 1 \leq a c \leftrightarrow b c \leq 1 \\
(a \wedge c) \cdot(a \leftrightarrow b) \leq a(a \leftrightarrow b) \wedge c(a \leftrightarrow b) \leq b \wedge c \text { implies } \\
a \leftrightarrow b \leq(a \wedge c) \backslash(b \wedge c) \text {. Likewise, } a \leftrightarrow b \leq(b \wedge c) \backslash(a \wedge c) \text {. So, } \\
a \leftrightarrow b \leq(a \wedge c) \leftrightarrow(b \wedge c) \leq 1 \\
a \backslash b \leq(c \backslash a) \backslash(c \backslash b) \text { and } b \backslash a \leq(c \backslash b) \backslash(c \backslash a) \text { imply } \\
a \leftrightarrow b \leq(c \backslash a) \leftrightarrow(c \backslash b) \leq 1
\end{gathered}
$$

CNS to congruence

$$
\begin{gathered}
a \backslash b \leq(a \backslash c) /(b \backslash c) \text { and } b \backslash a \leq(b \backslash c) /(a \backslash c) \text { imply } \\
a \leftrightarrow b \leq(a \backslash c) \leftrightarrow^{\prime}(b \backslash c) \leq 1
\end{gathered}
$$

where $a \leftrightarrow^{\prime} b=a / b \wedge b / a \wedge 1$.

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames

Applications of frames

Undecidability

References

CNS to congruence

$$
\begin{gathered}
a \backslash b \leq(a \backslash c) /(b \backslash c) \text { and } b \backslash a \leq(b \backslash c) /(a \backslash c) \text { imply } \\
a \leftrightarrow b \leq(a \backslash c) \leftrightarrow^{\prime}(b \backslash c) \leq 1
\end{gathered}
$$

where $a \leftrightarrow^{\prime} b=a / b \wedge b / a \wedge 1$.
So, $(a \backslash c) \leftrightarrow^{\prime}(b \backslash c) \in S$ and $(a \backslash c) \leftrightarrow(b \backslash c) \in S$.

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence

CNS to congruence

Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames

Applications of frames

Undecidability

CNS to congruence

$$
\begin{gathered}
a \backslash b \leq(a \backslash c) /(b \backslash c) \text { and } b \backslash a \leq(b \backslash c) /(a \backslash c) \text { imply } \\
a \leftrightarrow b \leq(a \backslash c) \leftrightarrow \leftrightarrow^{\prime}(b \backslash c) \leq 1
\end{gathered}
$$

where $a \leftrightarrow^{\prime} b=a / b \wedge b / a \wedge 1$.
So, $(a \backslash c) \leftrightarrow^{\prime}(b \backslash c) \in S$ and $(a \backslash c) \leftrightarrow(b \backslash c) \in S$.

Claim: $a \leftrightarrow^{\prime} b \in S$ iff $a \leftrightarrow b \in S$.

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence

CNS to congruence

$$
\begin{gathered}
a \backslash b \leq(a \backslash c) /(b \backslash c) \text { and } b \backslash a \leq(b \backslash c) /(a \backslash c) \text { imply } \\
a \leftrightarrow b \leq(a \backslash c) \leftrightarrow \leftrightarrow^{\prime}(b \backslash c) \leq 1
\end{gathered}
$$

where $a \leftrightarrow^{\prime} b=a / b \wedge b / a \wedge 1$.
So, $(a \backslash c) \leftrightarrow^{\prime}(b \backslash c) \in S$ and $(a \backslash c) \leftrightarrow(b \backslash c) \in S$.

Claim: $a \leftrightarrow^{\prime} b \in S$ iff $a \leftrightarrow b \in S$.

$$
\lambda_{b}\left(a \leftrightarrow^{\prime} b\right)=b \backslash[a / b \wedge b / a \wedge 1] b \wedge 1 \leq b \backslash a \wedge 1
$$

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence

CNS to congruence

Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames

Applications of frames

Undecidability

References

CNS to congruence

$$
\begin{gathered}
a \backslash b \leq(a \backslash c) /(b \backslash c) \text { and } b \backslash a \leq(b \backslash c) /(a \backslash c) \text { imply } \\
a \leftrightarrow b \leq(a \backslash c) \leftrightarrow \leftrightarrow^{\prime}(b \backslash c) \leq 1
\end{gathered}
$$

where $a \leftrightarrow^{\prime} b=a / b \wedge b / a \wedge 1$.
So, $(a \backslash c) \leftrightarrow^{\prime}(b \backslash c) \in S$ and $(a \backslash c) \leftrightarrow(b \backslash c) \in S$.

Claim: $a \leftrightarrow^{\prime} b \in S$ iff $a \leftrightarrow b \in S$.

$$
\lambda_{b}\left(a \leftrightarrow^{\prime} b\right)=b \backslash[a / b \wedge b / a \wedge 1] b \wedge 1 \leq b \backslash a \wedge 1
$$

$$
\lambda_{b}\left(a \leftrightarrow{ }^{\prime} b\right) \wedge \lambda_{a}\left(a \leftrightarrow{ }^{\prime} b\right) \leq a \leftrightarrow b \leq 1
$$

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence

CNS to congruence

Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References

Lattice isomorphism

1. The CNSs of \mathbf{A}, the CNMs of \mathbf{A}^{-}and the DF of \mathbf{A} form lattices, denoted by $\mathbf{C N S}(\mathbf{A}), \mathbf{C N M}(\mathbf{A})$ and $\operatorname{Fil}(\mathbf{A})$, respectively.
2. All the above lattices are isomorphic to the congruence lattice $\operatorname{Con}(\mathbf{A})$ of \mathbf{A} via the maps defined above.
3. The composition of the above maps gives the corresponding map; e.g., $M_{s}\left(S_{c}(\theta)\right)=M_{c}(\theta)$.

Lattice isomorphism

1. The CNSs of \mathbf{A}, the CNMs of \mathbf{A}^{-}and the DF of \mathbf{A} form lattices, denoted by $\mathbf{C N S}(\mathbf{A}), \mathbf{C N M}(\mathbf{A})$ and $\operatorname{Fil}(\mathbf{A})$, respectively.
2. All the above lattices are isomorphic to the congruence lattice $\operatorname{Con}(\mathbf{A})$ of \mathbf{A} via the maps defined above.
3. The composition of the above maps gives the corresponding map; e.g., $M_{s}\left(S_{c}(\theta)\right)=M_{c}(\theta)$.

Claim: S_{c} and Θ_{s} are inverse maps. $S=[1]_{\Theta_{s}(S)}: a \in S$ implies $a \leftrightarrow 1=a \backslash 1 \wedge a \wedge 1 \in S$.

Lattice isomorphism

1. The CNSs of \mathbf{A}, the CNMs of \mathbf{A}^{-}and the DF of \mathbf{A} form lattices, denoted by $\mathbf{C N S}(\mathbf{A}), \mathbf{C N M}(\mathbf{A})$ and $\operatorname{Fil}(\mathbf{A})$, respectively.
2. All the above lattices are isomorphic to the congruence lattice $\operatorname{Con}(\mathbf{A})$ of \mathbf{A} via the maps defined above.
3. The composition of the above maps gives the corresponding map; e.g., $M_{s}\left(S_{c}(\theta)\right)=M_{c}(\theta)$.

Claim: S_{c} and Θ_{s} are inverse maps. $S=[1]_{\Theta_{s}(S)}: a \in S$ implies $a \leftrightarrow 1=a \backslash 1 \wedge a \wedge 1 \in S$. Conversely, $(a \leftrightarrow 1) \leq a \leq(a \leftrightarrow 1) \backslash 1$.
$\theta=\Theta_{s}\left(S_{c}(\theta)\right)$: If $(a, b) \in \Theta_{s}\left([1]_{\theta}\right)$, then $a \leftrightarrow b \in[1]_{\theta}$, so $a \leftrightarrow b \theta 1$.

Lattice isomorphism

1. The CNSs of \mathbf{A}, the CNMs of \mathbf{A}^{-}and the DF of \mathbf{A} form lattices, denoted by $\mathbf{C N S}(\mathbf{A}), \mathbf{C N M}(\mathbf{A})$ and $\operatorname{Fil}(\mathbf{A})$, respectively.
2. All the above lattices are isomorphic to the congruence lattice $\mathbf{C o n}(\mathbf{A})$ of \mathbf{A} via the maps defined above.
3. The composition of the above maps gives the corresponding map; e.g., $M_{s}\left(S_{c}(\theta)\right)=M_{c}(\theta)$.

Claim: S_{c} and Θ_{s} are inverse maps. $S=[1]_{\Theta_{s}(S)}: a \in S$ implies $a \leftrightarrow 1=a \backslash 1 \wedge a \wedge 1 \in S$. Conversely, $(a \leftrightarrow 1) \leq a \leq(a \leftrightarrow 1) \backslash 1$.
$\theta=\Theta_{s}\left(S_{c}(\theta)\right)$: If $(a, b) \in \Theta_{s}\left([1]_{\theta}\right)$, then $a \leftrightarrow b \in[1]_{\theta}$, so
$a \leftrightarrow b \theta$ 1. Therefore, $a \theta a(a \leftrightarrow b) \leq a(a \backslash b) \leq b$, so $a \vee b \theta b$.

Lattice isomorphism

1. The CNSs of \mathbf{A}, the CNMs of \mathbf{A}^{-}and the DF of \mathbf{A} form lattices, denoted by $\mathbf{C N S}(\mathbf{A}), \mathbf{C N M}(\mathbf{A})$ and $\operatorname{Fil}(\mathbf{A})$, respectively.
2. All the above lattices are isomorphic to the congruence lattice $\mathbf{C o n}(\mathbf{A})$ of \mathbf{A} via the maps defined above.
3. The composition of the above maps gives the corresponding map; e.g., $M_{s}\left(S_{c}(\theta)\right)=M_{c}(\theta)$.

Claim: S_{c} and Θ_{s} are inverse maps. $S=[1]_{\Theta_{s}(S)}: a \in S$ implies $a \leftrightarrow 1=a \backslash 1 \wedge a \wedge 1 \in S$.
Conversely, $(a \leftrightarrow 1) \leq a \leq(a \leftrightarrow 1) \backslash 1$.
$\theta=\Theta_{s}\left(S_{c}(\theta)\right)$: If $(a, b) \in \Theta_{s}\left([1]_{\theta}\right)$, then $a \leftrightarrow b \in[1]_{\theta}$, so
$a \leftrightarrow b \theta$ 1. Therefore, $a \theta a(a \leftrightarrow b) \leq a(a \backslash b) \leq b$, so $a \vee b \theta b$.
Likewise, $a \vee b \theta a$, so $a \theta b$.

Lattice isomorphism

1. The CNSs of \mathbf{A}, the CNMs of \mathbf{A}^{-}and the DF of \mathbf{A} form lattices, denoted by $\mathbf{C N S}(\mathbf{A}), \mathbf{C N M}(\mathbf{A})$ and $\operatorname{Fil}(\mathbf{A})$, respectively.
2. All the above lattices are isomorphic to the congruence lattice $\mathbf{C o n}(\mathbf{A})$ of \mathbf{A} via the maps defined above.
3. The composition of the above maps gives the corresponding map; e.g., $M_{s}\left(S_{c}(\theta)\right)=M_{c}(\theta)$.

Claim: S_{c} and Θ_{s} are inverse maps. $S=[1]_{\Theta_{s}(S)}: a \in S$ implies $a \leftrightarrow 1=a \backslash 1 \wedge a \wedge 1 \in S$.
Conversely, $(a \leftrightarrow 1) \leq a \leq(a \leftrightarrow 1) \backslash 1$.
$\theta=\Theta_{s}\left(S_{c}(\theta)\right)$: If $(a, b) \in \Theta_{s}\left([1]_{\theta}\right)$, then $a \leftrightarrow b \in[1]_{\theta}$, so
$a \leftrightarrow b \theta$ 1. Therefore, $a \theta a(a \leftrightarrow b) \leq a(a \backslash b) \leq b$, so $a \vee b \theta b$.
Likewise, $a \vee b \theta a$, so $a \theta b$.
Conversely, if $a \theta b$, then

Congruences

Compositions

Claim: $S_{f}(F)=S_{c}\left(\Theta_{f}(F)\right)$. (Sketch)

Title
Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism

Compositions

Claim: $S_{f}(F)=S_{c}\left(\Theta_{f}(F)\right)$. (Sketch)
If $a \in S_{c}\left(\Theta_{f}(F)\right)$, then $a \Theta_{f}(F) 1$, so $a \backslash 1,1 \backslash a \in F$.
Hence $a, 1 / a \in F$. Since $1 \in F$, we get $x=a \wedge 1 / a \wedge 1 \in F^{-}$. Obviously, $x \leq a$; also $a \leq(1 / a) \backslash 1 \leq x \backslash 1$. Thus, $a \in S_{f}(F)$.

Title

Outline

RL examples

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence CNS to congruence Lattice isomorphism

Compositions

Claim: $S_{f}(F)=S_{c}\left(\Theta_{f}(F)\right)$. (Sketch)
If $a \in S_{c}\left(\Theta_{f}(F)\right)$, then $a \Theta_{f}(F) 1$, so $a \backslash 1,1 \backslash a \in F$.
Hence $a, 1 / a \in F$. Since $1 \in F$, we get $x=a \wedge 1 / a \wedge 1 \in F^{-}$.
Obviously, $x \leq a$; also $a \leq(1 / a) \backslash 1 \leq x \backslash 1$.
Thus, $a \in S_{f}(F)$.
Conversely, if $a \in S_{f}(F)$, then $x \leq a \leq x \backslash 1$, for some $x \in F^{-}$. So, $a \in F$ and $1 /(x \backslash 1) \leq 1 / a$. Since, $x \leq 1 /(x \backslash 1)$, we have $x \leq 1 / a$ and $1 / a \in F$.
Thus both $a / 1$ and $1 / a$ are in F. Hence, $a \in[1]_{\Theta_{f}(F)}$.

Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism

Generation

If X is a subset of A^{-}and Y is a subset of A, then

1. the CNM $M(X)$ of A^{-}generated by X is equal to $\Xi^{-} \Pi \Gamma(X)$.
2. The CNS $S(Y)$ of A generated by Y is equal to $\Xi \Pi \Gamma \Delta(Y)$.
3. The DF $F(Y)$ of \mathbf{A} generated by $Y \subseteq A$ is equal to $\uparrow \Pi \Gamma(Y)=\uparrow \Pi \Gamma(Y \wedge 1)$.
4. The congruence $\Theta(P)$ on A generated by $P \subseteq A^{2}$ is equal to $\Theta_{m}\left(M\left(P^{\prime}\right)\right)$, where $P^{\prime}=\{a \leftrightarrow b \mid(a, b) \in P\}$.

$$
\begin{aligned}
& X \wedge 1=\{x \wedge 1: x \in X\} \\
& \Delta(X)=\{x \leftrightarrow 1: x \in X\} \\
& \Pi(X)=\left\{x_{1} x_{2} \cdots x_{n}: n \geq 1, x_{i} \in X\right\} \cup\{1\} \\
& \Gamma(X)=\{\gamma(x): \gamma \text { is an iterated conjugate }\} \\
& \Xi(X)=\{a \in A: x \leq a \leq x \backslash 1, \text { for some } x \in X\} \\
& \Xi-(X)=\{a \in A: x \leq a \leq 1, \text { for some } x \in X\} \\
& a \leftrightarrow b=a \backslash b \wedge b \backslash a \wedge 1
\end{aligned}
$$

Outline

Generation of CNM

Clearly, if M is a CNM of \mathbf{A}^{-}that contains X, then it contains $\Gamma(X)$, by normality, $\Pi \Gamma(X)$, since M is closed under product, and $\Xi^{-} \Pi \Gamma(X)$, since M is convex and contains 1 .

We will now show that $\Xi^{-} \Pi \Gamma(X)$ itself is a CNM of A^{-}; it obviously contains X. It is clearly convex and a submonoid of \mathbf{A}^{-}. To show that it is convex, consider $a \in \Xi^{-} \Pi \Gamma(X)$ and $u \in A$. There are $x_{1}, \ldots, x_{n} \in X$ and iterated conjugates $\gamma_{1}, \ldots, \gamma_{n}$ such that $\gamma_{1}\left(x_{1}\right) \cdots \gamma_{n}\left(x_{n}\right) \leq a \leq 1$. We have

$$
\prod \lambda_{u}\left(\gamma_{i}\left(x_{i}\right)\right) \leq \lambda_{u}\left(\prod \gamma_{i}\left(x_{i}\right)\right) \leq \lambda_{u}(a) \leq 1
$$

Idea for $n=2$:

$$
\begin{gathered}
\lambda_{u}\left(a_{1}\right) \lambda_{u}\left(a_{2}\right)=\left(u \backslash a_{1} u \wedge 1\right)\left(u \backslash a_{2} u \wedge 1\right) \leq\left(u \backslash a_{1} u\right)\left(u \backslash a_{2} u\right) \wedge 1 \\
\leq u \backslash a_{1} u\left(u \backslash a_{2} u\right) \wedge 1 \leq u \backslash a_{1} a_{2} u \wedge 1=\lambda_{u}\left(a_{1} a_{2}\right) .
\end{gathered}
$$

Also, $\lambda_{u}\left(\gamma_{i}\left(x_{i}\right)\right) \in \Gamma(X)$ and $\Pi \lambda_{u}\left(\gamma_{i}\left(x_{i}\right)\right) \in \Pi \Gamma(X)$, so

Outline
RL examples

Congruences

Subvariety lattice (atoms)

Size

We view $R L$ as the subvariety of R_{p} axiomatized by $0=1$.

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)
Size
BA and 2
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References

Size

We view $R L$ as the subvariety of $R L_{p}$ axiomatized by $0=1$.

The subvariety lattices of HA (Heyting algebras) and Br (Brouwerian algebras) are uncountable, hence so are $\boldsymbol{\Lambda}\left(R_{p}\right)$ and $\boldsymbol{\Lambda}(\mathrm{RL})$.

Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Size

BA and 2
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

Subvariety lattice (joins)
\underline{L} Logic

Representation - Frames

Applications of frames

Size

We view $R L$ as the subvariety of $R L_{p}$ axiomatized by $0=1$.
The subvariety lattices of HA (Heyting algebras) and Br (Brouwerian algebras) are uncountable, hence so are $\Lambda\left(R_{p}\right)$ and $\boldsymbol{\Lambda}(\mathrm{RL})$.

We will

- determine the size of the set of atoms in $\Lambda\left(R L_{p}\right)$.
- outline a method for finding axiomatizations of certain varieties
- give a description of joins in $\Lambda\left(R L_{p}\right)$.

Outline
RL examples

Congruences

Subvariety lattice (atoms)

Size

BA and 2

BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

BA and 2

The variety BA of Boolean algebras is generated by the 2-element algebra 2. $\mathrm{BA}=\mathrm{HSP}(2)=\mathrm{V}(2)$.

BA and 2

The variety BA of Boolean algebras is generated by the 2-element algebra 2. $\mathrm{BA}=\mathrm{HSP}(\mathbf{2})=\mathrm{V}(\mathbf{2})$.

H: homomorphic images
S: subalgebras
P : direct products
$\mathrm{V}=\mathrm{HSP}$

BA and 2

The variety BA of Boolean algebras is generated by the 2-element algebra 2. $\mathrm{BA}=\mathrm{HSP}(\mathbf{2})=\mathrm{V}(\mathbf{2})$.

H: homomorphic images
S: subalgebras
P : direct products
$\mathrm{V}=\mathrm{HSP}$
Proof idea: Use the prime ideal-filter theorem for distributive lattices to show that every Boolean algebra is a subdirect product of copies of 2 .

BA and 2

The variety BA of Boolean algebras is generated by the 2-element algebra 2. $\mathrm{BA}=\mathrm{HSP}(\mathbf{2})=\mathrm{V}(\mathbf{2})$.

H: homomorphic images
S: subalgebras
P : direct products
$\mathrm{V}=\mathrm{HSP}$
Proof idea: Use the prime ideal-filter theorem for distributive lattices to show that every Boolean algebra is a subdirect product of copies of 2 .

