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Regular languages

A . . . fixed finite set (alphabet, elements of A are called letters)
monoid (M, ·, 1) . . . a set M with an associative binary

operation · and a neutral element 1
A∗ . . . free monoid over A, with the operation of

concatenation; elements of A∗ are called words
L ⊆ A∗ . . . language over A
regular language . . . language which can be created from
languages of the form ∅ and {a}, where a ∈ A, by means of
finite number of applications of the following operations:

concatenation: K · L = {x · y | x ∈ K , y ∈ L}
iteration: L∗ =

⋃∞
n=0 L

n (submonoid of A∗ generated by L)
union.

The set of all regular languages is closed also under
complementation (and hence also under intersection).
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Quotienting lattices of regular languages

lattice of regular languages - a set of regular languages
containing ∅, A∗ and closed under supremum ∪ (union) and
infimum ∩ (intersection)
left/ right quotient of a language L ⊆ A∗ by a word u ∈ A∗:

u−1L = {x ∈ A∗ | ux ∈ L}, Lu−1 = {x ∈ A∗ | xu ∈ L}

Example
L = A∗aA∗bA∗ where a, b ∈ A

a−1L = L ∪ A∗bA∗ = A∗bA∗

b−1L = L

Quotienting lattice of regular languages is a lattice of regular
languages closed under left and right quotients (by every
word).
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Polynomial closure

Polynomial closure Pol(C) of a set of regular languages C is a set of
regular languages which are finite unions of languages of the form

L0a1L1 . . . anLn where ai ∈ A, Li ∈ C.
Concatenation hierarchies of regular languages:
C0 . . . a given quotienting lattice of regular languages
Cn+1/2 = Pol(Cn) = Pol

(
{LC | L ∈ Cn−1/2}

)
Cn+1 = B(Cn+1/2) . . . Boolean closure of the level n + 1/2
(closure under union and complementation)

Example

C0 := {A∗, ∅}
C1/2 = Pol(C0) . . . finite unions of languages of the form

A∗a1A
∗ . . . anA

∗ where ai ∈ A

How to decide whether a given regular language belongs to
Pol(C) for a given C?
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Let’s learn about some tools for an algebraic
description of the polynomial closure.
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Metric d : A∗ × A∗ → R0

Two words u, v ∈ A∗ are "close" w.r.t. d iff for distinguishing
them by a homomorphism ϕ : A∗ → M there’s needed a "big"
(finite) monoid M.

We denote by Â∗ a completion of a metric monoid (A∗, d).

Â∗ still forms a monoid, with an operation of concatenation
continuously extended from A∗.
Two pseudowords u, v ∈ Â∗ are "close" iff for distinguishing
them by a continuous homomorphism ϕ : Â∗ → M there’s
needed a "big" (finite) monoid M.

Example

For an arbitrary pseudoword x ∈ Â∗ we define xω := limn→∞xn!.
For every continuous homomomorphism ϕ : Â∗ → M to a finite
monoid M: ϕ(xω) = ϕ(limn→∞ xn!) = limn→∞ ϕ(x)n! . . .
the unique idempotent power of ϕ(x)
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Preorder ≤L on Â∗

For a regular language L and pseudowords u, v ∈ Â∗ the
relation

u ≤L v

means that the following property is satisfied:

∀p, q ∈ A∗ : u ∈ p−1Lq−1 ⇒ v ∈ p−1Lq−1.

The relation ∼L ⊆ Â∗ × Â∗ defined by

u ∼L v ⇔ u ≤L v and v ≤L u

is a congruence of finite index.
ML = A∗/ ∼L . . . syntactic monoid of L, equipped with
a partial order induced by ≤L

. . . computable algorithmically
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An equational description of the polynomial closure

Theorem (Branco, Pin, 2009)

Let C be a quotienting lattice of regular languages, K a regular
language. Then K belongs to Pol(C) if and only if xω ≤K xωyxω

for all x , y ∈ Â∗ such that x =C x
2 ≤C y .

