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Throughout this talk:

I R denotes an associative ring with identity,

I Mod-R the category of unital right R-modules.

I If X, Y are nonempty subsets of M, we define
Y−1X def

= {r ∈ R : Yr ⊆ X}.
If I and J are ideals of R, then

I IJ−1 = {r ∈ R | rJ ⊆ I} and
I J−1I = {r ∈ R | Jr ⊆ I}

are left (resp. right) residual of I by J.
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Topologizing filters on a ring

Definition
A nonempty family F of right ideals of a ring R is called a right
topologizing filter on R if:

F1. I ∈ F and I ⊆ J ≤ RR implies J ∈ F;

F2. I, J ∈ F implies I ∩ J ∈ F;

F3. I ∈ F and r ∈ R implies r−1I def
= {x ∈ R : rx ∈ I} ∈ F.

I Id R def
= {(two-sided) ideals of R}.

Fil RR
def
= set of all right topologizing filters on R.
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Fil RR admits a binary operation : defined by

I F : G
def
= {K ≤ RR : ∃H ∈ F s.t. K ⊆ H & h−1K ∈ G∀h ∈ H}.

I We say [Fil RR]
du is left (resp. right) residuated if given

F,G ∈ Fil RR there exists a smallest filter H in Fil RR
satisfying H : G ⊇ F (resp. G : H ⊇ F).

I We denote the left (resp. right) residual of F by G FG−1

(resp. G−1F).
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Theorem (J. Golan, 1987)
If R is any ring then 〈Fil RR;⊆du; :〉 is an integral, left
residuated, complete lattice ordered monoid. �

Question. What does the structure Fil RR tell us about the ring
R and its category of modules?
Fil RR is larger than Id R and there is an embedding of lattice
ordered monoid Id R into Fil RR.

Id R
one-to-one
↪→

order reversing
[Fil RR]

du

I 7−→ η(I) def
= {K ≤ RR : K ⊇ I}.
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Question. When is 〈Fil RR,⊆du, :〉 both right and left
residuated?

Theorem (Beachy and Blair, 1978)
The following statements are equivalent for a ring R:

(a) R is right artinian (satisfies DCC on right ideals);

(b) Fil RR = IdR, i.e., every F ∈ Fil RR has the form F = η(I),
for some ideal I ∈ IdR.
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Corollary
If R is right artinian, then Fil RR is right and left residuated.

Theorem (J. van den Berg, 1991)
If R is a commutative noetherian ring, then Fil RR is
commutative, to mean the monoid operation ’:’ on Fil RR is
commutative.

Theorem (J. van den Berg, 1999)
For any ring R, if : is commutative then Fil RR is two-sided
residuated.
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Two-sided residuation in a commutative ring

Let P be a poset. X ⊆ P is said to be downward (upward)
directed if, given any pair x1, x2 in X , ∃y ∈ X s.t x1 ≥ y and
x2 ≥ y (x1 ≤ y and x2 ≤ y ).

Theorem (N.Arega and J. vanden Berg, 2017)
Let R be a commutative ring for which [Fil RR]

du is two-sided
residuated. Then Fil RR is commutative, i.e., F : G = G : F
∀F,G ∈ Fil RR.
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Then

F : G = F :

[⋃
I∈G

η(I)

]
=
⋃
I∈G

[F : η(I)]

=
⋃
I∈G

[η(I) : F]

=

[⋃
I∈G

η(I)

]
: F

= G : F, as required.
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Definition
An ideal I of an arbitrary ring R is said to be a right annihilator
ideal [resp. left annihilator ideal] if, for some ideal K of R,
I = K−10 def

= {r ∈ R : Kr = 0} [resp.
I = 0K−1 def

= {r ∈ R : rK = 0}]

Definition
A submodule U of a right R-module M is called an annihilator
submodule if U = {x ∈ M : xI = 0} for some I ∈ Id R.
For a commutative ring R, we denote:

I Als def
= annihilator ideal(s)

I ASs def
= annihilator submodule(s).

I hps def
= hereditary pretorsion class.
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Theorem (N. Arega and J.van den Berg, 2017)
For a commutative ring R, TFAE:

(a) Fil RR is commutative;

(b) [ Fil RR]
du is two-sided residuated;

(c) The ring R/I satisfies the ACC on AIs for all I C R;
(d) The ring R/I satisfies the DCC on AIs for all I C R;
(e) (R/I)R satisfies the ACC on ASs for all I C R;
(f) (R/I)R satisfies the ACC on hps for all I C R;

(g) (R/I)R satisfies the DCC on ASs for all I C R;
(h) (R/I)R satisfies the DCC on hps for all I C R.
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Proof. Sketch: (a)⇔(b)
(c)⇔(d) For any commutative ring R, the map K 7→ K−10
constitutes a Galois connection on the set of annihilator ideals
of R.
(c)⇔(e) and (d)⇔(g).