Subdirect product: A subalgebra of a product such that all projections are onto.

BA and 2

The variety BA of Boolean algebras is generated by the 2-element algebra 2. $\mathrm{BA}=\mathrm{HSP}(\mathbf{2})=\mathrm{V}(\mathbf{2})$.

H: homomorphic images
S: subalgebras
P : direct products
$V=H S P$
Proof idea: Use the prime ideal-filter theorem for distributive lattices to show that every Boolean algebra is a subdirect product of copies of 2 .

Subdirect product: A subalgebra of a product such that all

Subdirectly irreducible: non-trivial and
■ it cannot be written as a subdirect product of a family that does not contain it.

- Alt. its congruence lattice is $\Delta \cup \uparrow \mu$.

BA: an atom

The variety $B A$ is an atom in the lattice of subvarieties of $p R L$.
Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)
Size
BA and 2

BA: an atom

Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References

BA: an atom

The variety BA is an atom in the lattice of subvarieties of $p R L$.
pRL is a congruence distributive variety (RL's have lattice reducts) so Jònsson's Lemma applies:

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)
Size
BA and 2

BA: an atom

Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

BA: an atom

The variety $B A$ is an atom in the lattice of subvarieties of $p R L$.
pRL is a congruence distributive variety (RL's have lattice reducts) so Jònsson's Lemma applies:
Given a class $\mathcal{K} \subseteq R_{p}$, the subdirectly irreducible algebras $\mathrm{V}(\mathcal{K})_{S I}$ in the variety generated by \mathcal{K} are in $\mathrm{HSP}_{\mathrm{U}}(\mathcal{K})$.

Outline

BA: an atom

The variety $B A$ is an atom in the lattice of subvarieties of $p R L$.
pRL is a congruence distributive variety (RL's have lattice reducts) so Jònsson's Lemma applies:
Given a class $\mathcal{K} \subseteq \mathrm{RL}_{\mathrm{p}}$, the subdirectly irreducible algebras $\mathrm{V}(\mathcal{K})_{S I}$ in the variety generated by \mathcal{K} are in $\mathrm{HSP}_{\mathrm{U}}(\mathcal{K})$.

An ultraproduct $\mathbf{A} \in \mathrm{P}_{\mathrm{U}}(\mathcal{K})$ is obtained by taking

- a product $\prod_{i \in I} A_{i}$ of $A_{i} \in \mathcal{K}$ and then

■ a quotient $\prod_{i \in I} A_{i} / \cong_{U}$ by an ultrafilter U over I (maximal filter on $\mathcal{P}(U)$):

Title
Outline

RL examples

```
Congruences
```

Subvariety lattice (atoms)
Size
BA and 2

BA: an atom

Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

BA: an atom

The variety $B A$ is an atom in the lattice of subvarieties of $p R L$.
pRL is a congruence distributive variety (RL's have lattice reducts) so Jònsson's Lemma applies:
Given a class $\mathcal{K} \subseteq \mathrm{RL}_{\mathrm{p}}$, the subdirectly irreducible algebras $\mathrm{V}(\mathcal{K})_{S I}$ in the variety generated by \mathcal{K} are in $\mathrm{HSP}_{\mathrm{U}}(\mathcal{K})$.

An ultraproduct $\mathbf{A} \in \mathrm{P}_{\mathrm{U}}(\mathcal{K})$ is obtained by taking

- a product $\prod_{i \in I} A_{i}$ of $A_{i} \in \mathcal{K}$ and then

■ a quotient $\prod_{i \in I} A_{i} / \cong_{U}$ by an ultrafilter U over I (maximal filter on $\mathcal{P}(U)$):

$$
\text { for } \bar{a}, \bar{b} \in \prod_{i \in I} A_{i}, \bar{a} \cong_{U} \bar{b} \text { iff }\left\{i \in I: a_{i}=b_{i}\right\} \in U
$$

BA: an atom

The variety $B A$ is an atom in the lattice of subvarieties of $p R L$.
pRL is a congruence distributive variety (RL's have lattice reducts) so Jònsson's Lemma applies:
Given a class $\mathcal{K} \subseteq \mathrm{RL}_{\mathrm{p}}$, the subdirectly irreducible algebras $\mathrm{V}(\mathcal{K})_{S I}$ in the variety generated by \mathcal{K} are in $\mathrm{HSP}_{\mathrm{U}}(\mathcal{K})$.

An ultraproduct $\mathbf{A} \in \mathrm{P}_{\mathrm{U}}(\mathcal{K})$ is obtained by taking

- a product $\prod_{i \in I} A_{i}$ of $A_{i} \in \mathcal{K}$ and then

■ a quotient $\prod_{i \in I} A_{i} / \cong_{U}$ by an ultrafilter U over I (maximal filter on $\mathcal{P}(U)$):

$$
\text { for } \bar{a}, \bar{b} \in \prod_{i \in I} A_{i}, \bar{a} \cong_{U} \bar{b} \text { iff }\left\{i \in I: a_{i}=b_{i}\right\} \in U .
$$

Outline

Now, $\operatorname{HSP}(\mathbf{2})=\{\mathbf{2}, \mathbf{1}\}$, hence $(\mathrm{V}(\mathbf{2}))_{S I}=\{\mathbf{2}\}$.
Recall that $\mathcal{V}=\mathrm{V}\left(\mathcal{V}_{S I}\right)$.

Fin. gen. atoms

We define $\top u=u \top=u$.
Note that \mathbf{T}_{n} is strictly simple (has no non-trivial subalgebras or homomorphic images).

So, $\mathrm{V}\left(\mathbf{T}_{n}\right)$ is an atom of $\boldsymbol{\Lambda}(\mathrm{RL})$.

Moreover, all these atoms are distinct and $\boldsymbol{\Lambda}(\mathrm{RL})$ has at least denumerably many atoms.

Cancellative atoms

Left cancellativity ($a b=a c \Rightarrow b=c$) can be written equationally: $x \backslash(x y)=y$. Right cancellativity is $(y x) / x=y$. CanRL denotes the variety of cancellative RL's.

Title

Outline

RL examples

Congruences

Cancellative atoms

Left cancellativity ($a b=a c \Rightarrow b=c$) can be written equationally: $x \backslash(x y)=y$. Right cancellativity is $(y x) / x=y$. CanRL denotes the variety of cancellative RL's.
Prop. There are only 2 cancellative atoms: $\mathrm{V}(\mathbb{Z})$ and $\mathrm{V}\left(\mathbb{Z}^{-}\right)$.

Title

Outline

RL examples

```
Congruences
```


Cancellative atoms

Left cancellativity $(a b=a c \Rightarrow b=c)$ can be written equationally: $x \backslash(x y)=y$. Right cancellativity is $(y x) / x=y$. CanRL denotes the variety of cancellative RL's.

Prop. There are only 2 cancellative atoms: $\mathrm{V}(\mathbb{Z})$ and $\mathrm{V}\left(\mathbb{Z}^{-}\right)$.

Title

Outline

RL examples

Congruences

The negative cone of a $\mathrm{RL} \mathbf{A}=(A, \wedge, \vee, \cdot, \backslash, /, 1)$ is the RL $\mathbf{A}^{-}=\left(A^{-}, \wedge, \vee, \cdot, \backslash \mathbf{A}^{-}, / \mathbf{A}^{-}, 1\right)$, where $A^{-}=\{a \in A: a \leq 1\}$, $a \backslash^{\mathbf{A}^{-}} b=(a \backslash b) \wedge 1$ and $b / \mathbf{A}^{-} a=(b / a) \wedge 1$.

Cancellative atoms

Left cancellativity $(a b=a c \Rightarrow b=c)$ can be written equationally: $x \backslash(x y)=y$. Right cancellativity is $(y x) / x=y$. CanRL denotes the variety of cancellative RL's.

Prop. There are only 2 cancellative atoms: $\mathrm{V}(\mathbb{Z})$ and $\mathrm{V}\left(\mathbb{Z}^{-}\right)$.
Let $\mathbf{L} \in$ CanRL. For $a \leq 1$, we have $1 \leq 1 / a$.
Claim: If $\exists a<1$ with $1 / a=1$, then $\operatorname{Sg}(a) \cong \mathbb{Z}^{-}$.
Since $a<1$, we get $a^{n+1}<a^{n}$, for all $n \in \mathbb{N}$, by order preservation and cancellativity. Moreover, $a^{k+m} / a^{m}=a^{k}$ and $a^{m} / a^{m+k}=1$, for all $m, k \in \mathbb{N}$.
Claim: If for all $x<1$, we have $1<1 / x$, then \mathbf{L} is an ℓ-group.
For $a \in L$ set $x=(1 / a) a$. Note that $x \leq 1$, and if $x<1$, then $1 / x=1 /(1 / a) a=(1 / a) /(1 / a)=1$, cancellativity; so $x=1$.
The negative cone of a $\operatorname{RL} \mathbf{A}=(A, \wedge, \vee, \cdot, \backslash, /, 1)$ is the RL $\mathbf{A}^{-}=\left(A^{-}, \wedge, \vee, \cdot, \backslash \mathbf{A}^{-}, / \mathbf{A}^{-}, 1\right)$, where $A^{-}=\{a \in A: a \leq 1\}$,
$a \backslash^{\mathbf{A}^{-}} b=(a \backslash b) \wedge 1$ and $b / \mathbf{A}^{-} a=(b / a) \wedge 1$.

Idempotent rep. atoms

For $S \subseteq \mathbb{Z}$, we define $a_{i} b_{i}=a_{i}$, if $i \in S$ and $a_{i} b_{i}=b_{i}$, if $i \notin S$.

Although, we may have
■ $S \neq T$, but $\mathbf{N}_{S} \cong \mathbf{N}_{T}$

- $\mathbf{N}_{S} \not \approx \mathbf{N}_{T}$, but $\mathrm{V}\left(\mathbf{N}_{S}\right)=\mathrm{V}\left(\mathbf{N}_{T}\right)$
- $\mathrm{V}\left(\mathbf{N}_{S}\right)$ is not an atom
we can prove that there are continuum many atoms $\mathrm{V}\left(\mathbf{N}_{S}\right)$.

Subvariety lattice (joins)

Title
Outline

RL examples

Congruences

Representable RL's

A residuated lattice is called representable (or semi-linear) if it is a subdirect product of totally ordered RL's. RRL denotes the class of representable RL's.

Title
Outline

RL examples

Congruences

FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications

```
Logic
```


Representable RL's

A residuated lattice is called representable (or semi-linear) if it is a subdirect product of totally ordered RL's. RRL denotes the class of representable RL's.

Recall that a totally ordered RL satisfies the first-order formula $(\forall x, y)(x \leq y$ or $y \leq x)[(\forall x, y)(1 \leq x \backslash y$ or $1 \leq y \backslash x)]$

Representable RL's

A residuated lattice is called representable (or semi-linear) if it is a subdirect product of totally ordered RL's. RRL denotes the class of representable RL's.

Recall that a totally ordered RL satisfies the first-order formula $(\forall x, y)(x \leq y$ or $y \leq x)[(\forall x, y)(1 \leq x \backslash y$ or $1 \leq y \backslash x)]$

Representable Heyting algebras form a variety axiomatized by $1=(x \rightarrow y) \vee(y \rightarrow x)$.

Representable RL's

A residuated lattice is called representable (or semi-linear) if it is a subdirect product of totally ordered RL's. RRL denotes the class of representable RL's.

Recall that a totally ordered RL satisfies the first-order formula $(\forall x, y)(x \leq y$ or $y \leq x)[(\forall x, y)(1 \leq x \backslash y$ or $1 \leq y \backslash x)]$

Representable Heyting algebras form a variety axiomatized by $1=(x \rightarrow y) \vee(y \rightarrow x)$.
Representable commutative RL's form a variety axiomatized by $1=(x \rightarrow y)_{\wedge 1} \vee(y \rightarrow x)_{\wedge 1}$.

Representable RL's

A residuated lattice is called representable (or semi-linear) if it is a subdirect product of totally ordered RL's. RRL denotes the class of representable RL's.

Recall that a totally ordered RL satisfies the first-order formula $(\forall x, y)(x \leq y$ or $y \leq x)[(\forall x, y)(1 \leq x \backslash y$ or $1 \leq y \backslash x)]$

Representable Heyting algebras form a variety axiomatized by $1=(x \rightarrow y) \vee(y \rightarrow x)$.
Representable commutative RL's form a variety axiomatized by $1=(x \rightarrow y)_{\wedge 1} \vee(y \rightarrow x)_{\wedge 1}$.
RRL is a variety axiomatized by $1=\gamma_{1}(x \backslash y) \vee \gamma_{2}(y \backslash x)$.
Goal: Given a class \mathcal{K} of RL's axiomatized by a set of positive universal first-order formulas (PUF's), provide an axiomatization for $\mathrm{V}(\mathcal{K})$.

Joins

The meet of two varieties in $\Lambda\left(R L_{p}\right)$ is their intersection.
Also, if \mathcal{V}_{1} is axiomatized by E_{1} and \mathcal{V}_{2} by E_{2}, then $\mathcal{V}_{1} \wedge \mathcal{V}_{2}$ is axiomatized by $E_{1} \cup E_{2}$.

Outline

RL examples

```
Congruences
```

FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications
Logic
$\underline{\text { Representation - Frames }}$
Applications of frames
Undecidability

Joins

The meet of two varieties in $\Lambda\left(R L_{p}\right)$ is their intersection. Also, if \mathcal{V}_{1} is axiomatized by E_{1} and \mathcal{V}_{2} by E_{2}, then $\mathcal{V}_{1} \wedge \mathcal{V}_{2}$ is axiomatized by $E_{1} \cup E_{2}$.
On the other hand, the join of two varieties is the variety generated by their union.
Also, if \mathcal{V}_{1} is axiomatized by E_{1} and \mathcal{V}_{2} by E_{2}, then $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ may not be axiomatized by $E_{1} \cap E_{2}$.

Outline

Joins

The meet of two varieties in $\Lambda\left(R L_{p}\right)$ is their intersection. Also, if \mathcal{V}_{1} is axiomatized by E_{1} and \mathcal{V}_{2} by E_{2}, then $\mathcal{V}_{1} \wedge \mathcal{V}_{2}$ is axiomatized by $E_{1} \cup E_{2}$.
On the other hand, the join of two varieties is the variety generated by their union.
Also, if \mathcal{V}_{1} is axiomatized by E_{1} and \mathcal{V}_{2} by E_{2}, then $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ may not be axiomatized by $E_{1} \cap E_{2}$.

Goals
$■$ Find an axiomatization of $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ in terms of E_{1} and E_{2}.
Outline

Joins

The meet of two varieties in $\Lambda\left(R L_{p}\right)$ is their intersection. Also, if \mathcal{V}_{1} is axiomatized by E_{1} and \mathcal{V}_{2} by E_{2}, then $\mathcal{V}_{1} \wedge \mathcal{V}_{2}$ is axiomatized by $E_{1} \cup E_{2}$.

On the other hand, the join of two varieties is the variety generated by their union.
Also, if \mathcal{V}_{1} is axiomatized by E_{1} and \mathcal{V}_{2} by E_{2}, then $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ may not be axiomatized by $E_{1} \cap E_{2}$.

Goals

\square Find an axiomatization of $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ in terms of E_{1} and E_{2}.
■ Find situations where: if E_{1} and E_{2} are finite, then $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ is finitely axiomatized.

- Find \mathcal{V} such that its finitely axiomatized subvarieties form a lattice.

Finite basis

If \mathcal{V} is a congruence distributive variety of finite type and $\mathcal{V}_{F S I}$ is strictly elementary, then \mathcal{V} is finitely axiomatized.

Finite basis

If \mathcal{V} is a congruence distributive variety of finite type and $\mathcal{V}_{F S I}$ is strictly elementary, then \mathcal{V} is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence. Finitely $\mathrm{SI}: \Delta$ is not the intersection of two non-trivial
Joins
Finite basis
FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications
Logic

Finite basis

If \mathcal{V} is a congruence distributive variety of finite type and $\mathcal{V}_{F S I}$ is strictly elementary, then \mathcal{V} is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence. Finitely $\mathrm{SI}: \Delta$ is not the intersection of two non-trivial congruences.

Cor. For every variety \mathcal{V} of RL's, if $\mathcal{V}_{F S I}$ is strictly elementary, then the finitely axiomatized subvarieties of \mathcal{V} form a lattice.
Pf. For finitely axiomatized subvarieties $\mathcal{V}_{1}, \mathcal{V}_{2}$,
$\left(\mathcal{V}_{1} \vee \mathcal{V}_{2}\right)_{F S I}=\left(\mathcal{V}_{1} \cup \mathcal{V}_{2}\right)_{F S I}$ is strictly elementary.

Finite basis

If \mathcal{V} is a congruence distributive variety of finite type and $\mathcal{V}_{F S I}$ is strictly elementary, then \mathcal{V} is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence. Finitely $\mathrm{SI}: \Delta$ is not the intersection of two non-trivial congruences.

Cor. For every variety \mathcal{V} of RL's, if $\mathcal{V}_{F S I}$ is strictly elementary, then the finitely axiomatized subvarieties of \mathcal{V} form a lattice.
Pf. For finitely axiomatized subvarieties $\mathcal{V}_{1}, \mathcal{V}_{2}$,
$\left(\mathcal{V}_{1} \vee \mathcal{V}_{2}\right)_{F S I}=\left(\mathcal{V}_{1} \cup \mathcal{V}_{2}\right)_{F S I}$ is strictly elementary.
Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be subvarieties of RL axiomatized by E_{1}, E_{2}, respectively, where E_{1}, E_{2} have no variables in common.

Finite basis

If \mathcal{V} is a congruence distributive variety of finite type and $\mathcal{V}_{F S I}$ is strictly elementary, then \mathcal{V} is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence. Finitely $\mathrm{SI}: \Delta$ is not the intersection of two non-trivial congruences.

Cor. For every variety \mathcal{V} of RL's, if $\mathcal{V}_{F S I}$ is strictly elementary, then the finitely axiomatized subvarieties of \mathcal{V} form a lattice.
Pf. For finitely axiomatized subvarieties $\mathcal{V}_{1}, \mathcal{V}_{2}$,
$\left(\mathcal{V}_{1} \vee \mathcal{V}_{2}\right)_{F S I}=\left(\mathcal{V}_{1} \cup \mathcal{V}_{2}\right)_{F S I}$ is strictly elementary.
Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be subvarieties of RL axiomatized by E_{1}, E_{2}, respectively, where E_{1}, E_{2} have no variables in common.

The class $\mathcal{V}_{1} \cup \mathcal{V}_{2}$ is axiomatized by the universal closure of (AND E_{1}) or (AND E_{2}), over infinitary logic, which is equivalent to the set $\left\{\forall \forall\left(\varepsilon_{1}\right.\right.$ or $\left.\left.\varepsilon_{2}\right): \varepsilon_{1} \in E_{1}, \varepsilon_{2} \in E_{2}\right\}$ of positive universal first-order formulas (PUFs).

In a RL, we say that 1 is weakly join irreducible, if for all negative a, b, whenever $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all all iterrated conjugates γ, γ^{\prime}, then $a=1$ or $b=1$.

Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)
Representable RL's
Joins
Finite basis

PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications

Logic

Representation - Frames

Applications of frames

Undecidability

References

In a RL, we say that 1 is weakly join irreducible, if for all negative a, b, whenever $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all all iterrated conjugates γ, γ^{\prime}, then $a=1$ or $b=1$.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

Title

Outline

```
Congruences
```


FSI

In a RL, we say that 1 is weakly join irreducible, if for all negative a, b, whenever $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all all iterrated conjugates γ, γ^{\prime}, then $a=1$ or $b=1$.

Thm. A RL is FSI iff 1 is weakly join-irreducible.
(\Leftarrow) Let F, G be CNS with $F \cap G=\{1\}$. For all $a \in F^{-}$and $b \in G^{-}, 1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates,

FSI

In a RL, we say that 1 is weakly join irreducible, if for all negative a, b, whenever $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all all iterrated conjugates γ, γ^{\prime}, then $a=1$ or $b=1$.