For a quotienting lattice of regular languages C:

u ≤ C v ⇔ ∀L ∈ C : u ≤L v

⇔ ∀L ∈ C ∀p, q ∈ A∗ : u ∈ p−1Lq−1 ⇒ v ∈ p−1Lq−1

⇔ ∀L ∈ C : u ∈ L ⇒ v ∈ L.

u = C v ⇔ u ≤ C v and v ≤ C u
For the decidability of Pol(C) it suffices to be able to compute
the set of pairs

C[K ] = {(S ,T ) ∈ MK ×MK | S = S2,∃x ∈ S ,∃y ∈ T : x ≤C y}.
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Connection to the separability of regular languages

For the decidability of Pol(C) it suffices to be able to compute
the set of pairs

C[K ] = {(S ,T ) ∈ MK ×MK | S = S2,∃x ∈ S ,∃y ∈ T : x ≤C y}.

For u ∈ Â∗ denote [u]∼K
= {v ∈ A∗ | v ∼K u}.

Proposition (connection of Theorems by Branco, Pin, 2009 and
Place, Zeitoun, 2018)

Let C be a quotienting lattice of regular languages, K a regular
language, x , y ∈ Â∗ pseudowords. Then the two following
conditions are equivalent:

1 x ≤ C y
2 ∀L ∈ C : [x ]∼K

⊆ L ⇒ [y ]∼K
∩ L 6= ∅

The condition 2 says that the language [x ]∼K
is not

C-separable from the language [y ]∼K
. (Place, Zeitoun)
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Computation of C[K ]

C[K ] = {(S ,T ) ∈ MK ×MK | S = S2,∃x ∈ S , ∃y ∈ T : x ≤C y}

Proposition
Let C be a quotienting lattice of regular languages, K a regular
language, x , y ∈ Â∗ pseudowords. Then the two following
conditions are equivalent:

1 x ≤ C y
2 ∀L ∈ C : [x ]∼K

⊆ L ⇒ [y ]∼K
∩ L 6= ∅

For given S ,T ∈ ML and a given regular language L we can
check if the conditions S ⊆ L and T ∩ L 6= ∅ are satisfied.
So for a finite quotienting lattice of regular languages C we
can compute C[K ].
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Example - Computation of C1/2[K ]

C0 = {∅,A∗}
C1/2 = Pol(C0) . . . finite unions of languages of the form

A∗a1A
∗a2A

∗ . . . anA
∗ where a1, . . . , an ∈ A

. . . quotienting lattice of regular languages
Stratification: C1/2 =

⋃∞
k=1 Ck1/2

Ck1/2 . . . a (quotienting) lattice of regular languages generated by
languages of the form

A∗a1A
∗a2A

∗ . . . anA
∗ where n ≤ k, a1, . . . , an ∈ A

The lattice Ck1/2 is finite for every k ∈ N.

Proposition

Let K be a regular language. Then C1/2[K ] = C|MK |
1/2 [K ].
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Work in progress - Computation of C3/2[K ]

C3/2 = Pol
(
{LC | L ∈ C1/2}

)
. . . finite unions of languages of the

form

B∗0a1B
∗
1a2B

∗
2 . . . anB

∗
n where ai ∈ A,Bi ⊆ A (Arfi, 1991)

C3/2 =
⋃∞

k=1 Ck3/2 where Ck3/2 are certain finite quotienting lattices
defined by terms of logic FO[<] on words (Place, Zeitoun)

Theorem (Place, Zeitoun, 2017)

Let K be a regular language. Then C3/2[K ] = Ck3/2[K ] for

k = 18 · |MK |2 · 2|MK |.

C3/2 =
⋃∞

k=1 Ck3/2 where Ck3/2 is a lattice of regular languages
generated by languages of the form

B∗0a1B
∗
1a2B

∗
2 . . . anB

∗
n where n ≤ k, ai ∈ A,Bi ⊆ A

Ck3/2 is finite for every k ∈ N (even Ck3/2 ⊆ C
k
3/2).

GOAL: Find k (as small as possible) such that C3/2[K ] = Ck3/2[K ].
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Thank you for your attention.
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