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Reduced Rickart rings

Reduced Rickart rings

A ring R is called right Rickart ring (or right PP ring) iff
for every a € R there exists e € R such that

m e is idempotent,

m for all x €,
ax =0 <= ex = x.

Definition
A ring R is called reduced iff

a"=0=a=0

for arbitrary n € N and a € R. 6/23
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The focal operation

Lemma

In a reduced Rickart ring R, for every a € R there exists a unique
idempotent a’ such that, for all x € R,

ax =0 < a'x = x.

The operation / is called focal operation.
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Varieties of reduced Rickart rings

Focal rings and m-rings

A reduced focal ring is an algebra (R, x,+,—,",0, 1) such that
m (R,*,+,—,0,1) is a reduced Rickart ring,

m /' is its focal operation.

A reduced 7-ring is an algebra (R, *,+, —,m,0,1) such that
m (R, %,+,—,0,1) is a reduced Rickart ring,

m 7 is the unary operation defined by 7(x) := (x')".

m From any reduced m-ring R we obtain a reduced focal ring by
defining x’ :=1 — 7(x).

9/23



Introduction

oe

Varieties of reduced Rickart rings

Two varieties of reduced Rickart rings

The class of reduced focal rings is a variety.

10/23



Introduction

oe

Varieties of reduced Rickart rings

Two varieties of reduced Rickart rings

The class of reduced focal rings is a variety.

Corollary

The class of reduced w-rings is a variety.

10/23



Introduction

oe

Varieties of reduced Rickart rings

Two varieties of reduced Rickart rings

The class of reduced focal rings is a variety.

Corollary

The class of reduced w-rings is a variety.

m These varieties are isomorphic as categories.
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Some congruence properties

Some trivial consequences of being a ring

A variety is called

congruence permutable iff the congruences of every algebra
commute

(i.e., @ o0 = 0 o 0 for all congruences 6,0, where o is the
composition of congruences).

regular iff every algebra and any of its congruences 6, o,
if [a]g = [a], then 6 = o, where [a] = {x € A | xfa}.

The variety of rings is congruence permutable and regular.
Hence, the same holds for the variety of reduced focal rings.
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Some congruence properties

Congruence distributivity

A variety is called congruence distributive iff the congruence lattices
of all its algebras are distributive.

The variety of reduced focal rings is congruence distributive.

m The majority term t(x,y, z) is obtained as follows:
B xAy:=(x—y)x,
mxdy =x+y—y'x,

mt(x,y,z)=((xAy)<(y Nz))<(z A x).
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An ideal / of a reduced focal ring R is called focal ideal iff for all
a€eR,

if a€l, then a" € 1.
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Ideals

Focal ideals and focal homomorphisms

An ideal / of a reduced focal ring R is called focal ideal iff for all
acR,
if ac/, then a" € I.

Definition
A ring homomorphism ¢ : R — S between reduced focal rings is
called focal homomorphism iff for all a € R,

¢(a) = (¢(a))"
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Ideals

Quotients

Let R be a reduced focal ring and P a focal ideal. Then
m R/1 is a reduced Rickart ring,

m the canonical epimorphism R — R/1 is a focal homomorphism.

An ideal | of a reduced focal ring R is a focal ideal iff it is the
kernel of a focal homomorphism.

15/23



Results

ooe

Ideals

Minimal prime ideals

16 /23



Results

ooe

Ideals

Minimal prime ideals

m Let R be a ring and P C R a proper ideal.

16 /23



Results

ooe

Ideals

Minimal prime ideals

m Let R be a ring and P C R a proper ideal.
m P is called prime iff for all ideals /, J of R,

if IJC P, then/ C PorJCP.

16 /23



Results

ooe

Ideals

Minimal prime ideals

m Let R be a ring and P C R a proper ideal.
m P is called prime iff for all ideals /, J of R,

if IJC P, then/ C PorJCP.

Any intersection of minimal prime ideals of a reduced Rickart ring is
a focal ideal.

16 /23



Results

[ ele}
Subdirect irreducibility

Subdirect representations

17 /23



Results

[ ele}
Subdirect irreducibility

Subdirect representations

m Let A and A;, i € ] be algebras from some variety V.

17 /23



Results

[ ele}
Subdirect irreducibility

Subdirect representations

m Let A and A;, i € ] be algebras from some variety V.

m A subdirect representation of an algebra A€V is a

monomorphism
s A— FI,-E,A,-

such that, for every projection p; : M;c;A; — Aj, the function
pios:A—= A

is surjective.
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Subdirect irreducibility

Let V be a variety.
An algebra A € V is called subdirectly irreducible iff

m for every subdirect representation
s A— FI,-E,A,-
there is some factor A; such that the projection
pi - S(A) = A;

is an isomorphism.
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Subdirect irreducibility

Subdirectly irreducible reduced focal rings

m Let R be a reduced focal ring.
m Then R is subdirectly irreducible iff its ring reduct is a domain.

m In this case, it is also simple.
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Thank you for your attention

Questions?
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