Thm. A RL is FSI iff 1 is weakly join-irreducible.
(\Leftarrow) Let F, G be CNS with $F \cap G=\{1\}$. For all $a \in F^{-}$and $b \in G^{-}, 1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates, because if $\gamma(a), \gamma^{\prime}(b) \leq u$, then $u \wedge 1 \in F \cap G=\{1\}$, so $1 \leq u$. Since 1 is weakly join-irreducible, $a=1$ or $b=1$.

Outline

Congruences

Subvariety lattice (atoms)

FSI

In a RL, we say that 1 is weakly join irreducible, if for all negative a, b, whenever $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all all iterrated conjugates γ, γ^{\prime}, then $a=1$ or $b=1$.

Thm. A RL is FSI iff 1 is weakly join-irreducible.
(\Leftarrow) Let F, G be CNS with $F \cap G=\{1\}$. For all $a \in F^{-}$and
$b \in G^{-}, 1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates, because if $\gamma(a), \gamma^{\prime}(b) \leq u$, then $u \wedge 1 \in F \cap G=\{1\}$, so $1 \leq u$. Since 1 is weakly join-irreducible, $a=1$ or $b=1$.
(\Rightarrow) Let a, b be negative elements and assume that $u \in C N S^{-}(a) \cap C N S^{-}(b)$.
$1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates,

FSI

In a RL, we say that 1 is weakly join irreducible, if for all negative a, b, whenever $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all all iterrated conjugates γ, γ^{\prime}, then $a=1$ or $b=1$.

Thm. A RL is FSI iff 1 is weakly join-irreducible.
(\Leftarrow) Let F, G be CNS with $F \cap G=\{1\}$. For all $a \in F^{-}$and
$b \in G^{-}, 1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates, because if $\gamma(a), \gamma^{\prime}(b) \leq u$, then $u \wedge 1 \in F \cap G=\{1\}$, so $1 \leq u$. Since 1 is weakly join-irreducible, $a=1$ or $b=1$.
(\Rightarrow) Let a, b be negative elements and assume that $u \in C N S^{-}(a) \cap C N S^{-}(b)$. Then there exist products of iterated conjugates p, q of a, b, resp., such that $p, q \leq u$. If $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates,

FSI

In a RL, we say that 1 is weakly join irreducible, if for all negative a, b, whenever $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all all iterrated conjugates γ, γ^{\prime}, then $a=1$ or $b=1$.

Thm. A RL is FSI iff 1 is weakly join-irreducible.
(\Leftarrow) Let F, G be CNS with $F \cap G=\{1\}$. For all $a \in F^{-}$and
$b \in G^{-}, 1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates, because if $\gamma(a), \gamma^{\prime}(b) \leq u$, then $u \wedge 1 \in F \cap G=\{1\}$, so $1 \leq u$. Since 1 is weakly join-irreducible, $a=1$ or $b=1$.
(\Rightarrow) Let a, b be negative elements and assume that $u \in C N S^{-}(a) \cap C N S^{-}(b)$. Then there exist products of iterated conjugates p, q of a, b, resp., such that $p, q \leq u$. If $1=\gamma(a) \vee \gamma^{\prime}(b)$, for all iterated conjugates, then $1=p \vee q$. Thus, $u=1$ and $C N S^{-}(a) \cap C N S^{-}(b)=\{1\}$.
Since A is FSI, $C N S^{-}(a)=\{1\}$ or $C N S^{-}(b)=\{1\}$, hence $a=1$ of $b=1$.

PUF's

Every PUF is equivalent to (the universal closure of) a

 disjunction of conjunctions of equations.
PUF's

Every PUF is equivalent to (the universal closure of) a

 disjunction of conjunctions of equations.$s=t$ iff $(s \leq t$ and $t \leq s)$ iff $(1 \leq s \backslash t$ and $1 \leq t \backslash s)$.

PUF's

Every PUF is equivalent to (the universal closure of) a disjunction of conjunctions of equations.
$s=t$ iff $(s \leq t$ and $t \leq s)$ iff $(1 \leq s \backslash t$ and $1 \leq t \backslash s)$.
Every conjunction of equations $1 \leq p_{i}$ is equivalanent to the equation $1 \leq p_{1} \wedge \cdots \wedge p_{n}$.

PUF's

Every PUF is equivalent to (the universal closure of) a disjunction of conjunctions of equations.
$s=t$ iff $(s \leq t$ and $t \leq s)$ iff $(1 \leq s \backslash t$ and $1 \leq t \backslash s)$.
Every conjunction of equations $1 \leq p_{i}$ is equivalanent to the equation $1 \leq p_{1} \wedge \cdots \wedge p_{n}$.

So, every PUF is equivalent to a formula of the form

$$
\alpha=\forall \bar{x}\left(1 \leq r_{1} \text { or } \cdots \text { or } 1 \leq r_{k}\right)
$$

Outline

PUF's

Every PUF is equivalent to (the universal closure of) a disjunction of conjunctions of equations.
$s=t$ iff $(s \leq t$ and $t \leq s)$ iff $(1 \leq s \backslash t$ and $1 \leq t \backslash s)$.
Every conjunction of equations $1 \leq p_{i}$ is equivalanent to the equation $1 \leq p_{1} \wedge \cdots \wedge p_{n}$.

So, every PUF is equivalent to a formula of the form

$$
\begin{gathered}
\alpha=\forall \bar{x}\left(1 \leq r_{1} \text { or } \cdots \text { or } 1 \leq r_{k}\right) \\
\text { Let } \widetilde{\alpha}_{0} \text { be }\left(r_{1}\right)_{\wedge 1} \vee \cdots \vee\left(r_{k}\right)_{\wedge 1}=1 .
\end{gathered}
$$

Outline

PUF's

Every PUF is equivalent to (the universal closure of) a disjunction of conjunctions of equations.
$s=t$ iff $(s \leq t$ and $t \leq s)$ iff $(1 \leq s \backslash t$ and $1 \leq t \backslash s)$.
Every conjunction of equations $1 \leq p_{i}$ is equivalanent to the equation $1 \leq p_{1} \wedge \cdots \wedge p_{n}$.

So, every PUF is equivalent to a formula of the form

$$
\begin{gathered}
\alpha=\forall \bar{x}\left(1 \leq r_{1} \text { or } \cdots \text { or } 1 \leq r_{k}\right) \\
\text { Let } \widetilde{\alpha}_{0} \text { be }\left(r_{1}\right)_{\wedge 1} \vee \cdots \vee\left(r_{k}\right)_{\wedge 1}=1 .
\end{gathered}
$$

Also, for $m>0$ and \aleph_{0} fresh variables Y, we define $\widetilde{\alpha}_{m}$ as the set of all equations of the form

$$
\gamma_{1} \vee \cdots \vee \gamma_{k}=1
$$

where $\gamma_{i} \in \Gamma_{Y}^{m}\left(r_{i}\right)$ for each $i \in\{1, \ldots, k\}$. Set $\widetilde{\alpha}=\bigcup_{n \in \omega} \widetilde{\alpha}_{n}$.

PUF and equations

Thm. For a PUF α and a FSI RL $\mathbf{A}, \mathbf{A} \models \alpha$ iff $\mathbf{A} \models \widetilde{\alpha}$.

$$
\begin{aligned}
& \alpha=\forall \bar{x}\left(1 \leq r_{1} \text { or } \cdots \text { or } 1 \leq r_{k}\right) \\
& \widetilde{\alpha}=\left\{\gamma_{1} \vee \cdots \vee \gamma_{k}=1 \mid \gamma_{i} \in \Gamma_{Y}\left(r_{i}\right)\right\}
\end{aligned}
$$

Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

PUF and equations

Thm. For a PUF α and a FSI RL $\mathbf{A}, \mathbf{A} \models \alpha$ iff $\mathbf{A} \models \widetilde{\alpha}$.
Pf. (\Rightarrow) If \bar{a} are elements in A, then $1 \leq r_{i}(\bar{a})$ for some i. So, $\gamma\left(r_{i}(\bar{a})_{\wedge 1}\right)=1$, for all γ; hence, $\gamma_{1}\left(r_{1}(\bar{a})_{\wedge 1}\right) \vee \cdots \vee \gamma_{k}\left(r_{k}(\bar{a})_{\wedge 1}\right)=1$.

$$
\begin{aligned}
& \alpha=\forall \bar{x}\left(1 \leq r_{1} \text { or } \cdots \text { or } 1 \leq r_{k}\right) \\
& \widetilde{\alpha}=\left\{\gamma_{1} \vee \cdots \vee \gamma_{k}=1 \mid \gamma_{i} \in \Gamma_{Y}\left(r_{i}\right)\right\}
\end{aligned}
$$

Outline

PUF and equations

Thm. For a PUF α and a FSI RL $\mathbf{A}, \mathbf{A} \models \alpha$ iff $\mathbf{A} \models \widetilde{\alpha}$.
Pf. (\Rightarrow) If \bar{a} are elements in A, then $1 \leq r_{i}(\bar{a})$ for some i.
So, $\gamma\left(r_{i}(\bar{a})_{\wedge 1}\right)=1$, for all γ; hence,
$\gamma_{1}\left(r_{1}(\bar{a})_{\wedge 1}\right) \vee \cdots \vee \gamma_{k}\left(r_{k}(\bar{a})_{\wedge 1}\right)=1$.
(\Leftarrow) We have $1=\gamma_{1}\left(r_{1}(\bar{a})_{\wedge 1}\right) \vee \cdots \vee \gamma_{k}\left(r_{k}(\bar{a})_{\wedge 1}\right)$, for all γ_{i}.
Since \mathbf{A} is $\mathrm{FSI}, 1$ is weakly join irreducible, so $r_{i}(\bar{a})_{\wedge 1}=1$, for some i; i.e., $r_{i}(\bar{a}) \leq 1$.

$$
\begin{aligned}
& \alpha=\forall \bar{x}\left(1 \leq r_{1} \text { or } \cdots \text { or } 1 \leq r_{k}\right) \\
& \widetilde{\alpha}=\left\{\gamma_{1} \vee \cdots \vee \gamma_{k}=1 \mid \gamma_{i} \in \Gamma_{Y}\left(r_{i}\right)\right\}
\end{aligned}
$$

Axiomatization

Thm. Let \mathcal{K} be a class of RLs axiomatixed by a set Ψ of PUF. Then $V(\mathcal{K})$ is axiomatized, relative to $R L$, by $\widetilde{\Psi}$.

Congruences

Axiomatization

Thm. Let \mathcal{K} be a class of RLs axiomatixed by a set Ψ of PUF. Then $V(\mathcal{K})$ is axiomatized, relative to $R L$, by $\widetilde{\Psi}$.

Pf. Let $\mathbf{A} \in \mathrm{RL}_{S_{I}}$. By congruence distributivity and Jónsson's Lemma, $\mathbf{A} \in \mathrm{V}(\mathcal{K})$ iff $\mathbf{A} \in \mathrm{HSP}_{\mathrm{U}}(\mathcal{K})$. Furthermore, as PUFs are preserved under H, S and $\mathrm{P}_{\mathrm{U}}, \mathbf{A} \in \operatorname{HSP}_{\cup}(\mathcal{K})$ iff $\mathbf{A} \in \mathcal{K}$. Finally, $\mathbf{A} \in \mathcal{K}$ iff $\mathbf{A} \models \Psi$ iff $\mathbf{A} \models \widetilde{\Psi}$.

Axiomatization

Thm. Let \mathcal{K} be a class of RLs axiomatixed by a set Ψ of PUF. Then $\vee(\mathcal{K})$ is axiomatized, relative to $R L$, by $\widetilde{\Psi}$.

Pf. Let $\mathbf{A} \in \mathrm{RL}_{S I}$. By congruence distributivity and Jónsson's Lemma, $\mathbf{A} \in \mathrm{V}(\mathcal{K})$ iff $\mathbf{A} \in \mathrm{HSP}_{\mathrm{U}}(\mathcal{K})$. Furthermore, as PUFs are preserved under H, S and $\mathrm{P}_{\mathrm{U}}, \mathbf{A} \in \operatorname{HSP}_{\cup}(\mathcal{K})$ iff $\mathbf{A} \in \mathcal{K}$. Finally, $\mathbf{A} \in \mathcal{K}$ iff $\mathbf{A} \models \Psi$ iff $\mathbf{A} \models \widetilde{\Psi}$.

Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be subvarieties of RL axiomatized by E_{1}, E_{2}, respectively, where E_{1}, E_{2} have no variables in common. The class $\mathcal{V}_{1} \cup \mathcal{V}_{2}$ is axiomatized by the set of PUFs $\Psi=\left\{\forall \forall\left(1 \leq r_{1}\right.\right.$ or $\left.\left.1 \leq r_{2}\right) \mid\left(1 \leq r_{1}\right) \in E_{1},\left(1 \leq r_{2}\right) \in E_{2}\right\}$.

Axiomatization

Thm. Let \mathcal{K} be a class of RLs axiomatixed by a set Ψ of PUF. Then $\vee(\mathcal{K})$ is axiomatized, relative to $R L$, by $\widetilde{\Psi}$.

Pf. Let $\mathbf{A} \in \mathrm{RL}_{S_{I}}$. By congruence distributivity and Jónsson's Lemma, $\mathbf{A} \in \mathrm{V}(\mathcal{K})$ iff $\mathbf{A} \in \mathrm{HSP}_{\mathrm{U}}(\mathcal{K})$. Furthermore, as PUFs are preserved under H, S and $\mathrm{P}_{\mathrm{U}}, \mathbf{A} \in \operatorname{HSP}_{\mathrm{U}}(\mathcal{K})$ iff $\mathbf{A} \in \mathcal{K}$. Finally, $\mathbf{A} \in \mathcal{K}$ iff $\mathbf{A} \models \Psi$ iff $\mathbf{A} \models \widetilde{\Psi}$.

Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be subvarieties of RL axiomatized by E_{1}, E_{2}, respectively, where E_{1}, E_{2} have no variables in common. The class $\mathcal{V}_{1} \cup \mathcal{V}_{2}$ is axiomatized by the set of PUFs $\Psi=\left\{\forall \forall\left(1 \leq r_{1}\right.\right.$ or $\left.\left.1 \leq r_{2}\right) \mid\left(1 \leq r_{1}\right) \in E_{1},\left(1 \leq r_{2}\right) \in E_{2}\right\}$.

Thm. $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ is axiomatized by
$\widetilde{\Psi}=\left\{\gamma_{1}\left(r_{1}\right) \vee \gamma_{2}\left(r_{2}\right)=1 \mid\left(1 \leq r_{1}\right) \in E_{1},\left(1 \leq r_{2}\right) \in E_{2}, \gamma_{i} \in \Gamma\right\}$

RRL

Thm. The variety RRL generated by all totally ordered residuated lattices is axiomatized by the 4-variable identity $\lambda_{z}((x \vee y) \backslash x) \vee \rho_{w}((x \vee y) \backslash y)=1$.
FSI
PUF's
PUF and equations

RRL

Thm. The variety RRL generated by all totally ordered residuated lattices is axiomatized by the 4-variable identity $\lambda_{z}((x \vee y) \backslash x) \vee \rho_{w}((x \vee y) \backslash y)=1$.

Pf. A RL is a chain iff it satisfies $\forall x, y(x \leq y$ or $y \leq x)$, or

$$
\forall x, y(1 \leq(x \vee y) \backslash x \text { or } 1 \leq(x \vee y) \backslash y)
$$

Thus, RRL is axiomatized by the identities

$$
\begin{equation*}
1=\gamma_{1}((x \vee y) \backslash x) \vee \gamma_{2}((x \vee y) \backslash y) ; \gamma_{1}, \gamma_{2} \in \Gamma \tag{Г}
\end{equation*}
$$

RRL

Thm. The variety RRL generated by all totally ordered residuated lattices is axiomatized by the 4-variable identity $\lambda_{z}((x \vee y) \backslash x) \vee \rho_{w}((x \vee y) \backslash y)=1$.

Pf. A RL is a chain iff it satisfies $\forall x, y(x \leq y$ or $y \leq x)$, or

$$
\forall x, y(1 \leq(x \vee y) \backslash x \text { or } 1 \leq(x \vee y) \backslash y)
$$

Thus, RRL is axiomatized by the identities

$$
\begin{equation*}
1=\gamma_{1}((x \vee y) \backslash x) \vee \gamma_{2}((x \vee y) \backslash y) ; \gamma_{1}, \gamma_{2} \in \Gamma \tag{Г}
\end{equation*}
$$

So, RRL satisfies the identity

$$
\lambda_{z}((x \vee y) \backslash x) \vee \rho_{w}((x \vee y) \backslash y)=1
$$

$$
(\lambda, \rho)
$$

RRL

Thm. The variety RRL generated by all totally ordered residuated lattices is axiomatized by the 4-variable identity $\lambda_{z}((x \vee y) \backslash x) \vee \rho_{w}((x \vee y) \backslash y)=1$.

Pf. A RL is a chain iff it satisfies $\forall x, y(x \leq y$ or $y \leq x)$, or

$$
\forall x, y(1 \leq(x \vee y) \backslash x \text { or } 1 \leq(x \vee y) \backslash y)
$$

Thus, RRL is axiomatized by the identities

$$
\begin{equation*}
1=\gamma_{1}((x \vee y) \backslash x) \vee \gamma_{2}((x \vee y) \backslash y) ; \gamma_{1}, \gamma_{2} \in \Gamma \tag{Г}
\end{equation*}
$$

So, RRL satisfies the identity

$$
\lambda_{z}((x \vee y) \backslash x) \vee \rho_{w}((x \vee y) \backslash y)=1
$$

Conversely, the variety axiomatized by this identity satisfies

$$
x \vee y=1 \Rightarrow \lambda_{z}(x) \vee y=1 \quad x \vee y=1 \Rightarrow x \vee \rho_{w}(y)=1 \text {. (imp) }
$$

By repeated applications of (imp) on (λ, ρ), we get (Γ).

Finite axiomatization

$$
\begin{aligned}
& \text { Let } \beta=\forall x_{1} \forall x_{2}\left(1 \leq x_{1} \text { or } 1 \leq x_{2}\right) \text { and set } B_{m} \Rightarrow B_{m+1}= \\
& \qquad \forall x_{1} \forall x_{2}\left[\left(\forall \bar{y} \forall z \text { AND } \widetilde{\beta}_{m}\right) \Longrightarrow\left(\forall \bar{y} \forall z \text { AND } \widetilde{\beta}_{m+1}\right)\right]
\end{aligned}
$$

Title
Outline

RL examples

Congruences

Finite axiomatization

$$
\begin{aligned}
& \text { Let } \beta=\forall x_{1} \forall x_{2}\left(1 \leq x_{1} \text { or } 1 \leq x_{2}\right) \text { and set } B_{m} \Rightarrow B_{m+1}= \\
& \qquad \forall x_{1} \forall x_{2}\left[\left(\forall \bar{y} \forall z \text { AND } \widetilde{\beta}_{m}\right) \Longrightarrow\left(\forall \bar{y} \forall z \text { AND } \widetilde{\beta}_{m+1}\right)\right]
\end{aligned}
$$

Thm. Let \mathcal{V}_{1} and \mathcal{V}_{2} be two varieties of RLs that satisfy $B_{m} \Rightarrow B_{m+1}$. Then

1. $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ is axiomatized by $\widetilde{\Psi}_{m}+$ a finite set of equations.
2. If \mathcal{V}_{1} and \mathcal{V}_{2} are finitely axiomatized then so is $\mathcal{V}_{1} \vee \mathcal{V}_{2}$

Outline

Finite axiomatization

Let $\beta=\forall x_{1} \forall x_{2}\left(1 \leq x_{1}\right.$ or $\left.1 \leq x_{2}\right)$ and set $B_{m} \Rightarrow B_{m+1}=$

$$
\forall x_{1} \forall x_{2}\left[\left(\forall \bar{y} \forall z \text { AND } \widetilde{\beta}_{m}\right) \Longrightarrow\left(\forall \bar{y} \forall z \text { AND } \widetilde{\beta}_{m+1}\right)\right]
$$

Thm. Let \mathcal{V}_{1} and \mathcal{V}_{2} be two varieties of RLs that satisfy $B_{m} \Rightarrow B_{m+1}$. Then

1. $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ is axiomatized by $\widetilde{\Psi}_{m}+$ a finite set of equations.
2. If \mathcal{V}_{1} and \mathcal{V}_{2} are finitely axiomatized then so is $\mathcal{V}_{1} \vee \mathcal{V}_{2}$

Pf. By congruence distributivity $\left(\mathcal{V}_{1} \vee \mathcal{V}_{2}\right)_{F S I} \subseteq \mathcal{V}_{1} \cup \mathcal{V}_{2}$, so $\left(\mathcal{V}_{1} \vee \mathcal{V}_{2}\right)_{F S I}$ satisfies $B_{m} \Rightarrow B_{m+1} . \mathcal{V}_{1} \vee \mathcal{V}_{2}$ also satisfies $B_{m} \Rightarrow B_{m+1}$, because the latter is a special Horn sentence (Lyndon) and is preserved under subdirect products.
By compactness of FOL, $B_{m} \Rightarrow B_{m+1}$ is a consequence of a finite set B of equations, valid in $\mathcal{V}_{1} \vee \mathcal{V}_{2}$.
Note that $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ is axiomatized by $\widetilde{\Psi}$ and, using

Outline
$B_{m} \Rightarrow B_{m+1}, \widetilde{\Psi}_{m}$ implies $\widetilde{\Psi}_{n}$ for all $n>m$.
Hence, $\mathcal{V}_{1} \vee \mathcal{V}_{2}$ is axiomatized by $\widetilde{\Psi}_{m} \cup B$.

