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Result

Theorem 1

A non-empty lattice L = (L,∨,∧, ′) with a unary operation is Boolean if
and only if it satisfies the identity

(x ∧ y) ∨ (x ∧ y ′) ≈ (x ∨ y) ∧ (x ∨ y ′). (1)
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Outline of the proof

Let L = (L,∨,∧, ′) be a non-empty lattice with a unary operation satisfying
(1).
Step 1: (x ∧ y) ∨ (x ∧ y ′) ≈ x ≈ (x ∨ y) ∧ (x ∨ y ′),
Step 2: L is bounded and ′ a complementation,
Step 3: ′ is antitone,
Step 4: ′ is an involution,
Step 5: L satisfies the de Morgan laws,
Step 6: L is orthomodular,
Step 7: L is distributive.
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Proof

Proof. Let L = (L,∨,∧, ′) be a non-empty lattice with a unary operation
satisfying (1).
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Step 1: (x ∧ y) ∨ (x ∧ y ′) ≈ x ≈ (x ∨ y) ∧ (x ∨ y ′)

This follows from

(x ∧ y) ∨ (x ∧ y ′) ≤ x ≤ (x ∨ y) ∧ (x ∨ y ′)

and (1).
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Step 2: L is bounded and ′ a complementation

We have

y ∧ y ′ ≤ (x ∧ y) ∨ (x ∧ y ′) ≈ x ≈ (x ∨ y) ∧ (x ∨ y ′) ≤ y ∨ y ′

and hence y ∧ y ′ ≈ 0 and y ∨ y ′ ≈ 1.
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Step 3: ′ is antitone

If x ≤ y then

y ′ ≈ (y ′ ∧ x) ∨ (y ′ ∧ x ′) ≤ (y ′ ∧ y) ∨ (y ′ ∧ x ′) ≈ y ′ ∧ x ′ ≤ x ′.
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Step 4: ′ is an involution

This follows from

x ≈ (x ∧ x ′)∨ (x ∧ x ′′) ≈ x ∧ x ′′ ≤ x ′′ ≈ (x ′′ ∧ x)∨ (x ′′ ∧ x ′) ≈ x ′′ ∧ x ≤ x .
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Step 5: L satisfies the de Morgan laws

This follows since ′ is an antitone involution on the lattice L.
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Step 6: L is orthomodular

If x ≤ y then

x ∨ (y ∧ x ′) = (y ∧ x) ∨ (y ∧ x ′) = y .

This means that x ≤ y and y ∧ x ′ = 0 together imply x = y .
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Step 7: L is distributive

We have

(x ∧ z) ∨ (y ∧ z) ≤ (x ∨ y) ∧ z

and

(x ∨ y) ∧ z ∧ ((x ∧ z) ∨ (y ∧ z))′ ≈
≈ (x ∨ y) ∧ z ∧ (x ′ ∨ z ′) ∧ (y ′ ∨ z ′) ≈
≈ (x ∨ y) ∧ z ∧ (x ′ ∨ z) ∧ (x ′ ∨ z ′) ∧ (y ′ ∨ z) ∧ (y ′ ∨ z ′) ≈
≈ (x ∨ y) ∧ z ∧ x ′ ∧ y ′ ≈
≈ (x ∨ y) ∧ z ∧ (x ∨ y)′ ≈ 0

whence

(x ∧ z) ∨ (y ∧ z) ≈ (x ∨ y) ∧ z .
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Thank you for your attention!
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