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All rings are associative with identity 1 6= 0, unless otherwise stated.

Let R be a ring and let I ⊆ R be a subgroup of (R,+).
I is a left ideal — ∀r∈R∀i∈I ri ∈ I (RI ⊆ I )
I is a right ideal — ∀r∈R∀i∈I ir ∈ I (IR ⊆ I )
I is a two-sided ideal (an ideal) — I is a left ideal that is also a right ideal.
The fact that I is a two-sided ideal of R will be denoted by I C R.

Il(R) – the set of all left ideals in R
Ir (R) – the set of all right ideals in R
I(R) – the set of two-sided ideals in R

I(R) = Il(R) ∩ Ir (R)
If R is commutative ring then Il(R) = Ir (R) = I(R).
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For every ring R the sets Il(R), Ir (R), I(R) ordered by inclusion are
lattices with operations:

I ∨ J = I + J and I ∧ J = I ∩ J. (1)

All these lattices have the smallest element 0 and the largest element R,
and all Il(R), Ir (R), I(R) are complete and modular.

The lattice I(R) is a sublattice of Il(R) and also a sublattice of Ir (R).
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Division ring — a ring R in which lattices Il(R) and Ir (R) are a
two-element chains {0,R} ( ring in which every nonzero element a has a
multiplicative inverse, i.e., an element x with ax = xa = 1).
Examples: fields, ring of quaternions
Simple ring – a ring R in which the lattice I(R) is a two-element chain
{0,R}}.
Examples: division rings, Mn(K ) a full ring of n-by-n matrices over field K
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R. L. Blair, Ideal lattices and the structure of rings, Trans. Amer.
Math. Soc. 75 (1953), 136-153.

Theorem
A ring R has a right ideal lattice Ir (R) which is a Boolean lattice if and
only if R is isomorphic with a finite direct sum of division rings.

Theorem
1) A ring R has a two-sided ideal lattice I(R) which is a Boolean lattice if
and only if R is isomorphic with a finite direct sum of simple rings.
2) The lattice I(R) is a Boolean lattice if and only if I(R) is
complemented lattice.
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Agreements
If ∅ 6= X ⊆ R is a subset, then let:
l(X ) be the left annihilator of X in R

l(X ) = {r ∈ R : ∀x∈X rx = 0},

r(X ) be the right annihilator of X in R

r(X ) = {r ∈ R : ∀x∈X xr = 0},

Al(R) the set of all left annihilators in R,
Ar (R) the set of all right annihilators in R,

Al(R) ⊆ Il(R) and Ar (R) ⊆ Ir (R)

Al(R) ordered by inclusion is a complete lattice with operations:

I ∨ J = l(r(I ) ∩ r(J)) and I ∧ J = I ∩ J for I , J ∈ Al(R)

Ar (R) ordered by inclusion is a complete lattice with operations:

I ∨ J = r(l(I ) ∩ l(J)) and I ∧ J = I ∩ J for I , J ∈ Ar (R).
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Properties:
1) If I C R then also l(I )C R and r(I )C R.
2) For any X ⊆ R the set l(r(X )) is the smallest left annihilator which
contain X .
3) If I C R then also l(r(I ))C R.
4) Both of lattices Al(R) and Ar (R) have the smallest element 0 and the
largest element R.
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Theorem (J. Krempa, M.J.)
For every finite lattice L there exist noncommutative rings R1,R2 and
commutative ring R3 such that:
1) L can be represented as a sublattice of a lattice Al(R1).
2) L can be represented as a sublattice of a lattice Ar (R2).
3) L can be represented as a sublattice of a lattice Al(R3) = Ar (R3).
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Galois correspondence
For any ring R the mapping Al(R)→ Ar (R) given by I → r(I ) is an
anti-isomorphism of complete lattices. The inverse function is given by
J → l(J) for J ∈ Ar (R).

I ∩ Js@@I J

l(r(I + J)) = l(r(I ) ∩ r(J))
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The set of two-sided ideals which are left annihilators, denoted by Bl(R), is
a sublattice of Al(R).
The set of two-sided ideals which are right annihilators, denoted by Br (R),
is a sublattice of Ar (R).
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Lattices of annihilators

Bl(R) Br (R)

Al(R) Ar (R)

For any ring R if Al(R) = Ar (R) (as subsets of 2R) then
Al(R) = Ar (R) = Bl(R) = Br (R).

If R is commutative ring then Al(R) = Ar (R).
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Statement
If Il(R) is a Boolean lattice then Al(R) = Ar (R) is a Boolean lattice equal
to Il(R).
If I(R) is a Boolean lattice then Bl(R) = Br (R) is a Boolean lattice equal
to I(R).

Example of a ring in which Al(R) = Ar (R) is Boolean lattice and
this lattice is not equal to Il(R)
Let K be a field and let R = K [x , y ]/(xy) be a homomorphic image of the
polynomial ring in commuting variables x,y. This ring is commutative hence
Al(R) = Ar (R) = Bl(R) = Br (R) and the set of annihilators is
{0,R, (x), (y)}. For example (x)2 is an ideal but not an annihilator in R .
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An element x ∈ R s said to be nilpotent if there exists a natural number
n such that xn = 0.
The left (right) ideal I in R is said to be nilpotent if there exists a
natural number n such that I n = 0.
A ring R is called reduced if has no nonzero nilpotent elements.

Małgorzata Jastrzębska Representations of Boolean lattices 12 / 13



Let R be a ring with no nonzero nilpotent ideals. Then for each ideal I of R
l(I ) = r(I ). This implies that Bl(R) = Br (R).

Theorem (cf. S. Steinberg, Lattice ordered Rings and Modules)
Let R be a ring with no nonzero nilpotent ideals.Then Bl(R) is a Boolean
lattice.

If R is a reduced ring then for every x ∈ R we have l(x) = r(x). Hence
Al(R) = Ar (R) and R has no nonzero nilpotent ideals.
From this and the above theorem follows

Corollary
If R is a reduced ring then Al(R) = Ar (R) is a complete Boolean lattice.
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