Elementarity

Thm. For any variety \mathcal{V} of RLs, $\mathcal{V}_{F S I}$ is an elementary class
iff it satisfies $B_{m} \Rightarrow B_{m+1}$ for some m.

Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)
Representable RL's
Joins
Finite basis
FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications

Logic
$\underline{\text { Representation - Frames }}$
Applications of frames

Undecidability

References

Elementarity

Thm. For any variety \mathcal{V} of RLs, $\mathcal{V}_{F S I}$ is an elementary class iff it satisfies $B_{m} \Rightarrow B_{m+1}$ for some m.

Cor. For every variety \mathcal{V} of $R L s$, if $\mathcal{V}_{F S I}$ is elementary, then the finitely axiomatized subvarieties of \mathcal{V} form a lattice.

Applications

RRLs satisfy $B_{0} \Rightarrow B_{1}$.

$x \vee y=1 \Rightarrow \gamma_{1}(x) \vee \gamma_{2}(y)=1$, for all $\gamma_{1}, \gamma_{2} \in \Gamma_{Y}^{1}$.

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)
Representable RL's
Joins
Finite basis
FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications
Logic
$\underline{\text { Representation - Frames }}$
Applications of frames

Undecidability

References

Applications

RRLs satisfy $B_{0} \Rightarrow B_{1}$.
$x \vee y=1 \Rightarrow \gamma_{1}(x) \vee \gamma_{2}(y)=1$, for all $\gamma_{1}, \gamma_{2} \in \Gamma_{Y}^{1}$.
ℓ-groups satisfy $B_{1} \Rightarrow B_{2}$.
For $a \leq 1$, we have $\lambda_{z}\left(\lambda_{w}(a)\right)=\lambda_{w z}(a)$ and $\rho_{z}(a)=\lambda_{z^{-1}}(a)$.

Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

```
Subvariety lattice (joins)
Representable RL's
Joins
```

Finite basis
FSI
PUF's
PUF and equations
Axiomatization
RRL

Applications

RRLs satisfy $B_{0} \Rightarrow B_{1}$.
$x \vee y=1 \Rightarrow \gamma_{1}(x) \vee \gamma_{2}(y)=1$, for all $\gamma_{1}, \gamma_{2} \in \Gamma_{Y}^{1}$.
ℓ-groups satisfy $B_{1} \Rightarrow B_{2}$.
For $a \leq 1$, we have $\lambda_{z}\left(\lambda_{w}(a)\right)=\lambda_{w z}(a)$ and $\rho_{z}(a)=\lambda_{z^{-1}}(a)$.
Subcommutative RSs satisfy $B_{0} \Rightarrow B_{1}$.
k-subcommutative RSs are defined by $(x \wedge 1)^{k} y=y(x \wedge 1)^{k}$.

```
Congruences
```


Logic

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

A Hilbert system
Substructural logics
Algebraic semantics
Substructural logics (examples)
Substructural logics (examples)
PLDT
Applications to logic

Representation - Frames

Applications of frames

Undecidability

References

A Hilbert-style axiomatization

(MP) $\quad\{\phi, \phi \rightarrow \psi\} \vdash_{\mathbf{H L}_{\mathbf{e}}} \psi$
(B) $\vdash_{\mathbf{H L}_{\mathrm{e}}}(\phi \rightarrow \psi) \rightarrow[(\psi \rightarrow \chi) \rightarrow(\phi \rightarrow \chi)]$
(C) $\vdash_{\mathbf{H L}_{\mathbf{e}}}[\phi \rightarrow(\psi \rightarrow \chi)] \rightarrow[\psi \rightarrow(\phi \rightarrow \chi)]$
(I) $\vdash_{\mathrm{HL}_{\mathrm{e}}} \phi \rightarrow \phi$
(AD) $\{\phi, \psi\} \vdash_{\mathbf{H L}_{\mathbf{e}}} \phi \wedge \psi$
(CLa) $\vdash_{\mathrm{HL}_{\mathrm{e}}}(\phi \wedge \psi) \rightarrow \phi$
(CLb) $\vdash_{\mathrm{HL}_{\mathrm{e}}}(\phi \wedge \psi) \rightarrow \psi$
(CR) $\quad \vdash_{\mathbf{H L}_{\mathrm{e}}}[(\phi \rightarrow \psi) \wedge(\phi \rightarrow \chi)] \rightarrow[\phi \rightarrow(\psi \wedge \chi)]$
(DRa) $\vdash_{\mathrm{HL}_{\mathrm{e}}} \psi \rightarrow(\phi \vee \psi)$
(DRb) $\vdash_{\mathrm{HL}_{\mathrm{e}}} \psi \rightarrow(\phi \vee \psi)$
(DL) $\quad \vdash_{\mathbf{H L}_{\mathbf{e}}}((\phi \rightarrow \chi) \wedge(\psi \rightarrow \chi)) \rightarrow(\phi \vee \psi) \rightarrow \chi$
(PR) $\quad \vdash_{\mathrm{HL}_{\mathrm{e}}} \phi \rightarrow[\psi \rightarrow(\psi \cdot \phi)]$

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

A Hilbert system

Substructural logics

Algebraic semantics
Substructural logics (examples)
Substructural logics (examples) PLDT
Applications to logic

Representation - Frames
$(\mathrm{PL}) \quad \vdash_{\mathbf{H L}_{\mathrm{e}}}[\psi \rightarrow(\phi \rightarrow \chi)] \rightarrow[(\phi \cdot \psi) \rightarrow \chi]$
(U) $\vdash_{\mathrm{HL}_{\mathrm{e}}} 1$
(UP) $\quad \vdash_{\mathrm{HL}_{\mathrm{e}}} 1 \rightarrow(\phi \rightarrow \phi)$

Substructural logics

The system HL has the following inference rules:

$$
\frac{\phi \quad \phi \backslash \psi}{\psi}(\mathrm{mp}) \quad \frac{\phi \quad \psi}{\phi \wedge \psi}(\mathrm{adj}) \quad \frac{\phi}{\psi \backslash \phi \psi}(\mathrm{pn}) \quad \frac{\phi}{\psi \phi / \psi}(\mathrm{pn})
$$

Title

Outline

RL examples

Congruences

Substructural logics

The system HL has the following inference rules:

$$
\frac{\phi \quad \phi \backslash \psi}{\psi}(\mathrm{mp}) \quad \frac{\phi \quad \psi}{\phi \wedge \psi}(\mathrm{adj}) \quad \frac{\phi}{\psi \backslash \phi \psi}(\mathrm{pn}) \quad \frac{\phi}{\psi \phi / \psi}(\mathrm{pn})
$$

We write $\Phi \vdash_{\mathbf{H L}} \psi$, if the formula ψ is provable in HL from the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.
For example, $p, p \backslash q \nvdash$ HL r.

Outline

Substructural logics

The system HL has the following inference rules:

$$
\frac{\phi \quad \phi \backslash \psi}{\psi}(\mathrm{mp}) \quad \frac{\phi \psi}{\phi \wedge \psi}(\mathrm{adj}) \quad \frac{\phi}{\psi \backslash \phi \psi}(\mathrm{pn}) \quad \frac{\phi}{\psi \phi / \psi}(\mathrm{pn})
$$

We write $\Phi \vdash_{\mathbf{H L}} \psi$, if the formula ψ is provable in $\mathbf{H L}$ from the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.
For example, $p, p \backslash q \nvdash$ HL r.
A set of formulas is called a substructural logic if it is closed under $\vdash_{\text {HL }}$ and substitution.

Substructural logics

The system HL has the following inference rules:

$$
\frac{\phi \quad \phi \backslash \psi}{\psi}(\mathrm{mp}) \quad \frac{\phi \psi}{\phi \wedge \psi}(\mathrm{adj}) \quad \frac{\phi}{\psi \backslash \phi \psi}(\mathrm{pn}) \quad \frac{\phi}{\psi \phi / \psi}(\mathrm{pn})
$$

We write $\Phi \vdash_{\mathbf{H L}} \psi$, if the formula ψ is provable in HL from the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.
For example, $p, p \backslash q \nvdash$ HL r.
A set of formulas is called a substructural logic if it is closed under $\vdash_{\text {HL }}$ and substitution.

Substructural logics form a lattice SL.

Substructural logics

The system HL has the following inference rules:

$$
\frac{\phi \quad \phi \backslash \psi}{\psi}(\mathrm{mp}) \quad \frac{\phi \psi}{\phi \wedge \psi}(\mathrm{adj}) \quad \frac{\phi}{\psi \backslash \phi \psi}(\mathrm{pn}) \quad \frac{\phi}{\psi \phi / \psi}(\mathrm{pn})
$$

We write $\Phi \vdash_{\mathbf{H L}} \psi$, if the formula ψ is provable in HL from the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.
For example, $p, p \backslash q \not H_{\mathrm{HL}} r$.
A set of formulas is called a substructural logic if it is closed under $\vdash_{\text {HL }}$ and substitution.

Substructural logics form a lattice SL.
In the following we identify (propositional) formulas over $\{\wedge, \vee, \cdot, \backslash, /, 1\}$ with terms over the same signature.

Algebraic semantics

For a set of equations $E \cup\{s=t\}$, we write

$$
E \models_{\mathrm{RL}} s=t
$$

if for every residuated lattice $\mathbf{L} \in R L$ and for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{L}$,

$$
f(u)=f(v), \text { for all }(u=v) \in E \text {, implies } f(s)=f(t)
$$

Outline

RL examples

Congruences

Algebraic semantics

For a set of equations $E \cup\{s=t\}$, we write

$$
E \models_{\mathrm{RL}} s=t
$$

if for every residuated lattice $\mathbf{L} \in R L$ and for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{L}$,

$$
f(u)=f(v), \text { for all }(u=v) \in E \text {, implies } f(s)=f(t) .
$$

Theorem. The consequence relation $\vdash_{\text {HL }}$ is algebraizable, with RL as an equivalent algebraic semantics:

Algebraic semantics

For a set of equations $E \cup\{s=t\}$, we write

$$
E \models_{\mathrm{RL}} s=t
$$

if for every residuated lattice $\mathbf{L} \in R L$ and for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{L}$,

$$
f(u)=f(v), \text { for all }(u=v) \in E \text {, implies } f(s)=f(t) .
$$

Theorem. The consequence relation $\vdash_{\text {HL }}$ is algebraizable, with RL as an equivalent algebraic semantics:

1. if $\Phi \cup\{\psi\}$ is a set of formulas, then

$$
\Phi \vdash_{\mathrm{HL}} \psi \text { iff }\{1 \leq \phi \mid \phi \in \Phi\} \models_{\mathrm{RL}} 1 \leq \psi \text {, and }
$$

Algebraic semantics

For a set of equations $E \cup\{s=t\}$, we write

$$
E \models_{\mathrm{RL}} s=t
$$

if for every residuated lattice $\mathbf{L} \in \mathrm{RL}$ and for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{L}$,

$$
f(u)=f(v), \text { for all }(u=v) \in E \text {, implies } f(s)=f(t) .
$$

Theorem. The consequence relation \vdash_{HL} is algebraizable, with RL as an equivalent algebraic semantics:

1. if $\Phi \cup\{\psi\}$ is a set of formulas, then

$$
\Phi \vdash_{\mathrm{HL}} \psi \text { iff }\{1 \leq \phi \mid \phi \in \Phi\} \models_{\mathrm{RL}} 1 \leq \psi \text {, and }
$$

2. if $E \cup\{t=s\}$ is a set of equations, then

$$
E \models_{\mathrm{RL}} t=s \text { iff }\{u \backslash v \wedge v \backslash u \mid(u=v) \in E\} \vdash_{\mathbf{H L}} t \backslash s \wedge s \backslash t .
$$

Algebraic semantics

For a set of equations $E \cup\{s=t\}$, we write

$$
E \models_{\mathrm{RL}} s=t
$$

if for every residuated lattice $\mathbf{L} \in \mathrm{RL}$ and for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{L}$,

$$
f(u)=f(v), \text { for all }(u=v) \in E \text {, implies } f(s)=f(t) .
$$

Theorem. The consequence relation \vdash_{HL} is algebraizable, with RL as an equivalent algebraic semantics:

1. if $\Phi \cup\{\psi\}$ is a set of formulas, then

$$
\Phi \vdash_{\mathrm{HL}} \psi \text { iff }\{1 \leq \phi \mid \phi \in \Phi\} \models_{\mathrm{RL}} 1 \leq \psi \text {, and }
$$

2. if $E \cup\{t=s\}$ is a set of equations, then

$$
E \models_{\mathrm{RL}} t=s \text { iff }\{u \backslash v \wedge v \backslash u \mid(u=v) \in E\} \vdash_{\mathbf{H L}} t \backslash s \wedge s \backslash t .
$$

3. $s=t=\| \models_{\mathrm{RL}} 1 \leq t \backslash s \wedge s \backslash t$

Algebraic semantics

For a set of equations $E \cup\{s=t\}$, we write

$$
E \models_{\mathrm{RL}} s=t
$$

if for every residuated lattice $L \in R L$ and for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{L}$,

$$
f(u)=f(v), \text { for all }(u=v) \in E \text {, implies } f(s)=f(t) .
$$

Theorem. The consequence relation \vdash_{HL} is algebraizable, with RL as an equivalent algebraic semantics:

1. if $\Phi \cup\{\psi\}$ is a set of formulas, then

$$
\Phi \vdash_{\mathrm{HL}} \psi \text { iff }\{1 \leq \phi \mid \phi \in \Phi\} \models_{\mathrm{RL}} 1 \leq \psi \text {, and }
$$

2. if $E \cup\{t=s\}$ is a set of equations, then

$$
E \models_{\mathrm{RL}} t=s \text { iff }\{u \backslash v \wedge v \backslash u \mid(u=v) \in E\} \vdash_{\mathbf{H L}} t \backslash s \wedge s \backslash t .
$$

Outline
3. $s=t=\vDash \mathrm{RL} 1 \leq t \backslash s \wedge s \backslash t$
4. $\phi \vdash_{\mathbf{H L}} 1 \backslash(1 \wedge \phi) \wedge(\phi \wedge 1) \backslash 1$

Algebraic semantics

For a set of equations $E \cup\{s=t\}$, we write

$$
E \models_{\mathrm{RL}} s=t
$$

if for every residuated lattice $L \in R L$ and for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{L}$,

$$
f(u)=f(v), \text { for all }(u=v) \in E \text {, implies } f(s)=f(t) .
$$

Theorem. The consequence relation \vdash_{HL} is algebraizable, with RL as an equivalent algebraic semantics:

1. if $\Phi \cup\{\psi\}$ is a set of formulas, then

$$
\Phi \vdash_{\mathrm{HL}} \psi \text { iff }\{1 \leq \phi \mid \phi \in \Phi\} \models_{\mathrm{RL}} 1 \leq \psi \text {, and }
$$

2. if $E \cup\{t=s\}$ is a set of equations, then

$$
E \models_{\mathrm{RL}} t=s \text { iff }\{u \backslash v \wedge v \backslash u \mid(u=v) \in E\} \vdash_{\mathbf{H L}} t \backslash s \wedge s \backslash t .
$$

Outline
3. $s=t=\models_{\mathrm{RL}} 1 \leq t \backslash s \wedge s \backslash t$
4. $\phi \vdash_{\mathbf{H L}} 1 \backslash(1 \wedge \phi) \wedge(\phi \wedge 1) \backslash 1$

Theorem. SL and $\Lambda(R L)$ are dually isomorphic.

Substructural logics (examples)

Note that HL does not admit

$$
\begin{array}{lll}
\text { (C) } & {[x \rightarrow(y \rightarrow z)] \rightarrow[y \rightarrow(x \rightarrow z)]} & (x y=y x) \\
\text { (K) } & y \rightarrow(x \rightarrow y) & (x \leq 1) \\
\text { (W) } & {[x \rightarrow(x \rightarrow y)] \rightarrow(x \rightarrow y)} & \left(x \leq x^{2}\right)
\end{array}
$$

Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

A Hilbert system
Substructural logics
Algebraic semantics

Substructural logics (examples)

Note that HL does not admit

$$
\begin{array}{lll}
\text { (C) } & {[x \rightarrow(y \rightarrow z)] \rightarrow[y \rightarrow(x \rightarrow z)]} & (x y=y x) \\
\text { (K) } & y \rightarrow(x \rightarrow y) & (x \leq 1) \\
\text { (W) } & {[x \rightarrow(x \rightarrow y)] \rightarrow(x \rightarrow y)} & \left(x \leq x^{2}\right)
\end{array}
$$

Substructural logics (examples)

Relevance logic deals with relevance.
$p \rightarrow(q \rightarrow q)$ is not a theorem.
The algebraic models do not satisfy integrality $x \leq 1$.
$p \rightarrow(\neg p \rightarrow q)$ [or $(p \cdot \neg p) \rightarrow q$] is not a theorem, where
$\neg p=p \rightarrow 0$. The algebraic models do not satisfy $0 \leq x$.
Commutativity and distributivity are OK, so we get involutive $\mathcal{C D R} \mathcal{L}$ (they satisfy $\neg \neg x=x$).

Substructural logics (examples)

Relevance logic deals with relevance.
$p \rightarrow(q \rightarrow q)$ is not a theorem.
The algebraic models do not satisfy integrality $x \leq 1$.
$p \rightarrow(\neg p \rightarrow q)$ [or $(p \cdot \neg p) \rightarrow q$] is not a theorem, where
$\neg p=p \rightarrow 0$. The algebraic models do not satisfy $0 \leq x$.
Commutativity and distributivity are OK, so we get involutive $\mathcal{C D R} \mathcal{L}$ (they satisfy $\neg \neg x=x$).

Intuitionistic logic deals with provability or constructibility. The algebraic models are Heyting algebras.

Substructural logics (examples)

Relevance logic deals with relevance.
$p \rightarrow(q \rightarrow q)$ is not a theorem.
The algebraic models do not satisfy integrality $x \leq 1$.
$p \rightarrow(\neg p \rightarrow q)$ [or $(p \cdot \neg p) \rightarrow q$] is not a theorem, where $\neg p=p \rightarrow 0$. The algebraic models do not satisfy $0 \leq x$.

Commutativity and distributivity are OK, so we get involutive $\mathcal{C D} \mathcal{R} \mathcal{L}$ (they satisfy $\neg \neg x=x$).

