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Prelimimaries

Algebra is called arithmetical if its congruences permute and the
congruence lattice is distributive.

Algebra is called affine complete if its polynomial functions are
precisely the congruence preserving functions.

Variety is called arithmetical (affine complete) if so are all its
members.
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Pixley function on a set A – a ternary function f on A satisfying
the identity f (x , y , y) = f (x , y , x) = f (y , y , x) = x .

Pixley term for an algebra A – a ternary term that induces a
Pixley function on A.

Pixley term for a variety V – a ternary term that is a Pixley term
for all members of V .

Theorem (A. Pixley)
A variety is arithmetical iff it admits a Pixley term.



5/24

minimal algebra – an algebra that has no proper subalgebras.

Theorem (K.K., Pixley)
An arithmetical variety of finite type is affine complete iff it is
generated by a finite minimal algebra.
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Principal arithmetical varieties

Cg A(a, b) – the principal congruence generated by the pair of
elements a, b of an algebra A.

Let p be a Pixley term for a variety V , A ∈ V and a, b, c , d ∈ A. It
is easy to check that then the following holds:

p(a, b, c) = p(a, b, d) =⇒ (c , d) ∈ Cg A(a, b) . (*)

We call V a principal arithmetical variety if there is a Pixley
term p (called a principal Pixley term) for V such that in (*) the
opposite implication holds, too.



7/24

Thus, if p is a principal Pixley term for a variety V , A ∈ V and
a, b ∈ A then the principal congruence Cg A(a, b) consists of all
pairs (c , d) such that f(a,b)(c) = f(a,b)(d) where f(a,b)(x) is the
derived unary function p(a, b, x). In other words, Cg A(a, b) is the
kernel of the function f(a,b). It is easy to see that
(f(a,b)(x), x) ∈ Eg (a, b) for all a, b, x ∈ A, thus, the function f(a,b)
selects an element in every class of Cg A(a, b). We will call any
such function a selector for Cg A(a, b).

We also mention that, as it directly follows from the definition,
every principal arithmetical variety has equationally defined
principal congruences. Such varieties were first studied in 1984 by
Blok, Köhler and Pigozzi.
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The present work is a continuation of the paper

K.K., A. Pixley, Weakly diagonal algebras and definable principal
congruences, AU 55 (2006)

where the main result was

Theorem (Principality)
Every arithmetical affine complete variety of finite type is a
principal arithmetical variety with respect to an appropriately
chosen Pixley term.
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The most common examples of principal arithmetical varieties are
discriminator varieties. Recall that every set A admits a “standard”
Pixley function d(x , y , z) called discriminator and defined as
follows: d(x , y , z) = z if x = y and d(x , y , z) = x otherwise.

discriminator term for an algebra A – a ternary term d that
induces the discriminator on A.

discriminator algebra – an algebra A admitting a discriminator
term.

It is easy to see that all discriminator algebras are simple.
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dicriminator variety – a variety that admits a common
discriminator term for all its subdirectly irreducibles.

Theorem (Werner, 1978)
A discriminator term for a variety V is also a principal Pixley term
for V .
Hence, every discriminator variety is a principal arithmetical variety.

The most important example of a discriminator variety is the
variety of Boolean algebras B. Its discriminator term is
(x ∧ y ′) ∨ (x ∧ z) ∨ (y ′ ∧ z).

Since B is generated by the 2-element Boolean algebra which is
minimal, this variety is affine complete. Thus, discriminator
varieties and arithmetical affine complete varieties of finite type are
two different generalizations of the variety of Boolean algebras and
principal arithmetical varieties generalize both of them.
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Finitely generated congruences

Theorem
If A is an algebra in a principal arithmetical variety with principal
Pixley term p and if θ is a finitely generated congruence of A, i.e.:
is the join of finitely many principal congruences, say

θ = Cg A(a1, b1) ∨ · · · ∨ Cg A(am, bm)

then the nested polynomial

f (x) = p(a1, b1, p(a2, b2, . . . , p(am, bm, x) . . . ))

is a selector for θ.
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The latter allows to construct a closed form solution formula for
any finitely presented system of pairwise compatible congruences
(the Chinese Remainder Theorem).

The classical Chinese Remainder Theorem asserts that the system
of simultaneous integer congruences

x ≡ a1 (mod m1)
· · · · · · · · · · · · · · ·

x ≡ an (mod mn)

is solvable iff ai ≡ aj (mod g .c .d .(mi ,mj)) for all 1 ≤ i < j ≤ n.
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This fact generalizes to arbitrary arithmetical algebras as follows.

