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Effect algebras

Definition (Foulis, Bennett, 1994)

A partial algebra (E ;⊕, 0, 1) is called an effect algebra if 0, 1 are two
distinct elements and ⊕ is a partially defined binary operation on E which
satisfy the following conditions for any x , y , z ∈ E :

(Ei) x ⊕ y = y ⊕ x if x ⊕ y is defined,
(Eii) (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) if one side is defined,
(Eiii) for every x ∈ E there exists a unique y ∈ E such that

x ⊕ y = 1 (we put x ′ = y),
(Eiv) if 1⊕ x is defined then x = 0.

A partial order ≤ on E can be introduced by:

x ≤ y iff x ⊕ z is defined and x ⊕ z = y .
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Effect algebraic partial order

With respect to ≤, 1 is the top and 0 is the bottom element of E .

An effect algebra E is

a lattice (σ-lattice) effect algebra if (E ,≤) is a lattice (σ-lattice),

a monotone σ-complete if for every chain a1 ≤ a2 ≤ . . . there exists
a ∈ E such that a =

∨
i∈N ai .

σ-frame effect algebra – if (E ,≤) is a σ-frame, i.e., σ-complete lattice
which for countable I satisfies

a ∧ (
∨
i∈I

ai ) =
∨
i∈I

(a ∧ ai ).

Remark

An effect algebra E is σ-frame if and only E is σ-coframe.
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Examples of effect algebras

Boolean algebras – a⊕ b is defined iff a ≤ b∗ in which case
a⊕ b = a ∨ b,

MV-algebras – a⊕ b is defined iff a ≤ b′ in which case a⊕ b = a� b,

Interval effect algebras – let (G ; +,≤) be a partially ordered
commutative group, a ∈ G , 0 < a. Then [0, a] ⊆ G with
x ⊕ y = x + y iff x + y ≤ a is an effect algebra.

E(H) := [0, I ] ⊆ B(H) – an interval on bounded self-adjoint linear
operators on a complex Hilbert space H, with the usual addition,
A ≤ B if (Ax , x) ≤ (Bx , x) for all x ∈ H.
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Observables

Definition

Let E be a monotone σ-complete effect algebra. An observable is a map
x : B(R)→ E such that

(i) x(R) = 1,

(ii) if A ∩ B = ∅, then x(A ∪ B) = x(A)⊕ x(B),

(iii) if {Ai}i∈N, Ai ⊆ Ai+1, then x(
⋃

i Ai ) =
∨

i x(Ai ).

The least closed subset σ(x) ⊆ R such that x(σ(x)) = 1 is called a
spectrum of x .

An observable x is

bounded if σ(x) ⊆ [a, b], a, b ∈ R,

simple if σ(x) is finite.

By BO(E ), we denote the set of all bounded observables on E .
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Examples

Example

Measurable functions (random variables) f : Ω→ R on a measure space
(Ω,A, p) induce σ-homomorphisms x : B(R)→ A by x(B) = f −1(B).

Example

Observables on the prototype effect algebra E(H) bounded positive
self-adjoint linear operators on a complex Hilbert space H between 0 and I
are (normalized) positive-operator valued measures (POVM).
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Spectral resolutions

Theorem (Dvurečenskij, Kuková, 2014)

Let x be an observable on a σ-lattice effect algebra E . Let us set

(1) Bx(t) := x((−∞, t)).

Then

(2) if t < s, then Bx(t) ≤ Bx(s),

(3)
∨

t<s Bx(t) = Bx(s),

(4)
∧

t∈R Bx(t) = 0,
∨

t∈R Bx(t) = 1.

Moreover, for any system {B(t)}t∈R ⊆ E which satisfies (2) – (4) there
exists unique observable x on E for which (1) holds.

We call {Bx(t)}t∈R a spectral resolution of x .
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Let x be an observable on a σ-lattice effect algebra E . Let us set

(1) Bx(t) := x((−∞, t)).

Then

(2) if t < s, then Bx(t) ≤ Bx(s),

(3)
∨

t<s Bx(t) = Bx(s),

(4)
∧

t∈R Bx(t) = 0,
∨

t∈R Bx(t) = 1.

Moreover, for any system {B(t)}t∈R ⊆ E which satisfies (2) – (4) there
exists unique observable x on E for which (1) holds.

We call {Bx(t)}t∈R a spectral resolution of x .

23 / 55



Spectral resolutions
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Olson order

Definition (Dvurečenskij, 2016)

Let x , y ∈ BO(E ) be bounded observables on a monotone σ-complete
effect algebra E . A relation ≤ on BO(E ) given by

x ≤ y iff By (t) ≤E Bx(t)

for every t ∈ R is a partial order, so called Olson order.
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The sum of observables

Theorem (Dvurečenskij, 2016)

Let E be a σ-frame effect algebra and let x , y ∈ BO(E ). Let:

Bx+y (t) :=
∨
r∈Q

(Bx(r) ∧ By (t − r))

for all t ∈ R. Then there is a unique bounded observable z on E such that
Bz(t) = Bx+y (t) for every t ∈ R. We call z the sum of x , y.

Theorem (Dvurečenskij, 2016)

Let E be a σ-frame effect algebra and BO(E ) the set of all bounded
observables on E. Then BO(E ) is a distributive lattice and a lattice
ordered commutative semigroup w.r.t. Olson order and the sum of
observables.

