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Ternary quasigroups

A ternary groupoid is a non-empty set A with a ternary operation
[ ] : A3

→ A.
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Ternary quasigroups

A ternary groupoid is a non-empty set A with a ternary operation
[ ] : A3

→ A.

A ternary groupoid (A, [ ]) is a ternary quasigroup if for every
a, b, c ∈ A each of the following equations is uniquely solvable for
z ∈ A:

[zab] = c ;

[azb] = c ;

[abz ] = c .
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Ternary quasigroups

A ternary groupoid is a non-empty set A with a ternary operation
[ ] : A3

→ A.

A ternary groupoid (A, [ ]) is a ternary quasigroup if for every
a, b, c ∈ A each of the following equations is uniquely solvable for
z ∈ A:

[zab] = c ;

[azb] = c ;

[abz ] = c .

Each ternary quasigroup (A, [ ]) has left, middle and right
cancellation property, e.g. for all x , y , a, b ∈ A

[xab] = [yab] ⇒ x = y (left-cancellativity).
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Ternary groups

An operation [ ] : A3
→ A is associative if for all a, b, c , d , e ∈ A

[[abc]de] = [a[bcd ]e] = [ab[cde]].
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Ternary groups

An operation [ ] : A3
→ A is associative if for all a, b, c , d , e ∈ A

[[abc]de] = [a[bcd ]e] = [ab[cde]].

An associative ternary quasigroup is a ternary group.
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Ternary groups

An operation [ ] : A3
→ A is associative if for all a, b, c , d , e ∈ A

[[abc]de] = [a[bcd ]e] = [ab[cde]].

An associative ternary quasigroup is a ternary group.

Generalizing binary groups: Kasner 1904, Dörnte 1929, Lehmer
1932, Post 1940 (n-groups, polyadic groups)
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Knot-theoretic ternary groups

A knot-theoretic ternary group is a ternary group (A, [ ]) which
satisfies

[[abc]cd ] = [[ab[bcd ]][bcd ]d ],

[ab[bcd ]] = [a[abc][[abc]cd ]],

for all a, b, c , d ∈ A.

SSAOS 2018 Ternary groups



Knot-theoretic ternary groups

A knot-theoretic ternary group is a ternary group (A, [ ]) which
satisfies

[[abc]cd ] = [[ab[bcd ]][bcd ]d ],

[ab[bcd ]] = [a[abc][[abc]cd ]],

for all a, b, c , d ∈ A.

Virtual knot theory (Kauffman 1999)
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Third Reidemeister move (flat version)

Niebrzydowski 2014
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Semi-commutativity
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Semi-commutativity

Each knot-theoretic ternary group (A, [ ]) is semi-commutative:

[abc] = [cba]

for every a, b, c ∈ A.
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Semi-commutativity

Each knot-theoretic ternary group (A, [ ]) is semi-commutative:

[abc] = [cba]

for every a, b, c ∈ A.

Semi-commutativity = lack of orientation
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Semi-commutativity

Each knot-theoretic ternary group (A, [ ]) is semi-commutative:

[abc] = [cba]

for every a, b, c ∈ A.

Semi-commutativity = lack of orientation

Theorem (G lazek-Gleichgewicht, 1982)

A ternary group is semi-commutative if and only if it is entropic.
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Entropicity

[[a1a2a3][b1b2b3][c1c2c3]] = [[a1b1c1][a2b2c2][a3b3c3]].
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Skew element
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Skew element

In a ternary quasigroup (A, [ ]), for every element a ∈ A, the unique
solution of the equation

[aza] = a

is the skew element to a (denoted by ā).
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Skew element

In a ternary quasigroup (A, [ ]), for every element a ∈ A, the unique
solution of the equation

[aza] = a

is the skew element to a (denoted by ā).

Theorem (Borowiec-Dudek-Duplij, 2006)

If (A, [ ]) is a ternary group, then

[āaa] = [aāa] = [aaā] = a

[baā] = [bāa] = [aāb] = [āab] = b

[abc] = [c̄ b̄ā]

¯̄a = a

for every a, b, c ∈ A.
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Knot-theoretic ternary groups
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Knot-theoretic ternary groups

Theorem

Let (A, [ ]) be a ternary group. (A, [ ]) is a knot-theoretic ternary

group if and only if (A, [ ]) is semi-commutative and satisfies

[abb] = ā

for every a, b ∈ A.
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Knot-theoretic ternary groups

Theorem

Let (A, [ ]) be a ternary group. (A, [ ]) is a knot-theoretic ternary

group if and only if (A, [ ]) is semi-commutative and satisfies

[abb] = ā

for every a, b ∈ A.