Intuitionistic logic deals with provability or constructibility. The algebraic models are Heyting algebras.

Many-valued logic allows different degrees of truth.
$[(p \wedge q) \rightarrow r] \leftrightarrow[p \rightarrow(q \rightarrow r)]$ is not a theorem.
The algebraic models do not satisfy $x \wedge y=x \cdot y$.

Substructural logics (examples)

Relevance logic deals with relevance.
$p \rightarrow(q \rightarrow q)$ is not a theorem.
The algebraic models do not satisfy integrality $x \leq 1$.
$p \rightarrow(\neg p \rightarrow q)$ [or $(p \cdot \neg p) \rightarrow q$] is not a theorem, where $\neg p=p \rightarrow 0$. The algebraic models do not satisfy $0 \leq x$.
Commutativity and distributivity are OK, so we get involutive $\mathcal{C D} \mathcal{R} \mathcal{L}$ (they satisfy $\neg \neg x=x$).

Intuitionistic logic deals with provability or constructibility. The algebraic models are Heyting algebras.

Many-valued logic allows different degrees of truth.
$[(p \wedge q) \rightarrow r] \leftrightarrow[p \rightarrow(q \rightarrow r)]$ is not a theorem.
The algebraic models do not satisfy $x \wedge y=x \cdot y$.

Linear logic is resourse sensitive. $p \rightarrow(p \rightarrow p)$ [or $(p \cdot p) \rightarrow p]$ and $p \rightarrow(p \cdot p)$ are not theorems.
The algebraic models do not satisfy contraction $x \leq x^{2}$.

The deduction theorem for CPL states:

$$
\Sigma, \psi \vdash_{C P L} \phi \quad \text { iff } \quad \Sigma \vdash_{C P L} \psi \rightarrow \phi
$$

PLDT

The deduction theorem for CPL states:

$$
\Sigma, \psi \vdash_{C P L} \phi \quad \text { iff } \quad \Sigma \vdash_{C P L} \psi \rightarrow \phi
$$

Theorem. Let $\Sigma \cup \Psi \cup\{\phi\} \subseteq F m_{\mathcal{L}}$ and \mathbf{L} be a logic.
■ If L is commutative, integral and contractive, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \quad \text { iff } \quad \Sigma \vdash_{\mathbf{L}}\left(\bigwedge_{i=1}^{n} \psi_{i}\right) \rightarrow \phi,
$$

for some $n \in \omega$, and $\psi_{i} \in \Psi, i<n$.

Title

Outline

RL examples

Congruences

PLDT

The deduction theorem for CPL states:

$$
\Sigma, \psi \vdash_{C P L} \phi \quad \text { iff } \quad \Sigma \vdash_{C P L} \psi \rightarrow \phi
$$

Theorem. Let $\Sigma \cup \Psi \cup\{\phi\} \subseteq F m_{\mathcal{L}}$ and L be a logic.

- If L is commutative, integral and contractive, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \Sigma \vdash_{\mathbf{L}}\left(\bigwedge_{i=1}^{n} \psi_{i}\right) \rightarrow \phi,
$$

for some $n \in \omega$,and $\psi_{i} \in \Psi, i<n$.

- If L is commutative and integral, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \Sigma \vdash_{\mathbf{L}}\left(\prod_{i=1}^{n} \psi_{i}\right) \rightarrow \phi,
$$

for some $n \in \omega$, and $\psi_{i} \in \Psi, i<n$.

PLDT

The deduction theorem for CPL states:

$$
\Sigma, \psi \vdash_{C P L} \phi \quad \text { iff } \quad \Sigma \vdash_{C P L} \psi \rightarrow \phi
$$

Theorem. Let $\Sigma \cup \Psi \cup\{\phi\} \subseteq F m_{\mathcal{L}}$ and L be a logic.

- If L is commutative, integral and contractive, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \Sigma \vdash_{\mathbf{L}}\left(\bigwedge_{i=1}^{n} \psi_{i}\right) \rightarrow \phi,
$$

for some $n \in \omega$,and $\psi_{i} \in \Psi, i<n$.

- If L is commutative and integral, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \Sigma \vdash_{\mathbf{L}}\left(\prod_{i=1}^{n} \psi_{i}\right) \rightarrow \phi,
$$

for some $n \in \omega$, and $\psi_{i} \in \Psi, i<n$.

- If L is commutative, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \quad \Sigma \vdash_{\mathbf{L}}\left(\prod_{i=1}^{n}\left(\psi_{i} \wedge 1\right)\right) \rightarrow \phi
$$

for some $n \in \omega$, and $\psi_{i} \in \Psi, i<n$.

Outline

PLDT

The deduction theorem for CPL states:

$$
\Sigma, \psi \vdash_{C P L} \phi \quad \text { iff } \quad \Sigma \vdash_{C P L} \psi \rightarrow \phi
$$

Theorem. Let $\Sigma \cup \Psi \cup\{\phi\} \subseteq F m_{\mathcal{L}}$ and L be a logic.

- If L is commutative, integral and contractive, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \Sigma \vdash_{\mathbf{L}}\left(\bigwedge_{i=1}^{n} \psi_{i}\right) \rightarrow \phi,
$$

for some $n \in \omega$, and $\psi_{i} \in \Psi, i<n$.

- If L is commutative and integral, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \Sigma \vdash_{\mathbf{L}}\left(\prod_{i=1}^{n} \psi_{i}\right) \rightarrow \phi,
$$

for some $n \in \omega$, and $\psi_{i} \in \Psi, i<n$.

- If L is commutative, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \text { iff } \Sigma \vdash_{\mathbf{L}}\left(\prod_{i=1}^{n}\left(\psi_{i} \wedge 1\right)\right) \rightarrow \phi,
$$

for some $n \in \omega$, and $\psi_{i} \in \Psi, i<n$.

- If L is any substructural logic, then

$$
\Sigma, \Psi \vdash_{\mathbf{L}} \phi \quad \text { iff } \quad \Sigma \vdash_{\mathbf{L}}\left(\prod_{i=1}^{n} \gamma_{i}\left(\psi_{i}\right)\right) \backslash \phi,
$$

for some $n \in \omega$, iterated conjugates γ_{i} and $\psi_{i} \in \Psi, i<n$.

Outline

Applications to logic

■ Hilbert systems (Algebraization)

- PLDT (Congruence generation for RL's)

A Hilbert system
Substructural logics
Algebraic semantics
Substructural logics (examples) Substructural logics (examples)
PLDT

Applications to logic

■ Hilbert systems (Algebraization)

- PLDT (Congruence generation for RL's)

■ Maximal consistent logics (Atoms in $\Lambda(R L)$)

Applications to logic

■ Hilbert systems (Algebraization)

- PLDT (Congruence generation for RL's)

■ Maximal consistent logics (Atoms in $\Lambda(R L)$)

- Axiomatizing intersections of logics (Joins in $\boldsymbol{\Lambda}(\mathrm{RL})$)

Applications to logic

■ Hilbert systems (Algebraization)

- PLDT (Congruence generation for RL's)
- Maximal consistent logics (Atoms in $\Lambda(\mathrm{RL})$)
- Axiomatizing intersections of logics (Joins in $\boldsymbol{\Lambda}(\mathrm{RL})$)

■ Translations (Glivenko, Kolmogorov) between logics, e.g., $\vdash_{C P L} \phi$ iff $\vdash_{\text {Int }} \neg \neg \phi($ Structure of $\Lambda(\mathrm{RL})$ and nuclei)

Applications to logic

■ Hilbert systems (Algebraization)

- PLDT (Congruence generation for RL's)
- Maximal consistent logics (Atoms in $\Lambda(\mathrm{RL})$)
- Axiomatizing intersections of logics (Joins in $\boldsymbol{\Lambda}(\mathrm{RL})$)

■ Translations (Glivenko, Kolmogorov) between logics, e.g., $\vdash_{C P L} \phi$ iff $\vdash_{\text {Int }} \neg \neg \phi$ (Structure of $\Lambda(\mathrm{RL})$ and nuclei)

Algebra	\leftrightarrow	Logic
congruence generation	\leftrightarrow	PLDT
congruence extension	\leftrightarrow	localDT
EDPC	\leftrightarrow	deduction theorem
subreduct axiomatization	\leftrightarrow	strong seperation (Hilbert)
decid. equational th.	\leftrightarrow	decid. provability (Gentzen)
finite generation	\leftrightarrow	cut elimination (+ fin. proof)
amalgamation	\leftrightarrow	interpolation

Representation - Frames

Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP) GN
Gentzen frames
Proof

Applications of frames

Undecidability

References

Lattice frames

A lattice frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N\right)$ where W and W^{\prime} are sets and N is a binary relation from W to W^{\prime}.

If \mathbf{L} is a lattice, $\mathbf{W}_{\mathbf{L}}=(L, L, \leq)$ is a lattice frame.

Lattice frames

Residuated frames

Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP) GN
Gentzen frames
Proof

Applications of frames

Undecidability

Lattice frames

A lattice frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N\right)$ where W and W^{\prime} are sets and N is a binary relation from W to W^{\prime}.

If \mathbf{L} is a lattice, $\mathbf{W}_{\mathbf{L}}=(L, L, \leq)$ is a lattice frame.
For $X \subseteq W$ and $Y \subseteq W^{\prime}$ we define

$$
\begin{aligned}
X^{\triangleright} & =\left\{b \in W^{\prime}: x N b, \text { for all } x \in X\right\} \\
Y^{\triangleleft} & =\{a \in W: a N y, \text { for all } y \in Y\}
\end{aligned}
$$

GN

Lattice frames

A lattice frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N\right)$ where W and

 W^{\prime} are sets and N is a binary relation from W to W^{\prime}.If \mathbf{L} is a lattice, $\mathbf{W}_{\mathbf{L}}=(L, L, \leq)$ is a lattice frame.
For $X \subseteq W$ and $Y \subseteq W^{\prime}$ we define

$$
\begin{aligned}
X^{\triangleright} & =\left\{b \in W^{\prime}: x N b, \text { for all } x \in X\right\} \\
Y^{\triangleleft} & =\{a \in W: a N y, \text { for all } y \in Y\}
\end{aligned}
$$

The maps ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ form a Galois connection. The map $\gamma_{N}: \mathcal{P}(W) \rightarrow \mathcal{P}(W)$, where $\gamma_{N}(X)=X^{\triangleright \triangleleft}$, is a closure operator.

Lattice frames

A lattice frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N\right)$ where W and W^{\prime} are sets and N is a binary relation from W to W^{\prime}.

If \mathbf{L} is a lattice, $\mathbf{W}_{\mathbf{L}}=(L, L, \leq)$ is a lattice frame.
For $X \subseteq W$ and $Y \subseteq W^{\prime}$ we define

$$
\begin{aligned}
X^{\triangleright} & =\left\{b \in W^{\prime}: x N b, \text { for all } x \in X\right\} \\
Y^{\triangleleft} & =\{a \in W: a N y, \text { for all } y \in Y\}
\end{aligned}
$$

The maps ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ form a Galois connection. The map $\gamma_{N}: \mathcal{P}(W) \rightarrow \mathcal{P}(W)$, where $\gamma_{N}(X)=X^{\triangleright \triangleleft}$, is a closure operator.

Lemma. If $\mathbf{L}=(L, \wedge, \vee)$ is a lattice and γ is a cl.op. on \mathbf{L}, then $\left(\gamma[L], \wedge, \vee_{\gamma}\right)$ is a lattice. [$x \vee_{\gamma} y=\gamma(x \vee y)$.]

Outline

Lattice frames

A lattice frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N\right)$ where W and W^{\prime} are sets and N is a binary relation from W to W^{\prime}.

If \mathbf{L} is a lattice, $\mathbf{W}_{\mathbf{L}}=(L, L, \leq)$ is a lattice frame.
For $X \subseteq W$ and $Y \subseteq W^{\prime}$ we define

$$
\begin{aligned}
X^{\triangleright} & =\left\{b \in W^{\prime}: x N b, \text { for all } x \in X\right\} \\
Y^{\triangleleft} & =\{a \in W: a N y, \text { for all } y \in Y\}
\end{aligned}
$$

The maps ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ form a Galois connection. The map $\gamma_{N}: \mathcal{P}(W) \rightarrow \mathcal{P}(W)$, where $\gamma_{N}(X)=X^{\triangleright \triangleleft}$, is a closure operator.

Lemma. If $\mathbf{L}=(L, \wedge, \vee)$ is a lattice and γ is a cl.op. on \mathbf{L}, then $\left(\gamma[L], \wedge, \vee_{\gamma}\right)$ is a lattice. $\left[x \vee_{\gamma} y=\gamma(x \vee y)\right.$.]

Corollary. If \mathbf{W} is a lattice frame then the Galois algebra

Outline

Lattice frames

A lattice frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N\right)$ where W and W^{\prime} are sets and N is a binary relation from W to W^{\prime}.

If \mathbf{L} is a lattice, $\mathbf{W}_{\mathbf{L}}=(L, L, \leq)$ is a lattice frame.
For $X \subseteq W$ and $Y \subseteq W^{\prime}$ we define

$$
\begin{aligned}
X^{\triangleright} & =\left\{b \in W^{\prime}: x N b, \text { for all } x \in X\right\} \\
Y^{\triangleleft} & =\{a \in W: a N y, \text { for all } y \in Y\}
\end{aligned}
$$

The maps ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ form a Galois connection. The map $\gamma_{N}: \mathcal{P}(W) \rightarrow \mathcal{P}(W)$, where $\gamma_{N}(X)=X^{\triangleright \triangleleft}$, is a closure operator.

Lemma. If $\mathbf{L}=(L, \wedge, \vee)$ is a lattice and γ is a cl.op. on \mathbf{L}, then $\left(\gamma[L], \wedge, \vee_{\gamma}\right)$ is a lattice. $\left[x \vee_{\gamma} y=\gamma(x \vee y)\right.$.]

Corollary. If \mathbf{W} is a lattice frame then the Galois algebra $\mathbf{W}^{+}=\left(\gamma_{N}[\mathcal{P}(W)], \cap, \cup_{\gamma_{N}}\right)$ is a complete lattice.

If L is a lattice, $\mathbf{W}_{\mathbf{L}}^{+}$is the Dedekind-MacNeille completion of \mathbf{L} and $x \mapsto\{x\}^{\triangleleft}$ is an embedding.

Residuated frames

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, 1\right)$ where

 W and W^{\prime} are sets $N \subseteq W \times W^{\prime},(W, \circ, 1)$ is a monoid and
Residuated frames

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, 1\right)$ where

 W and W^{\prime} are sets $N \subseteq W \times W^{\prime},(W, \circ, 1)$ is a monoid andA nucleus γ on a residuated lattice \mathbf{L} is a closure operator on L such that $\gamma(x) \gamma(y) \leq \gamma(x y)$ (or $\gamma(\gamma(x) \gamma(y))=\gamma(x y)$).

Residuated frames

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, 1\right)$ where W and W^{\prime} are sets $N \subseteq W \times W^{\prime},(W, \circ, 1)$ is a monoid and

A nucleus γ on a residuated lattice \mathbf{L} is a closure operator on L such that $\gamma(x) \gamma(y) \leq \gamma(x y)$ (or $\gamma(\gamma(x) \gamma(y))=\gamma(x y)$).
Theorem. Given a RL $\mathrm{L}=(L, \wedge, \vee, \cdot \cdot,, /, 1)$ and a nucleus on \mathbf{L}, the algebra $\mathbf{L}_{\gamma}=\left(L_{\gamma}, \wedge, \vee_{\gamma}, \cdot \gamma, \backslash, /, \gamma(1)\right)$, is a residuated lattice, where $x \cdot \gamma=\gamma(x \cdot y), x \vee_{\gamma} y=\gamma(x \vee y)$.

Residuated frames

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, 1\right)$ where W and W^{\prime} are sets $N \subseteq W \times W^{\prime},(W, \circ, 1)$ is a monoid and for all $x, y \in W$ and $w \in W^{\prime}$ there exist subsets $x\|w, w\| y \subseteq W^{\prime}$ such that

$$
(x \circ y) N w \Leftrightarrow y N(x \backslash w) \Leftrightarrow x N(w / / y)
$$

A nucleus γ on a residuated lattice \mathbf{L} is a closure operator on L such that $\gamma(x) \gamma(y) \leq \gamma(x y)$ (or $\gamma(\gamma(x) \gamma(y))=\gamma(x y)$).

Theorem. Given a RL $\mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ and a nucleus on \mathbf{L}, the algebra $\mathbf{L}_{\gamma}=\left(L_{\gamma}, \wedge, \vee_{\gamma}, \cdot{ }_{\gamma}, \backslash, /, \gamma(1)\right)$, is a residuated lattice, where $x{ }_{\gamma} y=\gamma(x \cdot y), x \vee_{\gamma} y=\gamma(x \vee y)$.
Theorem. If \mathbf{W} is a frame, then γ_{N} is a nucleus on $\mathcal{P}(W, \circ,\{1\})$.

Residuated frames

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, 1\right)$ where W and W^{\prime} are sets $N \subseteq W \times W^{\prime},(W, \circ, 1)$ is a monoid and for all $x, y \in W$ and $w \in W^{\prime}$ there exist subsets $x\|w, w\| y \subseteq W^{\prime}$ such that

$$
(x \circ y) N w \Leftrightarrow y N(x \backslash w) \Leftrightarrow x N(w / / y)
$$

If \mathbf{L} is a $\mathrm{RL}, \mathbf{W}_{\mathbf{L}}=(L, L, \leq, \cdot,\{1\})$ is a residuated frame.
A nucleus γ on a residuated lattice \mathbf{L} is a closure operator on L such that $\gamma(x) \gamma(y) \leq \gamma(x y)$ (or $\gamma(\gamma(x) \gamma(y))=\gamma(x y)$).

Theorem. Given a RL $\mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ and a nucleus on \mathbf{L}, the algebra $\mathbf{L}_{\gamma}=\left(L_{\gamma}, \wedge, \vee_{\gamma}, \cdot_{\gamma}, \backslash, /, \gamma(1)\right)$, is a residuated lattice, where $x{ }_{\gamma} y=\gamma(x \cdot y), x \vee_{\gamma} y=\gamma(x \vee y)$.
Theorem. If \mathbf{W} is a frame, then γ_{N} is a nucleus on $\mathcal{P}(W, \circ,\{1\})$.

Residuated frames

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, 1\right)$ where W and W^{\prime} are sets $N \subseteq W \times W^{\prime},(W, \circ, 1)$ is a monoid and for all $x, y \in W$ and $w \in W^{\prime}$ there exist subsets $x \ w, w \| y \subseteq W^{\prime}$ such that

$$
(x \circ y) N w \Leftrightarrow y N(x \backslash w) \Leftrightarrow x N(w / / y)
$$

If \mathbf{L} is a $\mathrm{RL}, \mathbf{W}_{\mathbf{L}}=(L, L, \leq, \cdot,\{1\})$ is a residuated frame.
A nucleus γ on a residuated lattice \mathbf{L} is a closure operator on L such that $\gamma(x) \gamma(y) \leq \gamma(x y)$ (or $\gamma(\gamma(x) \gamma(y))=\gamma(x y)$).

Theorem. Given a $\mathrm{RL} \mathbf{L}=(L, \wedge, \vee, \cdot, \backslash, /, 1)$ and a nucleus on \mathbf{L}, the algebra $\mathbf{L}_{\gamma}=\left(L_{\gamma}, \wedge, \vee_{\gamma}, \cdot{ }_{\gamma}, \backslash, /, \gamma(1)\right)$, is a residuated lattice, where $x{ }_{\gamma} y=\gamma(x \cdot y), x \vee_{\gamma} y=\gamma(x \vee y)$.
Theorem. If \mathbf{W} is a frame, then γ_{N} is a nucleus on $\mathcal{P}(W, \circ,\{1\})$.

Corollary. If \mathbf{W} is a residuated frame then the Galois algebra $\mathbf{W}^{+}=\mathcal{P}(W, \circ, 1)_{\gamma_{N}}$ is a residuated lattice. Moreover, for $\mathbf{W}_{\mathbf{L}}, x \mapsto\{x\}^{\triangleleft}$ is an embedding.