In the rest of talk, E will denote a σ-frame effect algebra.
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Expressions of the sum of observables

Proposition

Let x , y ∈ BO(E ), σ(x) ⊆ [ax , bx), σ(y) ⊆ [ay , by ) for some
ax , bx , ay , by ∈ R and let K := Q ∩ (ax ∨ t − cy , t − ay ∧ cx). Then

Bx+y (t) =
∨
r∈K

(Bx(r) ∧ By (t − r)).

We have
Bx(t) = x((∞, t)).

Let us set
Bx(t] = x((∞, t]).
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Expressions of the sum of observables

Theorem

Let x , y ∈ B(R). Let M ⊆ R be a subset of R such that for every
p ∈ σ(x) there exists Mp ⊆ M such that p =

∧
Mp. Then

Bx+y (t) =
∨

m∈M
(Bx(m] ∧ By (t −m)).

We can take M = σ(x), i.e., the expression becomes finite when x is a
simple observable.
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Expressions of the sum of observables

Corollary

Let x , y be bounded observables on a σ-distributive lattice effect algebra
E . Then there exists at most countable set M ⊆ σ(x) such that

Bx+y (t) =
∨

m∈M
(Bx(m] ∧ By (t −m)).

Theorem

Let x , y ∈ BO(E ). Then
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Continuity of the spectral resolution

For an observable x , we have
∨

s<t Bx(s) = Bx(t) for any t ∈ R.

We say that x has a continuous spectral resolution if for any
t ∈ R,

∧
s>t Bx(s) = Bx(t).

x has a continuous spectral resolution iff for every t ∈ σ(x),
x({t}) = 0.

Theorem

Let x , y ∈ BO(E ) such as x has a continuous spectral resolution and y is
simple. Then x + y has a continuous spectral resolution.
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Continuity of the spectral resolution

Let I be a set and {Ji | i ∈ I} a family of non-empty sets. A complete
lattice L is completely distributive if for any subset {xij}i∈I ,j∈J of L we
have

∧
i∈I (

∨
j∈J xij) =

∨
f :I→J(

∧
i∈I xif (j)).

Theorem

Let x , y ∈ BO(E ) be bounded observables on a completely distributive
lattice effect algebra E. If x has a continuous spectral resolution, then
x + y has a continuous spectral resolution.
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Spectra of the sum

Theorem

Let x , y ∈ BO(E ). Then σ(x + y) ⊆ σ(x) + σ(y).

Corollary

Let x , y ∈ BO(E ) such that |σ(x)| = m and |σ(y)| = n. Then
σ(x + y) ⊆ {r + s | r ∈ σ(x), s ∈ σ(y)}, that is, |σ(x + y)| ≤ m · n.

There exists an example of x , y ∈ BO(E ) such that |σ(x + y)| = m · n.
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Extremal points of the spectrum of the sum

Theorem

Let x , y ∈ BO(E ). TFAE:

1.) if p, q ∈ Q and Bx(p) > 0,By (q) > 0, then Bx(p) ∧ By (q) > 0,

2.)
∧
σ(x) +

∧
σ(y) ∈ σ(x + y),

3.)
∧
σ(x) +

∧
σ(y) =

∧
σ(x + y).

Moreover, TFAE:

1.) if p, q ∈ Q, p <
∨
σ(x), q <

∨
σ(y), then Bx(p) ∨ By (q) < 1,

2.)
∨
σ(x) +

∨
σ(y) ∈ σ(x + y),

3.)
∨
σ(x) +

∨
σ(y) =

∨
σ(x + y).
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Inverse elements

Let f : R→ R be a mapping defined by f (t) := −t. Define
−x : B(R)→ E by −x(A) := x(f (A)),

If x(A) ∧ x(A)′ = 0 for every A ∈ B(R), then we call x a sharp
observable.

Theorem (Dvurečenskij 2016)

Let E be a σ-frame effect algebra. The set of sharp bounded observables
SBO(E ) ⊆ BO(E ) is with respect to Olson order and the sum of
observables a lattice-ordered group in which −x is the inverse element of x
and the neutral element q0 is given by σ(q0) = {0}. Moreover, SBO(E ) is
a subsemigroup and a sublattice of the lattice-ordered semigroup BO(E ).

Theorem

Let x , y ∈ BO(E ). Then (−x) + (−y) = −(x + y).
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Decomposition to a sharp and a meager part

By x̂ (x̃ respectively) we denote the least (greatest) sharp observable
greater (less) than x . We say that x is a meager observable if σ(x̃) = {a}
and a dense observable if σ(x̂) = {b}.

Theorem

Let x ∈ BO(E ). Then x = x̃ + xm = x̂ + xd where xm is a meager
observable and xd a dense observable. Moreover, we have xm = −(−x)d
and

∧
σ(xm) =

∨
σ(xd) = 0.

Theorem

Subsets M0BO(E ),D0BO(E ) ⊆ BO(E ) of meager, resp. dense,
observables such that

∧
σ(xm) = 0, resp.

∨
σ(xd) = 0, forms

subsemigroups and sublattices of the lattice-ordered semigroup BO(E ).
Moreover,

BO(E ) ∼= SBO(E )⊕M0BO(E ) ∼= SBO(E )⊕D0BO(E ).
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