Theorem
Let A be an arithmetical algebra, a1, . . . , an ∈ A and
θ1, . . . , θn ∈ Con(A). Then the system of congruences

x ≡ a1 mod θ1
· · · · · · · · · · · · · · ·
x ≡ an mod θn

(B)

is solvable iff ai ≡ aj mod (θi ∨ θj) holds for all 1 ≤ i < j ≤ n.
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The following theorem shows that for every principal arithmetical
variety V and natural numbers m and n, there is a formula that
solves any system of congruences (B) over any algebra A ∈ V
where every θi is the join of at most m principal congruences:

θi = Cg (ai1, bi1) ∨ · · · ∨ Cg (aim, bim) . (**)



15/24

Theorem
Let V be a principal arithmetical variety with principal Pixley term
p. Then there are (2m + 1)-ary terms ti (xi1, yi1, . . . , xim, yim, z),
1 ≤ i ≤ n, and a (2m + n)-ary term
t(xi1, yi1, . . . , xim, yim, z1, . . . , zn) such that for any algebra A ∈ V ,
any system (B) over A with congruences θ1, . . . , θn as in (**) is
solvable iff

gi (gj(ai )) = gi (gj(aj)), 1 ≤ i < j ≤ n

where

gi (z) = ti (ai1, bi1, . . . , aim, bim, z), 1 ≤ i ≤ n .

If these conditions are satisfied then a solution of (B) is

c = t(ai1, bi1, . . . , aim, bim, a1, . . . , an) .
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Note that the terms t1, . . . , tn and t that appear in the theorem
above are composed only from p.

It is interesting to compare the solution above with the case of
integer congruences (A). In both cases one has to solve the
congruences two at a time and then to use distributivity of the
congruence lattice. The difference comes from the fact that the
ring of integers Z is an arithmetical algebra but it does not
generate an arithmetical variety.
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Regular algebras

An algebra A is called (congruence) regular if every congruence
of A is determined by each of its classes, i.e.: if a ∈ A and
ρ, σ ∈ ConA then a/ρ = a/σ implies ρ = σ.

A variety is called (congruence) regular if so are all its members.

Clearly, regularity implies the condition NSC (no singleton
classes) meaning that only the zero congruence may have a
singleton class.

The converse is not true. There exists a six-element non-regular
arithmetical algebra that satisfies NSC.

It is known (Thurston, 1958) that if all members of a variety V
have the property NSC then the variety is regular. In fact, a
stronger results holds: an algebra is regular iff all of its
homomorphic images have the property NSC.
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It is known (Grätzer, 1970) that a variety is regular, if so is its free
algebra in three generators.

Theorem
A finite minimal regular algebra contained in an arithmetical variety
generates a regular variety.
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Lattice of compact congruences

Throughout this section we will deal exclusively with an
arithmetical affine complete variety V of finite type, that is, an
arithmetical variety of finite type which is generated by a finite
minimal algebra A. We will prove the following two theorems.

Theorem (Meets)
Let p(x , y , z) be any principal Pixley term for V and m be the
majority term given by m(x , y , z) = p(x , p(x , y , z), z). Then in all
algebras of V the meet of principal congruences is given by the
formula

Cg (a, b) ∧ Cg (c , d) = Cg (m(a, b, c),m(a, b, d)) . (M)
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Theorem (Joins)
If the minimal algebra A generating V is regular, then there exists a
principal Pixley term p(x , y , z) for V such that for all algebras in V
the join of principal congruences is given by the formula

Cg (a, b) ∨ Cg (c , d) = Cg (p(a, b, c), p(b, a, d)) . (J)
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The formulas (M) and (J) first appeared in

S. Bulman-Fleming, H. Werner, Equational compactness in
quasi-primal varieties, Algebra Universalis 7 (1977), 33–46.

The basic difference between these two Theorems (Meets and
Joins) is that in the first of them any principal Pixley term for V
works while in the second a new principal Pixley term has to be
constructed and this is possible only if V is regular.
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Sketch of proof of Joins Theorem

The proof follows the general scheme of the proof of Principality
Theorem and relies on the fact that a variety generated by a finite
minimal algebra contains a largest minimal algebra.

Lemma
Suppose p(x , y , z) is a principal Pixley term for an algebra A and
a, b, c , d ∈ A. Then the following are equivalent:
1. Cg (a, b) ∨ Cg (c , d) = Cg (p(a, b, c), p(b, a, d));
2. p(p(a, b, c), p(b, a, d), a) = p(p(a, b, c), p(b, a, d), b);
3. Cg (a, b) ≤ Cg (p(a, b, c), p(b, a, d)).

Moreover, each of these conditions implies regularity of A.
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Let V be a principal arithmetical variety with principal Pixley term
p(x , y , z). Assume that V is regular and take a largest minimal
member A of V . It is known that such algebra is weakly diagonal,
that is every subalgebra of its square contains the graph of some
automorphism of A.

As the first step, we construct a principal Pixley function f (x , y , z)
on A that satisfies the conditions of Lemma. We do this step by
step, starting from the top. This means that for every ρ ∈ ConA
we define a ternary function fρ on A/ρ that satisfies the necessary
conditions. We start by defining for all maximal congruences ρ the
function fρ to be the discriminator. Next we take congruencwes
covered by maximal congruences and so on.

Since A is affine complete, the function f is polynomial and
because A is weakly diagonal, we can define a term function
satisfying the same conditions.
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THANK YOU!