Formula hierarchy

- Polarity $\{\vee, \cdot, 1\},\{\wedge, \backslash, /\}$
- The sets $\mathcal{P}_{n}, \mathcal{N}_{n}$ of formulas are defined by: (0) $\mathcal{P}_{0}=\mathcal{N}_{0}=$ the set of variables
(P1) $\mathcal{N}_{n} \subseteq \mathcal{P}_{n+1}$
(P2) $\alpha, \beta \in \mathcal{P}_{n+1} \Rightarrow \alpha \vee \beta, \alpha \cdot \beta, 1 \in \mathcal{P}_{n+1}$
(N1) $\mathcal{P}_{n} \subseteq \mathcal{N}_{n+1}$
(N2) $\alpha, \beta \in \mathcal{N}_{n+1} \Rightarrow \alpha \wedge \beta \in \mathcal{N}_{n+1}$
(N3) $\alpha \in \mathcal{P}_{n+1}, \beta \in \mathcal{N}_{n+1} \Rightarrow \alpha \backslash \beta, \beta / \alpha \in \mathcal{N}_{n+1}$
■ $\mathcal{P}_{n+1}=\left\langle\mathcal{N}_{n}\right\rangle_{\bigvee, \Pi} ; \mathcal{N}_{n+1}=\left\langle\mathcal{P}_{n}\right\rangle_{\wedge, \mathcal{P}_{n+1} \backslash, / \mathcal{P}_{n+1}}$
■ $\mathcal{P}_{n} \subseteq \mathcal{P}_{n+1}, \mathcal{N}_{n} \subseteq \mathcal{N}_{n+1}, \bigcup \mathcal{P}_{n}=\bigcup \mathcal{N}_{n}=F m$
- \mathcal{P}_{1}-reduced: $\bigvee \prod p_{i}$

■ \mathcal{N}_{1}-reduced: $\Lambda\left(p_{1} p_{2} \cdots p_{n} \backslash r / q_{1} q_{2} \cdots q_{m}\right)$

$$
p_{1} p_{2} \cdots p_{n} q_{1} q_{2} \cdots q_{m} \leq r
$$

Outline

RL examples

Congruences

Subvariety lattice (atoms)

■ Sequent: $a_{1}, a_{2}, \ldots, a_{n} \Rightarrow a_{0}$ $\left(x \Rightarrow a, a \in F m, x \in F m^{*}\right)$

$$
\begin{gathered}
\frac{x \Rightarrow a \quad y \circ a \circ z \Rightarrow c}{y \circ x \circ z \Rightarrow c}(\mathrm{cut}) \quad \overline{a \Rightarrow a}(\mathrm{ld}) \\
\frac{y \circ a \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c}(\wedge \mathrm{~L} \ell) \quad \frac{y \circ b \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c}(\wedge \mathrm{~L} r) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \wedge b}(\wedge \mathrm{R}) \\
\frac{y \circ a \circ z \Rightarrow c \quad y \circ b \circ z \Rightarrow c}{y \circ a \vee b \circ z \Rightarrow c}(\mathrm{VL}) \quad \frac{x \Rightarrow a}{x \Rightarrow a \vee b}(\vee \mathrm{R} \ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \vee b}(\vee \mathrm{R} r) \\
\frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ x \circ(a \backslash b) \circ z \Rightarrow c}(\backslash \mathrm{~L}) \quad \frac{a \circ x \Rightarrow b}{x \Rightarrow a \backslash b}(\backslash \mathrm{R}) \\
\frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ(b / a) \circ x \circ z \Rightarrow c}(/ \mathrm{L}) \quad \frac{x \circ a \Rightarrow b}{x \Rightarrow b / a}(/ \mathrm{R}) \\
\frac{y \circ a \circ b \circ z \Rightarrow c}{y \circ a \cdot b \circ z \Rightarrow c}(\cdot \mathrm{~L}) \quad \frac{x \Rightarrow a}{x \circ y \Rightarrow a \cdot b}(\cdot \mathrm{R}) \\
\frac{y \circ z \Rightarrow a}{y \circ 1 \circ z \Rightarrow a}(1 \mathrm{~L}) \\
\frac{x \Rightarrow 1}{x \Rightarrow a}(1 \mathrm{R})
\end{gathered}
$$

Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames
Formula hierarchy

FL

Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP) GN
Gentzen frames
Proof

Applications of frames

Undecidability

References
where $a, b, c \in F m, x, y, z \in F m^{*}$.

$$
\begin{aligned}
& \frac{x \Rightarrow a \quad u[a] \Rightarrow c}{u[x] \Rightarrow c} \text { (cut) } \quad \overline{a \Rightarrow a} \text { (Id) } \\
& \frac{u[a] \Rightarrow c}{u[a \wedge b] \Rightarrow c}(\wedge \mathrm{~L} \ell) \quad \frac{u[b] \Rightarrow c}{u[a \wedge b] \Rightarrow c}(\wedge \mathrm{~L} r) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \wedge b}(\wedge \mathrm{R}) \\
& \frac{u[a] \Rightarrow c \quad u[b] \Rightarrow c}{u[a \vee b] \Rightarrow c}(\vee \mathrm{~L}) \quad \frac{x \Rightarrow a}{x \Rightarrow a \vee b}(\vee \mathrm{R} \ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \vee b}(\vee \mathrm{R} r) \\
& \frac{x \Rightarrow a \quad u[b] \Rightarrow c}{u[x \circ(a \backslash b)] \Rightarrow c}(\backslash \mathrm{~L}) \quad \frac{a \circ x \Rightarrow b}{x \Rightarrow a \backslash b}(\backslash \mathrm{R}) \\
& \frac{x \Rightarrow a \quad u[b] \Rightarrow c}{u[(b / a) \circ x] \Rightarrow c}(/ \mathrm{L}) \quad \frac{x \circ a \Rightarrow b}{x \Rightarrow b / a}(/ \mathrm{R}) \\
& \frac{u[a \circ b] \Rightarrow c}{u[a \cdot b] \Rightarrow c}(\cdot \mathrm{~L}) \quad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \circ y \Rightarrow a \cdot b}(\cdot \mathrm{R}) \\
& \frac{|u| \Rightarrow a}{u[1] \Rightarrow a}(1 \mathrm{~L}) \quad \overline{\varepsilon \Rightarrow 1}(1 \mathrm{R})
\end{aligned}
$$

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames
Formula hierarchy

FL

Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP) GN

Gentzen frames
Proof

Applications of frames

Undecidability

References

Basic substructural logics

If the sequent s is provable in $\mathbf{F L}$ from the set of sequents S, we write $S \vdash_{\text {FL }} s$.

Basic substructural logics

If the sequent s is provable in $\mathbf{F L}$ from the set of sequents S, we write $S \vdash_{\text {FL }} s$.

$$
\frac{u[x \circ y] \Rightarrow c}{u[y \circ x] \Rightarrow c}(e) \quad \text { (exchange) } \quad x y \leq y x
$$

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Logic

Basic substructural logics

If the sequent s is provable in $\mathbf{F L}$ from the set of sequents S, we write $S \vdash_{\text {FL }} s$.

$$
\begin{array}{ll}
\frac{u[x \circ y] \Rightarrow c}{u[y \circ x] \Rightarrow c}(e) & \text { (exchange) }
\end{array} \quad x y \leq y x z=(c) \quad \text { (contraction) } \quad x \leq x^{2}
$$

Congruences

Subvariety lattice (atoms)
Subvariety lattice (joins)

Logic

Basic substructural logics

If the sequent s is provable in $\mathbf{F L}$ from the set of sequents S, we write $S \vdash_{\text {FL }} s$.

$$
\begin{array}{ccc}
\frac{u[x \circ y] \Rightarrow c}{u[y \circ x] \Rightarrow c}(e) & \text { (exchange) } & x y \leq y x \\
\frac{u[x \circ x] \Rightarrow c}{u[x] \Rightarrow c}(c) & \text { (contraction) } & x \leq x^{2} \\
\frac{|u| \Rightarrow c}{u[x] \Rightarrow c}(i) & \text { (integrality) } & x \leq 1
\end{array}
$$

Congruences

Subvariety lattice (atoms)
Subvariety lattice (joins)

Logic

Examples of frames (FL)

Basic substructural logics

If the sequent s is provable in $\mathbf{F L}$ from the set of sequents S, we write $S \vdash_{\text {FL }} s$.

$$
\begin{array}{ccc}
\frac{u[x \circ y] \Rightarrow c}{u[y \circ x] \Rightarrow c}(e) & \text { (exchange) } & x y \leq y x \\
\frac{u[x \circ x] \Rightarrow c}{u[x] \Rightarrow c}(c) & \text { (contraction) } & x \leq x^{2} \\
\frac{|u| \Rightarrow c}{u[x] \Rightarrow c}(i) & \text { (integrality) } & x \leq 1
\end{array}
$$

We write $\mathbf{F L}_{\mathbf{e c}}$ for $\mathbf{F L}+(e)+(c)$.

Outline

RL examples

```
Congruences
```

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Examples of frames (FL)

Basic substructural logics

If the sequent s is provable in $\mathbf{F L}$ from the set of sequents S, we write $S \vdash_{\text {FL }} s$.

$$
\begin{array}{lll}
\frac{u[x \circ y] \Rightarrow c}{u[y \circ x] \Rightarrow c}(e) & \text { (exchange) } & x y \leq y x \\
\frac{u[x \circ x] \Rightarrow c}{u[x] \Rightarrow c}(c) & \text { (contraction) } & x \leq x^{2} \\
\frac{|u| \Rightarrow c}{u[x] \Rightarrow c}(i) & \text { (integrality) } & x \leq 1
\end{array}
$$

We write $\mathbf{F L}_{\mathbf{e c}}$ for $\mathbf{F L}+(e)+(c)$.
Theorem. The systems HL and FL are equivalent via the maps $s(\psi)=(\Rightarrow \psi)$ and

Outline $\phi\left(a_{1}, a_{2}, \ldots, a_{n} \Rightarrow a\right)=a_{n} \backslash\left(\ldots\left(a_{2} \backslash\left(a_{1} \backslash a\right)\right) \ldots\right)$;

Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).
We define the frame $\mathbf{W}_{\mathbf{F L}}$, where

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP) GN
Gentzen frames
Proof

Applications of frames

Undecidability

References

Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).
We define the frame $\mathbf{W}_{\mathbf{F L}}$, where

- (W, \circ, ε) to be the free monoid over the set $F m$ of all formulas

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP) GN
Gentzen frames
Proof

Applications of frames

Undecidability

References

Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).
We define the frame $\mathbf{W}_{\mathbf{F L}}$, where

- (W, o, ε) to be the free monoid over the set $F m$ of all formulas
- $W^{\prime}=S_{W} \times F m$, where S_{W} is the set of all unary linear polynomials $u[x]=y \circ x \circ z$ of W, and

Outline

Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).
We define the frame $\mathbf{W}_{\mathbf{F L}}$, where

- (W, o, ε) to be the free monoid over the set $F m$ of all formulas
- $W^{\prime}=S_{W} \times F m$, where S_{W} is the set of all unary linear polynomials $u[x]=y \circ x \circ z$ of W, and
- $x N(u, a)$ iff $\vdash_{\text {FL }} u[x] \Rightarrow a$.

Outline

Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).
We define the frame $\mathbf{W}_{\mathbf{F L}}$, where

- (W, \circ, ε) to be the free monoid over the set Fm of all formulas
- $W^{\prime}=S_{W} \times F m$, where S_{W} is the set of all unary linear polynomials $u[x]=y \circ x \circ z$ of W, and
■ $x N(u, a)$ iff $\vdash_{\text {FL }} u[x] \Rightarrow a$.
For

$$
(u, a) / / x=\left\{\left(u\left[_\circ x\right], a\right)\right\} \text { and } x \Downarrow(u, a)=\left\{\left(u\left[x \circ _\right], a\right)\right\}
$$

we have

$$
\begin{array}{ll}
x \circ y N(u, a) & \text { iff } \vdash_{\text {FL }} u[x \circ y] \Rightarrow a \\
& \text { iff } \vdash_{\text {FL }} u[x \circ y] \Rightarrow a \\
& \text { iff } x N(u[-\circ y], a) \\
& \text { iff } y N\left(u\left[x \circ _\right], a\right) .
\end{array}
$$

Outline

Examples of frames (FEP)

Let \mathbf{A} be a residuated lattice and \mathbf{B} a partial subalgebra of \mathbf{A}.
We define the frame $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$, where

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP)
GN
Gentzen frames
Proof

Applications of frames

Undecidability
References

Examples of frames (FEP)

Let \mathbf{A} be a residuated lattice and \mathbf{B} a partial subalgebra of \mathbf{A}.
We define the frame $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$, where

- $(W, \cdot, 1)$ to be the submonoid of \mathbf{A} generated by B,

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP)
GN
Gentzen frames
Proof

Applications of frames

Undecidability
References

Examples of frames (FEP)

Let \mathbf{A} be a residuated lattice and \mathbf{B} a partial subalgebra of \mathbf{A}.
We define the frame $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$, where

- $(W, \cdot, 1)$ to be the submonoid of \mathbf{A} generated by B,
- $W^{\prime}=S_{B} \times B$, where S_{W} is the set of all unary linear polynomials $u[x]=y \circ x \circ z$ of $(W, \cdot, 1)$, and

Examples of frames (FEP)

Let \mathbf{A} be a residuated lattice and \mathbf{B} a partial subalgebra of \mathbf{A}.
We define the frame $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$, where
■ $(W, \cdot, 1)$ to be the submonoid of \mathbf{A} generated by B,

- $W^{\prime}=S_{B} \times B$, where S_{W} is the set of all unary linear polynomials $u[x]=y \circ x \circ z$ of $(W, \cdot, 1)$, and
- $x N(u, b)$ by $u[x] \leq_{\mathbf{A}} b$.

Examples of frames (FEP)

Let \mathbf{A} be a residuated lattice and \mathbf{B} a partial subalgebra of \mathbf{A}.
We define the frame $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$, where

- $(W, \cdot, 1)$ to be the submonoid of \mathbf{A} generated by B,
- $W^{\prime}=S_{B} \times B$, where S_{W} is the set of all unary linear polynomials $u[x]=y \circ x \circ z$ of $(W, \cdot, 1)$, and
- $x N(u, b)$ by $u[x] \leq_{\mathbf{A}} b$.

For

$$
(u, a) / / x=\left\{\left(u\left[_\cdot x\right], a\right)\right\} \text { and } x \backslash(u, a)=\left\{\left(u\left[x \cdot _\right], a\right)\right\}
$$

we have

$$
\begin{array}{ll}
x \cdot y N(u, a) & \text { iff } u[x \cdot y] \leq a \\
& \text { iff } x N(u[-\cdot y], a) \\
& \text { iff } y N(u[x \cdot], a) .
\end{array}
$$

$$
\begin{gathered}
\frac{x N a \quad a N z}{x N z}(\mathrm{CUT}) \quad \frac{\overline{a N a}}{}(\mathrm{ld}) \\
\frac{x N a \quad b N z}{x \circ(a \backslash b) N z}(\backslash \mathrm{~L}) \quad \frac{a \circ x N b}{x N a \backslash b}(\backslash \mathrm{R}) \\
\frac{x N a \quad b N z}{(b / a) \circ x N z}(/ \mathrm{L}) \quad \frac{x \circ a N b}{x N b / a}(/ \mathrm{R}) \\
\frac{a \circ b N z}{a \cdot b N z}(\cdot \mathrm{~L}) \quad \frac{x N a \quad y N b}{x \circ y N a \cdot b}(\cdot \mathrm{R}) \\
\frac{a N z}{a \wedge b N z}(\wedge \mathrm{~L} \ell) \quad \frac{b N z}{a \wedge b N z}(\wedge \mathrm{~L} r) \quad \frac{x N a \quad x N b}{x N a \wedge b}(\wedge \mathrm{R}) \\
\frac{a N z \quad b N z}{a \vee b N z}(\mathrm{VL}) \quad \frac{x N a}{x N a \vee b}(\vee \mathrm{R} \ell) \quad \frac{x N b}{x N a \vee b}(\vee \mathrm{R} r) \\
\frac{\varepsilon N z}{1 N z}(1 \mathrm{~L}) \quad \frac{1 \mathrm{l})}{\varepsilon N 1}(1 \mathrm{R})
\end{gathered}
$$

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames

Formula hierarchy

GN

Gentzen frames
Proof

Applications of frames

Undecidability

References

Gentzen frames

The following properties hold for $\mathbf{W}_{\mathbf{L}}, \mathbf{W}_{\mathbf{F L}}$ and $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$:

1. W is a residuated frame
2. \mathbf{B} is a (partial) algebra of the same type, $(\mathbf{B}=\mathbf{L}, \mathbf{F m}, \mathbf{B})$
3. B generates (W, \circ, ε) (as a monoid)
4. W^{\prime} contains a copy of $B(b \leftrightarrow(i d, b))$
5. N satisfies GN, for all $a, b \in B, x, y \in W, z \in W^{\prime}$.

Outline

Gentzen frames

The following properties hold for $\mathbf{W}_{\mathbf{L}}, \mathbf{W}_{\mathbf{F L}}$ and $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$:

1. W is a residuated frame
2. \mathbf{B} is a (partial) algebra of the same type, $(\mathbf{B}=\mathbf{L}, \mathbf{F m}, \mathbf{B})$
3. B generates (W, \circ, ε) (as a monoid)
4. W^{\prime} contains a copy of $B(b \leftrightarrow(i d, b))$
5. N satisfies GN, for all $a, b \in B, x, y \in W, z \in W^{\prime}$.

We call such pairs (\mathbf{W}, \mathbf{B}) Gentzen frames.
A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.

Gentzen frames

The following properties hold for $\mathbf{W}_{\mathbf{L}}, \mathbf{W}_{\mathbf{F L}}$ and $\mathbf{W}_{\mathbf{A}, \mathbf{B}}$:

1. W is a residuated frame
2. \mathbf{B} is a (partial) algebra of the same type, $(\mathbf{B}=\mathbf{L}, \mathbf{F m}, \mathbf{B})$
3. B generates (W, \circ, ε) (as a monoid)
4. W^{\prime} contains a copy of $B(b \leftrightarrow(i d, b))$
5. N satisfies GN, for all $a, b \in B, x, y \in W, z \in W^{\prime}$.

We call such pairs (\mathbf{W}, \mathbf{B}) Gentzen frames.
A cut-free Gentzen frame is not assumed to satisfy the (CUT)-rule.

Theorem. Given a Gentzen frame (\mathbf{W}, \mathbf{B}), the map $\left\}^{\triangleleft}: \mathbf{B} \rightarrow \mathbf{W}^{+}, \quad b \mapsto\{b\}^{\triangleleft}\right.$ is a (partial) homomorphism. (Namely, if $a, b \in B$ and $a \bullet b \in B$ (\bullet is a connective) then $\left.\left\{a \bullet_{\mathbf{B}} b\right\}^{\triangleleft}=\{a\}^{\triangleleft} \bullet_{\mathbf{W}^{+}}\{b\}^{\triangleleft}\right)$.

Proof

Key Lemma. Let (\mathbf{W}, \mathbf{B}) be a Gentzen frame. For all $a, b \in B, k, l \in \mathbf{W}^{+}$and for every connective \bullet, if $a \bullet b \in B$, $a \in X \subseteq\{a\}^{\triangleleft}$ and $b \in Y \subseteq\{b\}^{\triangleleft}$, then

1. $a \bullet_{\mathbf{B}} b \in X \bullet_{\mathbf{W}^{+}} Y \subseteq\left\{a \bullet_{\mathbf{B}} b\right\}^{\triangleleft}\left(1_{\mathbf{B}} \in 1_{\mathbf{W}^{+}} \subseteq\left\{1_{\mathbf{B}}\right\}^{\triangleleft}\right)$
2. In particular, $a \bullet_{\mathbf{B}} b \in\{a\}^{\triangleleft} \bullet_{\mathbf{W}^{+}}\{b\}^{\triangleleft} \subseteq\left\{a \bullet_{\mathbf{B}} b\right\}^{\triangleleft}$.
3. Furthermore, because of (CUT), we have equality.