In particular, in each knot-theoretic group

[ccc] = c̄ ,

for every c ∈ A.
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Example

SSAOS 2018 Ternary groups



Example

Let k > 1 be a natural number, (Zk ,+) be a cyclic group and a be
a fixed element of Zk .

Define on the set Zk the ternary operation

[xyz ] = x − y + z + a (mod k).

Then (Zk , [ ]) is a knot-theoretic ternary group if and only if
2a = 0 (mod k) in Zk .

For each even k , there are exactly two knot-theoretic groups
constructed in this way:

1 idempotent one for a = 0,

2 non-idempotent for a being the element of order 2 in Zk .
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Retracts

Let (A, [ ]) be a ternary groupoid. A binary groupoid (A, ∗), where
x ∗ y = [xay ] for some fixed a ∈ A, is a retract of (A, [ ]) (denoted
by reta(A, [ ])).
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Retracts

Let (A, [ ]) be a ternary groupoid. A binary groupoid (A, ∗), where
x ∗ y = [xay ] for some fixed a ∈ A, is a retract of (A, [ ]) (denoted
by reta(A, [ ])).

A retract reta(A, [ ]) of a semi-commutative ternary group is an
abelian group with the neutral element ā and the inverse of x ∈ A

given by [axa].
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Knot-theoretic ternary group
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Knot-theoretic ternary group

Theorem

Each knot-theoretic ternary group (A, [ ]) is determined by an

abelian group (A,+) and an element a ∈ A of order one or two in

(A,+). Then for every x , y , z ∈ A

[xyz ] = x − y + z + a and x̄ = x + a.
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Knot-theoretic ternary group

Theorem

Each knot-theoretic ternary group (A, [ ]) is determined by an

abelian group (A,+) and an element a ∈ A of order one or two in

(A,+). Then for every x , y , z ∈ A

[xyz ] = x − y + z + a and x̄ = x + a.

We denote the knot-theoretic ternary group (A, [ ]) described above
by T((A,+), a). The group (A,+) is the associated group of
(A, [ ]) = T((A,+), a).

reta(T((A,+), a)) = (A,+).
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Isomorphisms of KTTG

Theorem

Let (A1, [ ]1) = T((A1,+1), a) and (A2, [ ]2) = T((A2,+2), b) be

two knot-theoretic ternary groups. Then the following statements

are equivalent:

1 (A1, [ ]1) and (A2, [ ]2) are isomorphic;

2 there exists a group isomorphism h : (A1,+1) → (A2,+2) such

that b = h(a).
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Isomorphisms of KTTG

Theorem

Let (A1, [ ]1) = T((A1,+1), a) and (A2, [ ]2) = T((A2,+2), b) be

two knot-theoretic ternary groups. Then the following statements

are equivalent:

1 (A1, [ ]1) and (A2, [ ]2) are isomorphic;

2 there exists a group isomorphism h : (A1,+1) → (A2,+2) such

that b = h(a).

Enumeration of isomorphism classes of knot-theoretic ternary
groups (up to 64 elements)
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Virtual knot theory
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Compatible ternary groups
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Compatible ternary groups

Two ternary groups (A, [ ]) and (A, <>) are compatible if the
following condition is satisfied:

[ab < bcd >] =< a < abc > [< abc > cd ] >,

for any a, b, c , d ∈ A.
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Compatible ternary groups

Two ternary groups (A, [ ]) and (A, <>) are compatible if the
following condition is satisfied:

[ab < bcd >] =< a < abc > [< abc > cd ] >,

for any a, b, c , d ∈ A.

1 Any knot-theoretic ternary group is compatible with itself.

2 For a finite abelian binary group (of an even rank) (A,+) with
a neutral element 0 and x an element of order 2: two
(non-isomorphic) knot-theoretic ternary groups:
(A, [ ]) = T((A,+), 0) and (A, < >) = T((A,+), x) are
compatible.
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Mixed Reidemeister type three move
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Application for flat virtual links

Theorem

For a pair of compatible knot-theoretic ternary groups (A, [ ]) and

(A, <>), and a diagram D of a flat virtual link, the number of

knot-theoretic ternary group colorings of D is not changed by the

Reidemeister moves used for flat virtual links.
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Application for flat virtual links

Theorem

For a pair of compatible knot-theoretic ternary groups (A, [ ]) and

(A, <>), and a diagram D of a flat virtual link, the number of

knot-theoretic ternary group colorings of D is not changed by the

Reidemeister moves used for flat virtual links.

Example: The flat-virtual Hopf link is distinguished from the
unlink (two disjoint unknotted loops) by two-element ternary
groups.
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Example
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Thank you for your attention!

SSAOS 2018 Ternary groups