(f)⇒(e) and (h)⇒(g) follows from the fact that every annihilator
submodule is a hereditary pretorsion submodule.

(e)⇒(f) taking M = (R/I)R, and noting that hereditary
pretorsion and annihilator submodules coincide if (e) holds.

(g)⇒(h) since the chain of implications, (g)⇒(d)⇒(c)⇒ e. As
in the proof of (e)⇒(f), the equivalence of (g) and (h) follows.
Finally, we prove (b)⇔(h) and (h)⇒(b).
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Theorem (N. Arega and J.van den Berg, preprint 2018)
The conditions FilR is commutative and R is noetherian,
coincide for large classes of rings R such as Prüfer domains
and commutative von Neumann regular rings.

Question: Are there non-noetherian commutative rings R for
which FilR is commutative that is strictly more general than the
noetherian case?

The Answer is YES.

I The class of commutative semiartinian rings are such
examples.
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Theorem (N.Arega and J.van den Berg, 2017)
Recall that for a commutative ring R TFAE:
(a) FilR is commutative;

(b) the ring R/I satisfies the ACC on annihilator ideals for all
proper ideals of I of R, i.e., for each ideal I of R, the family
{K−1I : K ∈ Id R} satifies the ACC;

(c) the ring R/I satisfies the DCC on annihilator ideals for all
proper ideals I of R, i.e., for each ideal I of R, the family
{K−1I : K ∈ Id R} satisfies the DCC.
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Commutative Semiartinian rings

Let R be an arbitrary ring (not Necessarily commutative) and M
a right R-module.
I The (ascending) Loewy series of M is the ordinal-indexed

family {socα(M)}α of submodules of M defined recursively
as follows:

soc0(M)
def
= 0 and soc1(M)

def
= soc(M),

socα+1(M)/socα(M)
def
= soc(M/socα(M)), for ordinals α ≥ 0,

socβ(M)
def
=
⋃
α<β socα(M), for a limit ordinals.
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I We say that M is semiartinain, or a Loewy module if
socα(M) = M for some ordinal α.

I The smallest such α is called the Loewy length of M.

I For each M ∈ Mod-R and ordinal α, the module
socα+1(M)/socα(M) is called the αth Loewy factor of M.

I If R is commutative, then the number of summands in a
direct sum decomposition of soc α+1(M)/soc α(M) into
simples is an invariant of M called the αth Loewy invariant
of M, and denoted dα(M).
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I If S is any nonempty class of simple right R-modules and
M ∈ Mod-R, we define socS(M) to be the sum of all simple
submodules of M that are isomorphic to some member of
S.

I The (ascending) S-Loewy series {socαS(M)}α of M is
defined in a manner entirely analogous to {socα(M)}α, as
are the notions S-Loewy module, S-Loewy length, αth

S-Loewy factor and αth S-Loewy invariant, dαS (M).
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Theorem (B. Stenström, 1975)
M is semiartinian if and only if every nonzero factor module of
M has a nonzero socle.

I We call a ring R right semiartinian if the module RR is
semiartinian.

I It is known that if K is a right ideal of arbitrary ring R, then
R will be right artinian if KR and (R/K )R are both artinian
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Theorem (T.Shores, 1974)
TFAE for a commutative semiartinian ring R:
(a) R is artinian;

(b) R has an ideal K such that soc2(KR) and (R/K )R are
artinian;

(c) The Loewy invariants d0(RR) and d1(RR) are finite, i.e.,
soc (RR) and soc 2(RR)/soc (RR) = soc(RR/soc(RR)) are both
finitely generated right R-modules.
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Theorem (N.Arega and J.van den Berg, preprint 2018)

Let R be a commutative ring for which FilR is commutative and
let S be a simple right R-module. Then TFAE:

(a) socS(RR) is f.g;

(b) socn
S(RR)/socn−1

S (RR) is f.g for all n ∈ N;

(c) socn
S(RR) f.g for all n ∈ N.
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Theorem (T.shore, 1974)

Let R be a commutative ring and M a semiartinian right
R-module that contains only finitely many nonisomorphic
simple submodules, that is to say, soc (M) = socS(M) for some
finite nonempty family S of nonisomorphic simple right
R-modules. Then for each ordinal α:

(a)socα(M)=
⊕

S∈S socαS (M).

