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Industrial planning

Input: Orders, material, technologies, regimes, schedule, HR.

Output: Is the plan capable? Yes/no.

Traditional solutions: Discrete time simulation, Monte Carlo.

Our approach: Use regularity of mass production, direct fuzzy
methods for probability.



Production flow

The flow is described in three modes:

I space (production network),

I mass (material, products),

I time.

Each of the modes is organized to tree structures, we use a
language of monoidal categories (composition, tensor).

The trees reflect also human reasoning — scalling between a
global/rough root and local/precise leaves.

In mass production, data are compressed and computational speed
is increased.



Network
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a, b, c, d , e, f — stacks,

g , h, k , l — processes,

1, . . . , 9 — states (nodes).



Signals

We assume that a plan is complete — regimes of processes are
known and jobs are scheduled.

Then we know all inputs and outputs of processes. The flow is
determined as a collection of signals at all states.
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Signals as words

x — unit of mass (a product),

o — unit of time.

Subword tree:

o4(xo2)3o2

o4 (xo2)3 o2

x o2

Data could be organized by markup languages. Each vertex can be
equipped by additional information, calculated inductively from
leaves.



Sausage wrapping — start



Sausage wrapping — 1st step



Sausage wrapping — 2nd step



Why this?

The signal is approximated by linear segments.

Good for answering questions about:

I maximum of the signal,

I time when some concrete value is exceeded, etc.

Time complexity: linear (search) → logarithmic (improved
estimations).

Particular problem: summation of signals (of simultaneous
processes). The signals could operate in a different “rhytm” and
there is no good word description for the sum.



The real world signal
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Random effects

We deal with signals like o4(xoY )50 where Y is a random variable,
e.g.

I Y ∼ N(2, 0.3), or

I “Y takes values between 1.8 and 2.3, typically 2”.

Signals are a sort of random walks, could be treated as “fuzzy
clouds”.

Precise theoretic results are scarce, need high mathematics, and
computationally difficult.

We cheat with a fast fuzzy calculus.



Moments

There are three prominent characteristics:

I mean µ =
∫∞
−∞ xf (x)dx (1st moment)

I variance σ2 =
∫∞
−∞(x − µ)2f (x)dx (2nd central moment)

I 3th central moment m3 =
∫∞
−∞(x − µ)3f (x)dx

Additivity: When Y = Y1 + Y2 is a sum of independent random
variables, then the three moments of Y are sums of moments of
Y1 and Y2 (regardless of the distribution). In particular, “power
variable” n ∗ Y = Y + · · ·+ Y has moments nµ, nσ2, nm3.

Derived characteristics:

I standard deviation σ,

I skewness γ = m3/σ
3.



3-point estimation

We assume that the variable is given by three values:

I “low” l — lower bound, or a small quantile,

I “typical” m — median,

I “high” h — upper bound, or a large quantile.

Inspired by a double-triangular probability distribution we set:
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Idea of the calculus

3pts input moments input
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Turn of modes

Summation of random variables works for subsequent events
(“serial summation”). But we also need “parallel summation” for
simultaneous signals. This would be the same when we are able to
turn marginal distribution “time for mass N to a marginal
distribution “mass for time t”:

t

N

Fortunatelly, both the distributions “share quantiles”, hence we
can find easily the three-point estimations.



Conclusion

−:

I It is wrong.

I It is very wrong for exotic distrubutions, e. g. multimodal
ones.

+:

I It is fast, simple, and stable.

I The engineers like the 3-point estimation and this is often the
only knoledge about the process.

I The model works for discrete, continuous, or combined
processes.


