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e Brian Davey presented a series of plenary lectures with a
characterizing title

The homomorphism order: from graphs to algebras
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P. Hell, J. Nesetfil, Graphs and Homomorphisms, Oxford
Lecture Series in Mathematics and Its Applications 28, Oxford
University Press, 2004.

type 7 = (F,R)

A homomorphism of a structure A = (A, F, R) to

B = (B, F,R) is a mapping ¢ : A — B commuting with all
operations f € F and such that each relation p € R is
compatible with ¢.

Define A < B if there is a homomorphism of A to B.

< is a quasi-order.

Set A~Bif A<Band B< A.
The system of algebraic structures of type 7 factorized by the
equivalence ~ is partially ordered.
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Properties of the homomorphism order investigated for relational
structures, mostly for graphs, in algebraic category theory, random
and combinatorial context

e existence of suprema and infima (supremum is a disjoint sum,
infimum is a categorical or relational product)

e maximal chains and antichains
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monounary algebra (A, f)

well vizualisable: corresponding directed graph (A, E) such
that

(Xv)/) €E < f(X) =Yy
connected: V x,y € A 3 n,m € NU {0} such that
f(x) = f7(y)
connected component of (A, f): maximal connected
subalgebra

c € A'is cyclic if f¥(c) = c for some k € N

the set of all cyclic elements of some connected component of
A is cycle of (A, f)
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Notation and aim

L - the class of all connected monounary algebras
L= L/~ - the class L factorized by ~

Note! in the class of all (not necessarily connected)
monounary algebras
e supremum = disjoint union
e infimum = direct product
e disjoint union of connected monounary algebras is never
connected, direct product of connected monounary algebras
fails to be connected in general

Aim: L with the homomorphism order is a lattice.
e some properties of IL
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e (A, f) is unbounded if
(i) there exists no sequence {a,}nen, of elements in A such that
f(an) = ap—1 for each n € N
(ii) if x € A, n € N, then there is m € N such that
FmED(F7(x)) # 0.

e (A, f) is bounded if (A, f) satisfies (i) and does not fulfill (ii).

e (Z,suc), (N,suc) and (Z,, suc) - the algebras such that suc
is the operation of the successor
(i.e., (Zm, suc) is an m-element cycle)



Lemma
Let (A, f) € L.
(1) (N,suc) < (A, f) <(Z,suc).
(ii) If m e N, then (Z,suc) < (Zm, suc).
(iil) (Zn,suc) < (Zm,suc) if and only if m divides n
(iv) If (A, f) contains no cycle, then (A, f) < (Z, suc).

Lemma

Let (A, f) € L.

(a) (A,f) ~ (Z,suc) if and only if (A, f) contains a subalgebra
isomorphic to (Z, suc).

(b) (A,f) ~ (Zm,suc) (m e N) if and only if (A, f) contains an
m-element cycle.

(¢) (A, f) ~ (N,suc) if and only if (A, f) is bounded.



Shape of the partially ordered class I



Shape of the partially ordered class L

Lemma

The system 1L is a proper class.

Proposition

The partially ordered class 1L is bounded, with the upper bound
[(Z1, suc)]~ and with the lower bound [(N, suc)]~. Further, L is a
disjoint union of a one element set {[(Z, suc)]~} and of two parts,
the upper one Ly (over [(Z, suc)]~.) and the lower one L, (below
[(Z, suc)]~). Next, Ly is dually isomorphic to N ordered by
divisibility.



«Or» «Fr «=>»

«E»

Q>



The lattice L

The following theorem is proved by a constructive way:.

Theorem

The partially ordered class 1. forms a lattice.



The lattice L

The following theorem is proved by a constructive way:.

Theorem

The partially ordered class 1. forms a lattice.

Theorem
The lattice L is distributive.

Idea of proof:

e class of all sequences of ordinals (A, V coordinate-wise) is a
distributive lattice

e class S of all increasing sequences of ordinals is a distributive
lattice

e S factorized by some congruence is a distributive lattice

e this lattice is isomorphic to I
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Antichains in L

The following theorem was proved in 1978 , in that time
formulated in the language of category theory.

Theorem

(i) If M is an antichain in L then M is a set with at most
continuum elements.

(ii) There exists an antichain M in L possessing continuum
elements.



Thank You for Your Attention !