Outline

Proof

Key Lemma. Let (\mathbf{W}, \mathbf{B}) be a Gentzen frame. For all $a, b \in B, k, l \in \mathbf{W}^{+}$and for every connective \bullet, if $a \bullet b \in B$, $a \in X \subseteq\{a\}^{\triangleleft}$ and $b \in Y \subseteq\{b\}^{\triangleleft}$, then

1. $a \bullet_{\mathbf{B}} b \in X \bullet_{\mathbf{W}^{+}} Y \subseteq\left\{a \bullet_{\mathbf{B}} b\right\}^{\triangleleft}\left(1_{\mathbf{B}} \in 1_{\mathbf{W}^{+}} \subseteq\left\{1_{\mathbf{B}}\right\}^{\triangleleft}\right)$
2. In particular, $a \bullet_{\mathbf{B}} b \in\{a\}^{\triangleleft} \bullet_{\mathbf{W}^{+}}\{b\}^{\triangleleft} \subseteq\left\{a \bullet_{\mathbf{B}} b\right\}^{\triangleleft}$.
3. Furthermore, because of (CUT), we have equality.

Proof Let $\bullet=V$. If $x \in X$, then $x \in\{a\}^{\triangleleft}$; so $x N a$ and $x N a \vee b$, by $(\vee \mathrm{R} \ell)$; hence $x \in\{a \vee b\}^{\triangleleft}$ and $X \subseteq\{a \vee b\}^{\triangleleft}$. Likewise $Y \subseteq\{a \vee b\}^{\triangleleft}$, so $X \cup Y \subseteq\{a \vee b\}^{\triangleleft}$ and $X \vee Y=\gamma(X \cup Y) \subseteq\{a \vee b\}^{\triangleleft}$.

Proof

Key Lemma. Let (\mathbf{W}, \mathbf{B}) be a Gentzen frame. For all $a, b \in B, k, l \in \mathbf{W}^{+}$and for every connective \bullet, if $a \bullet b \in B$, $a \in X \subseteq\{a\}^{\triangleleft}$ and $b \in Y \subseteq\{b\}^{\triangleleft}$, then

1. $a \bullet_{\mathbf{B}} b \in X \bullet_{\mathbf{W}^{+}} Y \subseteq\left\{a \bullet_{\mathbf{B}} b\right\}^{\triangleleft}\left(1_{\mathbf{B}} \in 1_{\mathbf{W}^{+}} \subseteq\left\{1_{\mathbf{B}}\right\}^{\triangleleft}\right)$
2. In particular, $a \bullet_{\mathbf{B}} b \in\{a\}^{\triangleleft} \bullet_{\mathbf{W}^{+}}\{b\}^{\triangleleft} \subseteq\left\{a \bullet_{\mathbf{B}} b\right\}^{\triangleleft}$.
3. Furthermore, because of (CUT), we have equality.

Proof Let $\bullet=V$. If $x \in X$, then $x \in\{a\}^{\triangleleft}$; so $x N a$ and $x N a \vee b$, by $(\vee R \ell)$; hence $x \in\{a \vee b\}^{\triangleleft}$ and $X \subseteq\{a \vee b\}^{\triangleleft}$. Likewise $Y \subseteq\{a \vee b\}^{\triangleleft}$, so $X \cup Y \subseteq\{a \vee b\}^{\triangleleft}$ and $X \vee Y=\gamma(X \cup Y) \subseteq\{a \vee b\}^{\triangleleft}$.

On the other hand, let $X \vee Y \subseteq\{z\}^{\triangleleft}$, for some $z \in W$. Then, $a \in X \subseteq X \vee Y \subseteq\{z\}^{\triangleleft}$, so $a N z$. Similarly, $b N z$, so $a \vee b N z$ by ($\vee \mathrm{L}$), hence $a \vee b \in\{z\}^{\triangleleft}$. Thus, $a \vee b \in X \vee Y$.
We used that every closed set is an intersection of basic closed sets $\{z\}^{\triangleleft}$, for $z \in W$.

Applications of frames

DM-completion

For a residuated lattice L, we associated the Gentzen frame $\left(\mathbf{W}_{\mathbf{L}}, \mathbf{L}\right)$.

DM-completion

For a residuated lattice L, we associated the Gentzen frame $\left(\mathbf{W}_{\mathbf{L}}, \mathbf{L}\right)$.

The underlying poset of $\mathbf{W}_{\mathbf{L}}^{+}$is the Dedekind-MacNeille completion of the underlying poset reduct of \mathbf{L}.

Theorem. The map $x \mapsto x^{\triangleleft}$ is an embedding of \mathbf{L} into $\mathbf{W}_{\mathbf{L}}^{+}$.

Completeness - Cut elimination

For every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, let $\bar{f}: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{W}^{+}$ be the homomorphism that extends $\bar{f}(p)=\{f(p)\}^{\triangleleft}(p$: variable.)

Title

Outline

RL examples

Congruences

Completeness - Cut elimination

For every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, let $\bar{f}: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{W}^{+}$ be the homomorphism that extends $\bar{f}(p)=\{f(p)\}^{\triangleleft}(p$: variable.)
Corollary. If (\mathbf{W}, \mathbf{B}) is a cf Gentzen frame, for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, we have $f(a) \in \bar{f}(a) \subseteq \downarrow f(a)$. If we have (CUT), then $\bar{f}(a)=\downarrow f(a)$.

Completeness - Cut elimination

For every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, let $\bar{f}: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{W}^{+}$ be the homomorphism that extends $\bar{f}(p)=\{f(p)\}^{\triangleleft}(p$: variable.)
Corollary. If (\mathbf{W}, \mathbf{B}) is a cf Gentzen frame, for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, we have $f(a) \in \bar{f}(a) \subseteq \downarrow f(a)$. If we have (CUT), then $\bar{f}(a)=\downarrow f(a)$.
We define $\mathbf{W}_{\mathbf{F L}} \models x \Rightarrow c$ by $f(x) N f(c)$, for all f.
Theorem. If $\mathbf{W}_{\mathbf{F L}}^{+} \models x \leq c$, then $\mathbf{W}_{\mathbf{F L}} \models x \Rightarrow c$. Idea: For $f: \mathbf{F m} \rightarrow \mathbf{B}, f(x) \in \bar{f}(x) \subseteq \bar{f}(c) \subseteq\{f(c)\}^{\triangleleft}$, so $f(x) N f(c)$.

Completeness - Cut elimination

For every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, let $\bar{f}: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{W}^{+}$ be the homomorphism that extends $\bar{f}(p)=\{f(p)\}^{\triangleleft}(p$: variable.)
Corollary. If (\mathbf{W}, \mathbf{B}) is a cf Gentzen frame, for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, we have $f(a) \in \bar{f}(a) \subseteq \downarrow f(a)$. If we have (CUT), then $\bar{f}(a)=\downarrow f(a)$.
We define $\mathbf{W}_{\mathbf{F L}} \vDash x \Rightarrow c$ by $f(x) N f(c)$, for all f.
Theorem. If $\mathbf{W}_{\mathbf{F L}}^{+} \models x \leq c$, then $\mathbf{W}_{\mathbf{F L}} \models x \Rightarrow c$. Idea: For $f: \mathbf{F m} \rightarrow \mathbf{B}, f(x) \in \bar{f}(x) \subseteq \bar{f}(c) \subseteq\{f(c)\}^{\triangleleft}$, so $f(x) N f(c)$.
Corollary. FL is complete with respect to $\mathbf{W}_{\text {FL }}^{+}$.
Corollary. The algebra $\mathbf{W}_{\text {FL }}^{+}$generates RL.

Completeness - Cut elimination

For every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, let $\bar{f}: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{W}^{+}$ be the homomorphism that extends $\bar{f}(p)=\{f(p)\}^{\triangleleft}(p$: variable.)
Corollary. If (\mathbf{W}, \mathbf{B}) is a cf Gentzen frame, for every homomorphism $f: \mathbf{F m} \rightarrow \mathbf{B}$, we have $f(a) \in \bar{f}(a) \subseteq \downarrow f(a)$. If we have (CUT), then $\bar{f}(a)=\downarrow f(a)$.
We define $\mathbf{W}_{\mathbf{F L}} \vDash x \Rightarrow c$ by $f(x) N f(c)$, for all f.
Theorem. If $\mathbf{W}_{\mathbf{F L}}^{+} \models x \leq c$, then $\mathbf{W}_{\mathbf{F L}} \models x \Rightarrow c$. Idea: For $f: \mathbf{F m} \rightarrow \mathbf{B}, f(x) \in \bar{f}(x) \subseteq \bar{f}(c) \subseteq\{f(c)\}^{\triangleleft}$, so $f(x) N f(c)$.
Corollary. FL is complete with respect to $\mathbf{W}_{\text {FL }}^{+}$.
Corollary. The algebra $\mathrm{W}_{\mathrm{FL}}^{+}$generates RL.
The frame $\mathbf{W}_{\mathbf{F L}^{f}}$ corresponds to cut-free $\mathbf{F L}$.

Corollary (CE). FL and FL ${ }^{\mathrm{f}}$ prove the same sequents. Corollary. FL and the equational theory of RL are decidable.

Finite model property

For $\mathbf{W}_{\mathbf{F L}}$, given $(x, z) \in W \times W^{\prime}$ (if $z=(u, c)$, then $u(x) \Rightarrow c$ is a sequent), we define $(x, z)^{\uparrow}$ as the smallest subset of $W \times W^{\prime}$ that contains (x, z) and is closed upwards with respect to the rules of $\mathbf{F L}{ }^{\mathbf{f}}$. Note that $(x, z)^{\uparrow}$ is finite.

Finite model property

For $\mathbf{W}_{\mathbf{F L}}$, given $(x, z) \in W \times W^{\prime}$ (if $z=(u, c)$, then $u(x) \Rightarrow c$ is a sequent), we define $(x, z)^{\uparrow}$ as the smallest subset of $W \times W^{\prime}$ that contains (x, z) and is closed upwards with respect to the rules of $\mathbf{F} \mathbf{L}^{\mathbf{f}}$. Note that $(x, z)^{\uparrow}$ is finite.

The new frame \mathbf{W}^{\prime} associated with $N^{\prime}=N \cup\left((y, v)^{\uparrow}\right)^{c}$ is residuated and Gentzen.
Clearly, $\left(N^{\prime}\right)^{c}$ is finite, so it has a finite domain $\operatorname{Dom}\left(\left(N^{\prime}\right)^{c}\right)$ and codomain $\operatorname{Cod}\left(\left(N^{\prime}\right)^{c}\right)$.
For every $z \notin \operatorname{Cod}\left(\left(N^{\prime}\right)^{c}\right),\{z\}^{\triangleleft}=W$. So, $\left\{\{z\}^{\triangleleft}: z \in W\right\}$ is finite and a basis for $\gamma_{N^{\prime}}$. So, $\mathbf{W}^{\prime+}$ is finite.
Moreover, if $u(x) \Rightarrow c$ is not provable in FL, then it is not valid in $\mathbf{W}^{\prime+}$.

Finite model property

For $\mathbf{W}_{\mathbf{F L}}$, given $(x, z) \in W \times W^{\prime}$ (if $z=(u, c)$, then $u(x) \Rightarrow c$ is a sequent), we define $(x, z)^{\uparrow}$ as the smallest subset of $W \times W^{\prime}$ that contains (x, z) and is closed upwards with respect to the rules of $\mathbf{F} \mathbf{L}^{\mathbf{f}}$. Note that $(x, z)^{\uparrow}$ is finite.

The new frame \mathbf{W}^{\prime} associated with $N^{\prime}=N \cup\left((y, v)^{\uparrow}\right)^{c}$ is residuated and Gentzen.
Clearly, $\left(N^{\prime}\right)^{c}$ is finite, so it has a finite domain $\operatorname{Dom}\left(\left(N^{\prime}\right)^{c}\right)$ and codomain $\operatorname{Cod}\left(\left(N^{\prime}\right)^{c}\right)$.
For every $z \notin \operatorname{Cod}\left(\left(N^{\prime}\right)^{c}\right),\{z\}^{\triangleleft}=W$. So, $\left\{\{z\}^{\triangleleft}: z \in W\right\}$ is finite and a basis for $\gamma_{N^{\prime}}$. So, $\mathbf{W}^{\prime+}$ is finite.
Moreover, if $u(x) \Rightarrow c$ is not provable in FL, then it is not valid in $\mathbf{W}^{\prime+}$.

Corollary. The system FL has the finite model property.

Finite model property

For $\mathbf{W}_{\mathbf{F L}}$, given $(x, z) \in W \times W^{\prime}$ (if $z=(u, c)$, then $u(x) \Rightarrow c$ is a sequent), we define $(x, z)^{\uparrow}$ as the smallest subset of $W \times W^{\prime}$ that contains (x, z) and is closed upwards with respect to the rules of $\mathbf{F L}{ }^{\mathbf{f}}$. Note that $(x, z)^{\uparrow}$ is finite.

The new frame \mathbf{W}^{\prime} associated with $N^{\prime}=N \cup\left((y, v)^{\uparrow}\right)^{c}$ is residuated and Gentzen.
Clearly, $\left(N^{\prime}\right)^{c}$ is finite, so it has a finite domain $\operatorname{Dom}\left(\left(N^{\prime}\right)^{c}\right)$ and codomain $\operatorname{Cod}\left(\left(N^{\prime}\right)^{c}\right)$.
For every $z \notin \operatorname{Cod}\left(\left(N^{\prime}\right)^{c}\right),\{z\}^{\triangleleft}=W$. So, $\left\{\{z\}^{\triangleleft}: z \in W\right\}$ is finite and a basis for $\gamma_{N^{\prime}}$. So, $\mathbf{W}^{\prime+}$ is finite.
Moreover, if $u(x) \Rightarrow c$ is not provable in FL, then it is not valid in $\mathbf{W}^{\prime+}$.

Corollary. The system FL has the finite model property.

Corollary. The variety of residuated lattices is generated by its finite members.

FEP

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of A can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

FEP

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of A can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
Theorem. Every variety of integral RL's axiomatized by equartions over $\{\mathrm{V}, \cdot, 1\}$ has the FEP.

- B embeds in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$via $\left\}^{\triangleleft}\right\}^{\triangleleft}: \mathbf{B} \rightarrow \mathbf{W}^{+}$
- $\mathrm{W}_{\mathrm{A}, \mathrm{B}}^{+}$is finite
- $\mathbf{W}_{\mathbf{A}, \mathrm{B}}^{+} \in \mathcal{V}$

Outline

FEP

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of A can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
Theorem. Every variety of integral RL's axiomatized by equartions over $\{\mathrm{V}, \cdot, 1\}$ has the FEP.

- B embeds in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$via $\left\}^{\triangleleft}{ }^{\triangleleft}: \mathbf{B} \rightarrow \mathbf{W}^{+}\right.$
- $\mathrm{W}_{\mathrm{A}, \mathrm{B}}^{+}$is finite
- $\mathrm{W}_{\mathrm{A}, \mathrm{B}}^{+} \in \mathcal{V}$

Corollary. These varieties are generated as quasivarieties by their finite members.

FEP

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of A can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
Theorem. Every variety of integral RL's axiomatized by equartions over $\{\mathrm{V}, \cdot, 1\}$ has the FEP.

- B embeds in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$via $\left\}^{\triangleleft}\right\}^{\triangleleft}: \mathbf{B} \rightarrow \mathbf{W}^{+}$
- $\mathrm{W}_{\mathrm{A}, \mathrm{B}}^{+}$is finite
- $\mathbf{W}_{\mathbf{A}, \mathrm{B}}^{+} \in \mathcal{V}$

Corollary. These varieties are generated as quasivarieties by their finite members.
Corollary. The corresponding logics have the strong finite model property:
if $\Phi \nvdash \psi$, for finite Φ, then there is a finite counter-model, namely there is $\mathbf{D} \in \mathcal{V}$ and a homomorphism $f: \mathbf{F m} \rightarrow \mathbf{D}$, such that $f(\phi)=1$, for all $\phi \in \Phi$, but $f(\psi) \neq 1$.

Finiteness

Idea: As every element in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$is an intersection of basic elements. So it suffices to prove that there are only finitely many such elements.

Finiteness

Idea: As every element in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$is an intersection of basic elements. So it suffices to prove that there are only finitely many such elements.

Idea: Replace the frame $\mathbf{W}_{\mathbf{A}, \mathrm{B}}$ by one $\mathbf{W}_{\mathbf{A}, \mathrm{B}}^{\mathrm{M}}$, where it is easier to work.

Finiteness

Idea: As every element in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$is an intersection of basic elements. So it suffices to prove that there are only finitely many such elements.
Idea: Replace the frame $\mathbf{W}_{\mathbf{A}, \mathrm{B}}$ by one $\mathbf{W}_{\mathbf{A}, \mathrm{B}}^{\mathrm{M}}$, where it is easier to work.

Let \mathbf{M} be the free monoid with unit over the set B and $f: M \rightarrow W$ the extension of the identity map.

$$
M \xrightarrow{f} W \stackrel{N}{-} W^{\prime}
$$

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.
Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

DM-completion
Completeness - Cut elimination
FMP
FEP
Finiteness

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.
For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.

Title
Outline

RL examples

```
Congruences
```

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic
Representation - Frames

Applications of frames

DM-completion
Completeness - Cut elimination
FMP
FEP
Finiteness

Equations 1

Equations 2
Structural rules
Amalgamation-Interpolation Applications

Undecidability
References

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.
$s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n}$ and $t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}$.

Title
Outline

RL examples

```
Congruences
```

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

DM-completion
Completeness - Cut elimination
FMP
FEP
Finiteness
Equations 1
Equations 2
Structural rules
Amalgamation-Interpolation Applications

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.
$s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n}$ and $t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}$.
The first is equivalent to: $\&\left(s_{j} \leq t_{1} \vee \cdots \vee t_{n}\right)$.

Outline

RL examples

```
Congruences
```

Subvariety lattice (atoms)

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.
$s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n}$ and $t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}$.
The first is equivalent to: $\&\left(s_{j} \leq t_{1} \vee \cdots \vee t_{n}\right)$.
We proceed by example: $x^{2} y \leq x y \vee y x$

Outline

```
Congruences
```


Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.
$s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n}$ and $t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}$.
The first is equivalent to: $\&\left(s_{j} \leq t_{1} \vee \cdots \vee t_{n}\right)$.
We proceed by example: $x^{2} y \leq x y \vee y x$
$\left(x_{1} \vee x_{2}\right)^{2} y \leq\left(x_{1} \vee x_{2}\right) y \vee y\left(x_{1} \vee x_{2}\right)$

Outline

RL examples

```
Congruences
```

Subvariety lattice (atoms)

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.
$s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n}$ and $t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}$.
The first is equivalent to: $\&\left(s_{j} \leq t_{1} \vee \cdots \vee t_{n}\right)$.
We proceed by example: $x^{2} y \leq x y \vee y x$
$\left(x_{1} \vee x_{2}\right)^{2} y \leq\left(x_{1} \vee x_{2}\right) y \vee y\left(x_{1} \vee x_{2}\right)$
$x_{1}^{2} y \vee x_{1} x_{2} y \vee x_{2} x_{1} y \vee x_{2}^{2} y \leq x_{1} y \vee x_{2} y \vee y x_{1} \vee y x_{2}$

Outline

```
Congruences
```

Subvariety lattice (atoms)

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.
$s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n}$ and $t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}$.
The first is equivalent to: $\&\left(s_{j} \leq t_{1} \vee \cdots \vee t_{n}\right)$.
We proceed by example: $x^{2} y \leq x y \vee y x$
$\left(x_{1} \vee x_{2}\right)^{2} y \leq\left(x_{1} \vee x_{2}\right) y \vee y\left(x_{1} \vee x_{2}\right)$
$x_{1}^{2} y \vee x_{1} x_{2} y \vee x_{2} x_{1} y \vee x_{2}^{2} y \leq x_{1} y \vee x_{2} y \vee y x_{1} \vee y x_{2}$
$x_{1} x_{2} y \leq x_{1} y \vee x_{2} y \vee y x_{1} \vee y x_{2}$

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.

$$
s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n} \text { and } t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}
$$

The first is equivalent to: $\&\left(s_{j} \leq t_{1} \vee \cdots \vee t_{n}\right)$.
We proceed by example: $x^{2} y \leq x y \vee y x$

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right)^{2} y \leq\left(x_{1} \vee x_{2}\right) y \vee y\left(x_{1} \vee x_{2}\right) \\
& x_{1}^{2} y \vee x_{1} x_{2} y \vee x_{2} x_{1} y \vee x_{2}^{2} y \leq x_{1} y \vee x_{2} y \vee y x_{1} \vee y x_{2} \\
& x_{1} x_{2} y \leq x_{1} y \vee x_{2} y \vee y x_{1} \vee y x_{2}
\end{aligned}
$$

$$
\frac{x_{1} y \leq v \quad x_{2} y \leq v \quad y x_{1} \leq v \quad y x_{2} \leq v}{x_{1} x_{2} y \leq v}
$$

Outline

```
Congruences
```


Equations 1

Idea: Express equations over $\{\mathrm{V}, \cdot, 1\}$ at the frame level.

