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Result

A non-empty lattice L = (L,V,A,”) with a unary operation is Boolean if
and only if it satisfies the identity

(XAY)V(xAY) = (xVy)A(xVy). (1)
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Proof. Let L = (L,V,A,’) be a non-empty lattice with a unary operation
satisfying (1).
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StepL: (xAy)V(xAY)=x=(xVy)A(xVy)
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StepL: (xAy)V(xAY)=x=(xVy)A(xVy)

This follows from
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StepL: (xAy)V(xAY)=x=(xVy)A(xVy)

This follows from

(XAY)V(xAY)<x<(xVy)A(xVY)
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StepL: (xAy)V(xAY)=x=(xVy)A(xVy)

This follows from

(XAY)V(xAY)<x<(xVy)A(xVY)
and (1).
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Step 2: L is bounded and ' a complementation
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Step 2: L is bounded and ' a complementation

We have
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Step 2: L is bounded and ' a complementation

We have

YyAY S(XAY)V(xAY)mx=(xVy)A(xVy)<yVy
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Step 2: L is bounded and ' a complementation

We have

YyAY S(XAY)V(xAY)mx=(xVy)A(xVy)<yVy

and hence y Ay’ ~0and yVy =~ 1.
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Step 3: / is antitone
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Step 3: / is antitone

If x <y then
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Step 3: / is antitone

If x <y then

Ve A VYA S AY) VY AX )=y Ax <X.
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Step 4: " is an involution
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Step 4: " is an involution

This follows from
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Step 4: " is an involution

This follows from

xx (XAX )V (xAX")mxAX" < X" m (X" Ax)V(X"AX) = X" Ax < x.
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Step 5: L satisfies the de Morgan laws
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Step 5: L satisfies the de Morgan laws

This follows since ’ is an antitone involution on the lattice L.
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Step 6: L is orthomodular
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Step 6: L is orthomodular

If x <y then
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Step 6: L is orthomodular

If x <y then

xV(yAX)=(yAx)V(yAX)=y.
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Step 6: L is orthomodular

If x <y then

xV(yAX)=(yAx)V(yAX)=y.

This means that x < y and y A x' = 0 together imply x = y.
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Step 7: L is distributive
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Step 7: L is distributive

We have
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Step 7: L is distributive

We have

(xANzZ)V(yAz)<(xVy)Az
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Step 7: L is distributive

We have

(xANzZ)V(yAz)<(xVy)Az

and
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Step 7: L is distributive

We have

(xANzZ)V(yAz)<(xVy)Az

and

(xVy)AzA((xA2)V(yAz)) ~
~(xVy)ANzAX' VZYAN(Y V)=~
(xVY)ANzZAKXVIIANKX V)N V)N V)~
~(xVy)AzAX Ny ~
(xVy)AzA(xVy) =0

%

%
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Step 7: L is distributive

We have

(xANzZ)V(yAz)<(xVy)Az

and

(xVy)AzA((xA2)V(yAz)) ~
~(xVy)ANzAX' VZYAN(Y V)=~
(xVY)ANzZAKXVIIANKX V)N V)N V)~
~(xVy)AzAX Ny ~
(xVy)AzA(xVy) =0

%

%

whence

(xAN2)V(yNz)=(xVy)Az
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Thank you for your attention!




