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Main result

Theorem

The following classes of (countable) structures are equal.

1 The class of all structures A for which there exist constants c and
d < 1 so that the number of injective n-orbits of Aut(A) is at most
cndn. (Kexp+)

2 The class of finite coverings of reducts of unary ω-categorical
structures. (F (R(U)))

Bertalan Bodor (TU Dresden) Structures with small orbit growth Špindler̊uv Mlýn, 6th September 2018
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Reducts

Definition

B is a reduct of A if they have the same domain set; and all constants,
functions and relations of B are first-order definable in A.

Two reducts are considered the same iff they are interdefinable, that is
they are reducts of one another.

Notation

If C is a class of structures, then R(C) denotes the class of reducts of
structures in C.
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Reducts and automorphism groups

Facts

If B is a reduct of A, then Aut(B) ⊃ Aut(A).

Aut(A): closed in Sym(A).

Definition

A is ω-categorical iff for all n Aut(A) has finitely many n-orbits.

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

For ω-categorical structures B 7→ Aut(B) is a bijection between

the reducts of A (up to interdefinability) and

the closed supergroups of Aut(A).
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Reducts and automorphism groups

Facts

If B is a reduct of A, then Aut(B) ⊃ Aut(A).

Aut(A): closed in Sym(A).

Definition

A is ω-categorical iff for all n Aut(A) has finitely many n-orbits.

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

For ω-categorical structures B 7→ Aut(B) is a bijection between

the reducts of A (up to interdefinability) and

the closed supergroups of Aut(A).

Bertalan Bodor (TU Dresden) Structures with small orbit growth Špindler̊uv Mlýn, 6th September 2018
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Unary structures

Notation

U := class of unary ω-categorical structures.

What is in U?

Finite union of pure sets.

In terms of automorphism groups:
∏n

i=1 Sym(Xi ).
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Reducts of unary structures

What is in R(U)?

We can join orbits (we are still in U).

We can add flips of orbits. Example: 2 infinite cliques.

That is all. (...)
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Finite coverings

Definition

A is a finite covering of B if there is a π : A→ B such that

1 π is surjective,

2 π−1(w) is finite for all w ∈ B,

3 Aut(A) preserves the partition {π−1(w) : w ∈ B},
4 The action of Aut(A) on B is Aut(B).
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Finite coverings

Examples

B× F is a finite covering of B,

B× F , but each element is labelled in F (trivial covering).

Notation

F (C) is the class of finite coverings of structures in C.
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Reducts of finite coverings

Structures in F (U): can be described (...).

What about reducts?

Observations

R(U) ⊂ R(F (U)).

F (R(U)) ⊂ R(F (U)).

Is there anything else?
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Orbit growth

Notation

On(A) is the number of orbits of the action of Aut(A) on the set of
injective n-tuples of A.

Orbit growth in U : On ≈ cn.
Orbit growth in F (U) : On ≈ cnndn : d < 1 ≈ ndn : d < 1.
Orbit growth in F (N): On ≈ #(partitions of limited size) ≈ ndn : d < 1.
Why? The orbit of an injective n-tuple is determined by which if its entries
are π-equivalent.

Definition

Kexp := {A : ∃c(On(A) ≤ cn)},
Kexp+ := {A : ∃c , d < 1(On(A) ≤ cndn)}.
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Orbit growth

Notation

On(A) is the number of orbits of the action of Aut(A) on the set of
injective n-tuples of A.

Orbit growth in U : On ≈ cn.
Orbit growth in F (U) : On ≈

cnndn : d < 1 ≈ ndn : d < 1.

Orbit growth in F (N): On ≈ #(partitions of limited size) ≈ ndn : d < 1.

Why? The orbit of an injective n-tuple is determined by which if its entries
are π-equivalent.

Definition

Kexp := {A : ∃c(On(A) ≤ cn)},
Kexp+ := {A : ∃c , d < 1(On(A) ≤ cndn)}.

Bertalan Bodor (TU Dresden) Structures with small orbit growth Špindler̊uv Mlýn, 6th September 2018
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Orbit growth

Theorem
1 Kexp = R(U),

2 Kexp+ = F (R(U)).

Remarks

“⊃”: easy,

(2) → (1): “easy”.

Corollary

The class F (R(U)) is closed under taking reducts, and thus
F (R(U)) = R(F (U)).

Corollary

Kexp+ = F (R(U)) is the smallest nontrivial class of countable structures
which is closed under R, F, and C (adding finitely many constants).
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Orbit growth

Theorem
1 Kexp = R(U),

2 Kexp+ = F (R(U)).

Remarks

“⊃”: easy,

(2) → (1): “easy”.

Corollary

The class F (R(U)) is closed under taking reducts, and thus
F (R(U)) = R(F (U)).

Corollary

Kexp+ = F (R(U)) is the smallest nontrivial class of countable structures
which is closed under R, F, and C (adding finitely many constants).

Bertalan Bodor (TU Dresden) Structures with small orbit growth Špindler̊uv Mlýn, 6th September 2018
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Orbit growth
Ideas for the proof of Kexp = R(U)

Primitive case:

Theorem (Macpherson, 1984)

If G ≤ Sym(X ), G primitive, but not highly transitive, then On(G ) ≥ n!
p(n)

for some polynomial p.

Corollary

We are done in the primitive case. That is if A ∈ Kexp (or in Kexp+), and
Aut(A) is primitive, then Aut(A) = Sym(A).
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Orbit growth
Ideas for the proof of Kexp = R(U)

More general case:
Setting:

G ≤ Sym(X ) closed,

G is not primitive,

G has no finite orbits,

On(G ) ≤ 2n.

Steps:

There is one nontrivial partition of G with finitely many classes:
X1,X2.
We need G ≥ Sym(X1)× Sym(X2).

We show that G |Xi
is primitive and closed → G |Xi

= Sym(Xi ).

Then if G � Sym(X1)× Sym(X2), then there is bijection e : X1 → X2

such that {(x , e(x)} is an invariant partition.
Not possible because of orbit growth.
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Not possible because of orbit growth.
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Thomas’ conjecture

Conjecture (Thomas, 1991)

Every homogeneous structure over a finite relational language has finitely
many reducts.

Solved for several individual structures, but not much is known is general.

Theorem

Every structure in Kexp+ has finitely many reducts.

We need:

Kexp+ = F (R(U)),

A quasi-characterization of structures in F (R(U)).
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Future work: CSPs in Kexp+

Definition

CSP(A) is the following computational problem:

Input: primitive positive formula ϕ in A (ϕ ≡ ∃∃ . . . ∃(
∧

(atomic)))

Question: Is ϕ true?

Dichotomy conjecture: CSP(A) is either in P or NP-complete.

Theorem (Bulatov, 2017; Zhuk 2017,)

The dichotomy conjecture is true if A is finite.

Theorem (Bodirsky, Mottet, 2016)

The dichotomy conjecture is true for structures in R(U). (Using the finite
dichotomy conjecture.)
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Future work: CSPs in Kexp+

What about CSPs in finite coverings?

Some partial results:

Dichotomy solved for finite coverings of the pure set assuming that
the relation “π(a) = π(b)” is p.p. definable,

Also solved for infinitely many edges.

Conjecture

A ∈ Kexp+.
If Pol(A) contains a (canonical) pseudo-cyclic term, then CSP(A) is in P,
otherwise it is NP-complete.

Bertalan Bodor (TU Dresden) Structures with small orbit growth Špindler̊uv Mlýn, 6th September 2018
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Future work

Some other questions:

Describe all structures in Kexp+ = F (R(U)).

Decidability problems in Kexp+.
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