(b) dα =
∑

S∈S dαS .
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Theorem ( N.Arega and J.van den Berg, preprint 2018)
TFAE for a commutative semiartinian ring R:

(a) R is artinian;

(b) soc (RR) and soc2 (RR) are both f.g;

(c) Fil R is commutative and soc (RR) is f.g.

Sketch of proof: (b ⇒ a); (a⇒ c) and (c ⇒ b).
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A class of examples of commutative semiartinian
rings

I Let R = 〈F ,V ,U, µ〉 where F is a field, V and U F -spaces,
and µ : V × V → U a symmetric F -bilinear map with
µ(v , v ′) = v · v ′.

I We equip the set F × V ×U with an F -algebra structure by
taking addition to be natural and defining multiplication by:

(a1, v1,u1) · (a2, v2,u2)
def
= (a1a2,a1v2 + a2v1,a1u2 + v1 ·

v2 + a2u1).
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Alternatively: a1 v1 u1
0 a1 v1
0 0 a1

 a2 v2 u2
0 a2 v2
0 0 a2

 =

a1a2 a1v2 + a2v1 a1u2 + v1.v2 + a2u1
0 a1a2 a1v2 + a2v1
0 0 a1a2

 .
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I It is easily checked that R is an F -algebra.

I The symmetry of µ guarantees that R is commutative.

Theorem ( N.Arega and J.van den Berg, preprint 2018)
Let R = 〈F ,V ,U, µ〉 with V and U nonzero F-spaces. Then

(a) R is a commutative local F-algebra with unique maximal
proper ideal J(R) = 〈0,V ,U〉 = {(0, v ,u) : v ∈ V ,u ∈ U}.

(b) soc (RR) = 〈0,0,U〉 = {(0,0,u) : u ∈ U} and

(c) soc2 (RR) = 〈0,V ,U〉 = J(R) and soc3 (RR) = RR.

I Hence RR is semiartinian with Loewy length 3.
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I If X and Y are F -subspaces of V and U, respectively, we
define F -subspace X−1Y of V as follows:

X−1Y def
= {v ∈ V : X · v ⊆ Y}
= {v ∈ V : x · v ∈ Y ∀x ∈ X}

Lemma
The following assertions are equivalent for a proper nonzero
ideal A of R = 〈F ,V ,U, µ〉:

(a) A = K−1I = {r ∈ R : Kr ⊆ I} for some I,K ∈ Id R;

(b) A = 〈0,X−1Y ,U〉 for some F-subspaces Xand Yof Vand U
respectively.
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Theorem∗. Let R = 〈F ,V ,U, µ〉. TFAE:

(a) Fil R is commutative;

(b) For each ideal I of R, the family {K−1I : K ∈ Id R} satisfies
the ACC;

(c) For each F -subspace Yof U, the family {X−1Y : X is an
F -subspace of V} of F -subspaces of V , satisfies the ACC.

Corollary
Let R = 〈F ,V ,U, µ〉. If dim F V is finite, then Fil R is
commutative.

There is no finiteness requirement on soc (RR) = 〈0,0,U〉 in
order that Fil R be commutative.
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Remark: The consequence is a plentiful supply of commutative
non-artinian semiartinian rings R for which Fil RR is
commutative.

The sufficient condition of the previous corollary, is not a
necessary condition for Fil RR to be commutative.

Example: We show that choices for V , U and µ can be made
such that dimF V and dimF U are both infinite, but the ring
R = 〈F ,V ,U, µ〉 is such that Fil RR is commutative.
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Let T be the commutative F -algebra defined by

T def
=

{(
a w
0 a

)
: a ∈ F ,w ∈W

}

where W is any infinite dimensional F -space.

Take V = U = T with symmetric F -bilinear map µ : T × T → T
the usual multiplication map on T .

Observe that dimF T is infinite because dimF W is infinite.

Let R = 〈F ,V ,U, µ〉 = 〈F ,T ,T , µ〉. We use Theorem* ((c)⇒
(a)), to show that Fil RR is commutative.
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Let Y be an F -subspace of T . It is easily seen that Y may be
written as

Y =

{(
ax sx
0 ax

)
: x ∈ F

}
+

(
0 Z
0 0

)

for some fixed
(

a s
0 a

)
∈ T and F -subspace Z of W .
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A routine calculation shows that if X is any F -subspace of T ,
then X−1Y has one of the following four forms:

X−1Y =



0;
T ;(

0 W
0 0

)
= J(T );{(

x tx
0 x

)
: x ∈ F

}
+

(
0 Z
0 0

)
for some t ∈W .
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It is clear from the above that the family {X−1Y : X is an

F -subspace of T} admits no strictly ascending chain of

F -subspace, so by Theorem*((c)⇔(a)), Fil RR is commutative.
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Thank you!
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