For an equation ε over $\{\mathrm{V}, \cdot, 1\}$ we distribute products over joins to get $s_{1} \vee \cdots \vee s_{m}=t_{1} \vee \cdots \vee t_{n}$. s_{i}, t_{j} : monoid terms.
$s_{1} \vee \cdots \vee s_{m} \leq t_{1} \vee \cdots \vee t_{n}$ and $t_{1} \vee \cdots \vee t_{n} \leq s_{1} \vee \cdots \vee s_{m}$.
The first is equivalent to: $\&\left(s_{j} \leq t_{1} \vee \cdots \vee t_{n}\right)$.
We proceed by example: $x^{2} y \leq x y \vee y x$

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right)^{2} y \leq\left(x_{1} \vee x_{2}\right) y \vee y\left(x_{1} \vee x_{2}\right) \\
& x_{1}^{2} y \vee x_{1} x_{2} y \vee x_{2} x_{1} y \vee x_{2}^{2} y \leq x_{1} y \vee x_{2} y \vee y x_{1} \vee y x_{2} \\
& x_{1} x_{2} y \leq x_{1} y \vee x_{2} y \vee y x_{1} \vee y x_{2}
\end{aligned}
$$

$$
\frac{x_{1} y \leq v \quad x_{2} y \leq v \quad y x_{1} \leq v \quad y x_{2} \leq v}{x_{1} x_{2} y \leq v}
$$

$$
\frac{x_{1} \circ y N z \quad x_{2} \circ y N z \quad y \circ x_{1} N z \quad y \circ x_{2} N z}{x_{1} \circ x_{2} \circ y N z} R(\varepsilon)
$$

Applications of frames

DM-completion

Equations 2

Theorem. If (\mathbf{W}, \mathbf{B}) is a Gentzen frame and ε an equation over $\{V, \cdot, 1\}$, then (\mathbf{W}, \mathbf{B}) satisfies $R(\varepsilon)$ iff \mathbf{W}^{+}satisfies ε.
(The linearity of the denominator of $R(\varepsilon)$ plays an important role in the proof.)

Equations 2

Theorem. If (\mathbf{W}, \mathbf{B}) is a Gentzen frame and ε an equation over $\{V, \cdot, 1\}$, then (\mathbf{W}, \mathbf{B}) satisfies $R(\varepsilon)$ iff \mathbf{W}^{+}satisfies ε.
(The linearity of the denominator of $R(\varepsilon)$ plays an important role in the proof.)

Corollary If an equation over $\{\vee, \cdot, 1\}$ is valid in \mathbf{A}, then it is also valid in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$, for every partial subalgebra \mathbf{B} of \mathbf{A}.

Equations 2

Theorem. If (\mathbf{W}, \mathbf{B}) is a Gentzen frame and ε an equation over $\{V, \cdot, 1\}$, then (\mathbf{W}, \mathbf{B}) satisfies $R(\varepsilon)$ iff \mathbf{W}^{+}satisfies ε.
(The linearity of the denominator of $R(\varepsilon)$ plays an important role in the proof.)

Corollary If an equation over $\{\vee, \cdot, 1\}$ is valid in \mathbf{A}, then it is also valid in $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+}$, for every partial subalgebra \mathbf{B} of \mathbf{A}.

Consequently, $\mathbf{W}_{\mathbf{A}, \mathbf{B}}^{+} \in \mathcal{V}$.

Structural rules

Given an equation ε of the form $t_{0} \leq t_{1} \vee \cdots \vee t_{n}$, where t_{i} are $\{\cdot, 1\}$-terms we construct the rule $R(\varepsilon)$

$$
\frac{u\left[t_{1}\right] \Rightarrow a \quad \cdots \quad u\left[t_{n}\right] \Rightarrow a}{u\left[t_{0}\right] \Rightarrow a}(R(\varepsilon))
$$

where the t_{i} 's are evaluated in $(W, 0, \varepsilon)$. Such a rule is called linear if all variables in t_{0} are distinct.

Structural rules

Given an equation ε of the form $t_{0} \leq t_{1} \vee \cdots \vee t_{n}$, where t_{i} are $\{\cdot, 1\}$-terms we construct the rule $R(\varepsilon)$

$$
\frac{u\left[t_{1}\right] \Rightarrow a \quad \cdots \quad u\left[t_{n}\right] \Rightarrow a}{u\left[t_{0}\right] \Rightarrow a}(R(\varepsilon))
$$

where the t_{i} 's are evaluated in (W, \circ, ε). Such a rule is called linear if all variables in t_{0} are distinct.

Theorem. Every system obtained from FL by adding linear rules has the cut elimination property.

Structural rules

Given an equation ε of the form $t_{0} \leq t_{1} \vee \cdots \vee t_{n}$, where t_{i} are $\{\cdot, 1\}$-terms we construct the rule $R(\varepsilon)$

$$
\frac{u\left[t_{1}\right] \Rightarrow a \quad \cdots \quad u\left[t_{n}\right] \Rightarrow a}{u\left[t_{0}\right] \Rightarrow a}(R(\varepsilon))
$$

where the t_{i} 's are evaluated in $(W, 0, \varepsilon)$. Such a rule is called linear if all variables in t_{0} are distinct.

Theorem. Every system obtained from FL by adding linear rules has the cut elimination property.

A set of rules of the form $R(\varepsilon)$ is called reducing if there is a complexity measure that decreases with upward applications of the rules (and the rules of FL).

Structural rules

Given an equation ε of the form $t_{0} \leq t_{1} \vee \cdots \vee t_{n}$, where t_{i} are $\{\cdot, 1\}$-terms we construct the rule $R(\varepsilon)$

$$
\frac{u\left[t_{1}\right] \Rightarrow a \quad \cdots \quad u\left[t_{n}\right] \Rightarrow a}{u\left[t_{0}\right] \Rightarrow a}(R(\varepsilon))
$$

where the t_{i} 's are evaluated in $(W, 0, \varepsilon)$. Such a rule is called linear if all variables in t_{0} are distinct.

Theorem. Every system obtained from FL by adding linear rules has the cut elimination property.

A set of rules of the form $R(\varepsilon)$ is called reducing if there is a complexity measure that decreases with upward applications of the rules (and the rules of FL).

Theorem. Every system obtained from FL by adding linear reducing rules is decidable. The subvariety of residuated lattices axiomatized by the corresponding equations has decidable equational theory.

Amalgamation-Interpolation

Given algebras $\mathbf{A}, \mathbf{B}, \mathbf{C}$, maps $f: \mathbf{A} \rightarrow \mathbf{B}$ and $g: \mathbf{A} \rightarrow \mathbf{C}$ and Gentzen frames $\mathbf{W}_{\mathbf{B}}, \mathbf{W}_{\mathbf{C}}$, we define the frame \mathbf{W} on $B \cup C$, where N is specified by $\Gamma_{\mathbf{B}}, \Gamma_{\mathbf{C}} N \beta$ iff there exists $\alpha \in A$ such that $\Gamma_{\mathbf{C}} N_{\mathbf{C}} g(\alpha)$ and $\Gamma_{\mathbf{B}}, f(\alpha) N_{\mathbf{B}} \beta$.

Theorem. W is a Gentzen frame. Hence ${ }^{\triangleleft}: \mathbf{B} \cup \mathbf{C} \rightarrow \mathbf{W}^{+}$ is a quasihomomorhism.

Let $\mathbf{D}=\mathbf{W}^{+}$and h, k the restrictions of \triangleleft to \mathbf{B} and \mathbf{C}.
Corollary. The maps $h: \mathbf{B} \rightarrow \mathbf{D}$ and $k: \mathbf{C} \rightarrow \mathbf{D}$ are homomorphisms. Moreover, injections and surjections transfer: If f is injective (surjective), so is h.

Corollary. Commutative RL has the amalgamation property (f, g injective) and the congruence extension property (f injective, g surjective).

Corollary. FL_{e} has the Craig interpolation propety and enjoys the Local Deduction Theorem.

Applications

■ Cut-elimination (CE) and finite model property (FMP) for FL, (cyclic) InFL. Generation by finite members for RL, InFL

■ The finite embeddability property (FEP) for integral RL with $\{\vee, \cdot, 1\}$-axioms.
■ The strong separation property for HL
■ The above extend to the non-associative case, as well as with the addition of suitable structural rules

■ Amalgamation for commutative RL and interpolation for commutative FL

- (Craig) Interpolation, Robinson Property, disjunction property and Maximova variable separation property for FL_{e}

■ Super-amalgamation, Transferable injections, Congruence extension property for commutative RL

Undecidability

(Un)decidability

Theorem. The quasiequational theory of RL is undecidable. (Because we can embed semigroups/monoids.) The same holds for commutative RL.

(Un)decidability

Theorem. The quasiequational theory of RL is undecidable. (Because we can embed semigroups/monoids.) The same holds for commutative RL.

Theorem. The equational theory of modular RL is undecidable. (By transfering the corresponding result for modular lattices).

(Un)decidability

Theorem. The quasiequational theory of RL is undecidable. (Because we can embed semigroups/monoids.) The same holds for commutative RL.

Theorem. The equational theory of modular RL is undecidable. (By transfering the corresponding result for modular lattices).

Theorem. The equational theory of commutative, distributive RL is decidable.

Word problem (1)

A finitely presented algebra $\mathbf{A}=(X \mid R)$ (in a class \mathcal{K}) has a solvable word problem (WP) if there is an algorithm that, given any pair of words over X, decides if they are equal or not.

Word problem (1)

A finitely presented algebra $\mathbf{A}=(X \mid R)$ (in a class \mathcal{K}) has a solvable word problem (WP) if there is an algorithm that, given any pair of words over X, decides if they are equal or not.

A class of algebras has solvable WP if all finitely presented algebras in it do.

Word problem (1)

A finitely presented algebra $\mathbf{A}=(X \mid R)$ (in a class \mathcal{K}) has a solvable word problem (WP) if there is an algorithm that, given any pair of words over X, decides if they are equal or not.

A class of algebras has solvable WP if all finitely presented algebras in it do.

For example, the varieties of semigroups, groups, ℓ-groups, modular lattices have unsolvable WP.

Word problem (1)

A finitely presented algebra $\mathbf{A}=(X \mid R)$ (in a class \mathcal{K}) has a solvable word problem (WP) if there is an algorithm that, given any pair of words over X, decides if they are equal or not.

A class of algebras has solvable WP if all finitely presented algebras in it do.

For example, the varieties of semigroups, groups, ℓ-groups, modular lattices have unsolvable WP.

Main result: The variety CDRL of commutative, distributive residuated lattices has unsolvable WP.

Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.
Residuated lattices have a semigroup operation •, but commutative semigroups have a decidable WP.

Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.
Residuated lattices have a semigroup operation •, but commutative semigroups have a decidable WP.

Alternative approach: Come up with another term definable operation \odot in residuated lattices that is associative.

Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.
Residuated lattices have a semigroup operation •, but commutative semigroups have a decidable WP.

Alternative approach: Come up with another term definable operation \odot in residuated lattices that is associative.

Intuition: Coordinization in projective geometry and modular lattices.

Word problem (3)

We define an n-frame in a residuated lattice consisting of elements a_{1}, \cdots, a_{n} and $c_{i j}$, for $1 \leq i<j \leq n$ and satisfying certain conditions (the a_{i} 's are linearly independent, $c_{i j}$ is on the line generated by a_{i} and a_{j} etc.).
We use the operations \vee and .

Word problem (3)

We define an n-frame in a residuated lattice consisting of elements a_{1}, \cdots, a_{n} and $c_{i j}$, for $1 \leq i<j \leq n$ and satisfying certain conditions (the a_{i} 's are linearly independent, $c_{i j}$ is on the line generated by a_{i} and a_{j} etc.).
We use the operations \vee and .

Given a finitely presented semigroup \mathbf{S} and a variety \mathcal{V} of residuated lattices, we construct a finitely presented residuated lattice $\mathbf{A}(\mathbf{S}, \mathcal{V})$ in \mathcal{V}.

Word problem (4)

Given a finitely presented semigroup \mathbf{S} and a variety \mathcal{V} of residuated lattices, we construct a finitely presented residuated lattice $\mathbf{A}(\mathbf{S}, \mathcal{V})$ in \mathcal{V}.

Given a vector space \mathbf{W}, its powerset forms a distributive residuated lattice \mathbf{A}_{W}.

Theorem If

1. \mathcal{V} is a variery of distributive residuated lattices containing \mathbf{A}_{W} for some infinite-dimentional vector space W and
2. S is a finitely presented semigroup with unsolvable WP, then the residuated lattice $\mathbf{A}(\mathbf{S}, \mathcal{V})$ in \mathcal{V} has unsolvable WP.

In the proof we show that for every pair of semigroup words r, s,
S satisfies $r^{\prime}(\bar{x})=s^{\cdot}(\bar{x})$ iff $\mathbf{A}(\mathbf{S}, \mathcal{V})$ satisfies $r^{\odot}\left(\bar{x}^{\prime}\right)=s^{\odot}\left(\bar{x}^{\prime}\right)$.

Word problem (4)

Given a finitely presented semigroup \mathbf{S} and a variety \mathcal{V} of residuated lattices, we construct a finitely presented residuated lattice $\mathbf{A}(\mathbf{S}, \mathcal{V})$ in \mathcal{V}.

Given a vector space \mathbf{W}, its powerset forms a distributive residuated lattice \mathbf{A}_{W}.

Theorem If

1. \mathcal{V} is a variery of distributive residuated lattices containing \mathbf{A}_{W} for some infinite-dimentional vector space W and
2. S is a finitely presented semigroup with unsolvable WP, then the residuated lattice $\mathbf{A}(\mathbf{S}, \mathcal{V})$ in \mathcal{V} has unsolvable WP.

In the proof we show that for every pair of semigroup words r, s,
S satisfies $r^{\prime}(\bar{x})=s^{\cdot}(\bar{x})$ iff $\mathbf{A}(\mathbf{S}, \mathcal{V})$ satisfies $r^{\odot}\left(\bar{x}^{\prime}\right)=s^{\odot}\left(\bar{x}^{\prime}\right)$.
Corollary The WP of CDRL is unsolvable.

Word problem (5)

A quasi-equation is a formula of the form

$$
\left(s_{1}=t_{1} \& s_{2}=t_{2} \& \cdots \& s_{n}=t_{n}\right) \Rightarrow s=t
$$

The solvability/decidability of the WP states that given any set of equations $s_{1}=t_{1}, s_{2}=t_{2}, \ldots s_{n}=t_{n}$ there is an algorithm that decides all quasi-equations of the above form.

Word problem (5)

A quasi-equation is a formula of the form

$$
\left(s_{1}=t_{1} \& s_{2}=t_{2} \& \cdots \& s_{n}=t_{n}\right) \Rightarrow s=t
$$

The solvability/decidability of the WP states that given any set of equations $s_{1}=t_{1}, s_{2}=t_{2}, \ldots s_{n}=t_{n}$ there is an algorithm that decides all quasi-equations of the above form.

The solvability of the quasi-equational theory states that there is an algorithm that decides all quasi-equations of the above form.

Corollary The quasi-equational theory of CDRL is undecidable.

Word problem (5)

A quasi-equation is a formula of the form

$$
\left(s_{1}=t_{1} \& s_{2}=t_{2} \& \cdots \& s_{n}=t_{n}\right) \Rightarrow s=t
$$

The solvability/decidability of the WP states that given any set of equations $s_{1}=t_{1}, s_{2}=t_{2}, \ldots s_{n}=t_{n}$ there is an algorithm that decides all quasi-equations of the above form.

The solvability of the quasi-equational theory states that there is an algorithm that decides all quasi-equations of the above form.

Corollary The quasi-equational theory of CDRL is undecidable.

Corollary The equational theory of CDRL is decidable.

References

People

Some people involved:

P. Bahls	P. Jipsen
F. Bernadinelli	T. Kowalski
W. Blok	H. Ono
K. Blount	L. Rafter
A. Ciabattoni	J. Raftery
J. Cole	K. Terui
R.P. Dilworth	C. Tsinakis
N. Galatos	C. van Alten
J. Hart	M. Ward

N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: an algebraic glimpse at substructural logics, Studies in Logics and the Foundations of Mathematics, Elsevier, 2007.

Bibliography

P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis, Cancellative Residuated Lattices, Algebra Universalis, 50(1) (2003), 83-106.
F. Bernadinelli, H. Ono and P. Jipsen, Algebraic aspects of cut elimination, Studia Logics 68 (2001), 1-32.
W. Blok and C. van Alten, On the finite embeddability property for residuated lattices, pocrims and BCK-algebras, Algebra \& substructural logics (Tatsunokuchi, 1999). Rep. Math. Logic No. 34 (2000), 159-165.
K. Blount and C. Tsinakis, The structure of residuated lattices, Internat. J. Algebra Comput. 13 (2003), no. 4, 437-461.
A. Ciabattoni, N. Galatos and K. Terui. From Axioms to analytic rules in nonclassical logics, LICS'08, 229-240.
A. Ciabattoni, N. Galatos and K. Terui. The expressive power of structural

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)
Logic

Representation - Frames rules for FL, manuscript.
N. Galatos. Equational bases for joins of residuated-lattice varieties, Studia Logica 76(2) (2004), 227-240.
N. Galatos. Minimal varieties of residuated lattices, Algebra Universalis 52(2) (2005), 215-239.
N. Galatos and P. Jipsen. Residuated frames and applications to decidability, manuscript.

Bibliography

N. Galatos, J. Olson and J. Raftery, Irreducible residuated semilattices and finitely based varieties, Reports on Mathematical Logic 43 (2008), 85-108.
N. Galatos and H. Ono. Algebraization, parameterized local deduction theorem and interpolation for substructural logics over FL, Studia Logica 83 (2006), 279-308.
N. Galatos and H. Ono. Glivenko theorems for substructural logics over FL, Journal of Symbolic Logic 71(4) (2006), 1353-1384.
N. Galatos and H. Ono. Cut elimination and strong separation for non-associative substructural logics, manuscript.
J. Hart, L. Rafter and C. Tsinakis, The Structure of Commutative Residuated Lattices, Internat. J. Algebra Comput. 12 (2002), no. 4, 509-524.
H. Ono, Semantics for substructural logics, Substructural logics, 259-291,

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)
Logic
$\underline{\text { Representation - Frames }}$ Stud. Logic Comput., 2, Oxford Univ. Press, New York, 1993.
K. Terui, Which Structural Rules Admit Cut Elimination? - An Algebraic Criterion, JSL 72(3) (2007), 738-754.
C. van Alten and J. Raftery, Rule separation and embedding theorems for logics without weakening, Studia Logica 76(2) (2004), 241-274.
M. Ward and R. P. Dilworth, Residuated Lattices, Transactions of the AMS 45 (1939), 335-354.

