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Special elements

Definition

An element x ∈ L is called

distributive if (∀y , z ∈ L) x ∨ (y ∧ z) = (x ∧ y) ∨ (x ∧ z),

standard if (∀y , z ∈ L) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),

modular if (∀y , z ∈ L) y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y

An element is standard if and only if it is distributive and modular.
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Cancellable elements

Definition

An element x ∈ L is called cancellable if

(∀y , z ∈ L) x ∨ y = x ∨ z & x ∧ y = x ∧ z → y = z

Each standard element is cancellable.

Each cancellable element is modular.
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Modular varieties: necessity

T — the trivial variety
SEM — the variety of all semigroups
SL — the variety of all semilattices

A variety V is standard [distributive, modular, cancellable] if and
only if the variety V ∨ SL has the same property.

Theorem (J. Ježek, R. N. McKenzie, 1993)

If a semigroup variety V is modular then either V − SEM or V has
the form M ∨N where M ∈ {T,SL} while N is a nilvariety.
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Modular varieties: sufficiency

w ≈ 0 is the short form of wx ≈ xw ≈ w where the letter x does
not occur in the word w

0-reduced identity is an identity of the form w ≈ 0

0-reduced variety is a variety given by 0-reduced identities

Theorem (B. M. Vernikov, M. V. Volkov, 1988)

Each 0-reduced variety is modular.
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Distributive and standard varieties

P = var{x2y ≈ xyx ≈ yx2 ≈ 0}

Pn = P ∧ var{x1x2 . . . xn ≈ 0}
Q = P ∧ var{x2 ≈ 0}
Qn = P ∧ Pn

Theorem (V. Yu. Shaprynskii, B. M. Vernikov, 2010)

For a semigroup variety V, the following are equivalent:

1) V is standard;

2) V is distributive;

3) either V = SEM or V = M ∨N where M ∈ {T,SL} and N is
one of the varieties P, Pn, Q, Qn.
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Cancellable varieties

A permutational identity of the langth n is an identity of the form

x1x2 . . . xn ≈ xσ(1)xσ(2) . . . xσ(n)

where σ ∈ Sn. We denote it by pn[σ].

X∞,∞ = P = var{x2y ≈ xyx ≈ yx2 ≈ 0}
Xm,∞ = X∞ ∧ var{pm[σ] | σ ∈ Sm}
Xm,n = Xm,∞ ∧ var{x1x2 . . . xn = 0}
Ym,n = Xm,n ∧ var{x2 ≈ 0}

Theorem (V. Yu. Shaprynskii, B. M. Vernikov, D. V. Skokov)

A semigroup variety V is cancellable if and only if either V = SEM
or V = M ∨N where M ∈ {T,SL} and N is one of the varieties
Xm,n and Ym,n.
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Corollaries

Note that Pn = Xn,n and Qn = Yn,n.

Corollary

There exist:

cancellable non-standard varieties;

0-reduced non-cancellable varieties;

modular non-cancellable varieties.
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