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A quick glimpse on monads

Monads are a certain type of additional structures one can define on a
category.

A monad consists of
I a category C,
I a functor T : C → C,
I a natural transformation η : idC → T ,
I a natural transformation µ : T 2 → T ,

satisfying certain conditions.
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A quick glimpse on monads

Every adjunction between two categories gives rise to a monad on one
of the categories.

Monads generalize varieties of algebras: there is a one-to-one
correspondence between

I finitary varieties of algebras and
I certain monads on Set.

This correspondence generalizes nicely: every monad T on a category
C gives rise to the category of algebras (or Eilenberg-Moore category)
CT .
So one can consider monads to be a generalization of varieties of
algebras.
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From varieties to monads
Let V be a variety of universal algebras.

Write TV (X ) for the the underlying set of the free algebra generated
by the set X , so elements of TV (X ) are (equivalence classes) of terms
over X .
Then TV : Set→ Set is a functor:

TV (X
f−→ Y ) : F (X )→ F (Y )

replaces variable x in terms by the variable f (x).
For every set X there is a natural mapping ηX : X → TV (X ), given by
ηX (x) = x .
η is the unit of the monad
For every set X there is a natural mapping
µX : TV (TV (X ))→ TV (X ), given by ‘flattening of terms over terms’
or ‘evaluation in the free algebra’.
µ is the multiplication of the monad
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Getting the variety back

Let (T , η, µ) be a monad on a category C.
An algebra for the monad T is a morphism α : T (X )→ X such that a
certain pair of diagrams commutes.

There is a notion of morphism of algebras for T , giving us a category.
This category is called the Eilenberg-Moore category of the monad T

It is denoted by CT .

Theorem
For every finitary variety V, V ' SetTV .
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Algebras over other categories than Set

Example
For every ring A, A-modules are algebras for a monad on the category
of abelian groups.

Graphs equipped with a perfect matching are algebras for a monad on
the category of graphs.
Bounded posets are algebras for a monad on the category of posets.
Involutive posets are algebras for a monad on posets.
Closure operators are algebras for a monad on posets.
Retractions are algebras for a monad on the category C→, whenever C
has coproducts.
Compact Haussdorff spaces are algebras for a monad on Set.
Small categories are algebras for a monad on the category of directed
multigraphs.
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The Kalmbach embedding

[Kalmbach, 1977] proved the following

Theorem
Every bounded lattice can be embedded into an orthomodular lattice.

Corollary
Orthomodular lattices do not satisfy any special lattice equation.
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The Kalmbach embedding

Let L be a bounded lattice. Let K (L) be the set of all finite chains in
L with even number of elements.

Introduce a partial order on the set K (L) by the following rule:

[a1 < a2 < · · · < a2n−1 < a2n] ≤ [b1 < b2 < · · · < b2n−1 < b2k ]

if and only if for every 1 ≤ i ≤ n there exists 1 ≤ j ≤ k such that
b2j−1 ≤ a2i−1 < a2i ≤ b2j .
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Then K (L) is a bounded lattice.
Moreover, it is an orthomodular lattice: the orthocomplementation is

({ai}2ni=1)′ := {ai}2ni=1∆{0, 1},

where ∆ denotes the symmetric difference and
the mapping ηL : L→ K (L) given by ηL(x) = {0, x} for x > 0 and
ηL(0) = ∅ is a injective morphism of lattices.
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The Kalmbach embedding

K cannot be made to a functor from the category of lattices into the
category of orthomodular lattices.
However, K can be extended to a functor from the category of
bounded posets to the category of orthomodular posets;
for f : P → Q is BPos, K (f ) : K (P)→ K (Q) is given by the rule

K (f )([a1 < a2 < · · · < a2n−1 < a2n]) = ∆2n
i=1{f (ai )}.

[Harding, 2004] K is left adjoint to the forgetful functor U from the
category of orthomodular posets OMP to the category of bounded
posets BPos.
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Every adjunction like this

C
F

++⊥ D
G

kk

between two categories induces a monad on C and a comonad on D.

Therefore, the adjunction discovered by Harding induces a monad on
BPos.
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The Kalmbach monad

Definition
The Kalmbach monad (T , η, µ) on the category BPos is given as follows

T : BPos→ BPos is the Kalmbach embedding K : BPos→ OMP
composed with the forgetful functor U : OMP→ BPos, that means,
T = U ◦ K ;
ηP : P → T (P) is given by

ηP(x) =

{
{0, x} x > 0
∅ x = 0

µP : T 2(P)→ T (P) is given by

µP([C1 < C2 < · · · < C2n−1 < C2n]) = C1∆C2∆ . . .∆C2n,

where ∆ denotes the symmetric difference of sets.
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What are algebras for the Kalmbach monad?

Answer: effect algebras
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Effect algebras

An effect algebra [Foulis and Bennett, 1994, Kôpka and Chovanec, 1994,
Giuntini and Greuling, 1989]

(A; +, 0, 1)

+ is a binary partial operation.
0, 1 are constants.

(E1) If a + b is defined, then b + a is defined and a + b = b + a.
(E2) If a + b and (a + b) + c are defined, then b + c and a + (b + c) are

defined and (a + b) + c = a + (b + c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that a + a′ exists and

a + a′ = 1.
(E4) If a + 1 is defined, then a = 0.
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Convex effect algebras

Definition
A convex effect algebra is an effect algebra E equipped with a
multiplication by real numbers from interval [0, 1] such that, for all
ρ, ψ ∈ [0, 1] and a, b ∈ E ,
(C1) a.1 = a

(C2) (a.ρ).ψ = a.(ρ.ψ)

(C3) If a + b is defined, then a.ρ+ b.ρ is defined and (a + b).ρ = a.ρ+ b.ρ

(C4) If ρ+ ψ < 1, then a.ρ+ a.ψ is defined and a.(ρ+ ψ) = a.ρ+ a.ψ.
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Theorem
[Jacobs, 2010] The category of convex effect algebras ConvEA is an
Eilenberg-Moore category for a monad on the category of effect algebras
EA.
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Problem
Is ConvEA a category of algebras for some monad on BPos?
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The � product on BPos

Let A,B,C be bounded posets. We say that a BPos-morphism
H : A× B → C is a 0-bimorphism if and only if, for all a ∈ A and
b ∈ B , h(0, b) = h(b, 0) = 0.

Let us write A�B for the poset A× B/ ∼, where ∼ is the equivalence
on A× B generated by the relations (a, 0) ∼ (0, b), for all a ∈ A
b ∈ B .
All the elements of A× B that have 0 in first or second coordinate
form one of the equivalence classes of ∼, all the other elements form
singleton equivalence classes.
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The � product on BPos

Clearly, the mapping � : A× B → A�B that takes an element of A× B to
its equivalence class is a 0-bimorphism. Moreover, it is an universal
0-bimorphism in the following sense: for every 0-bimorphism
h : A× B → C , there is a unique morphism of bounded posets
f : A�B → C such that

A× B

�
��

h

""
A�B

f
// C

commutes.
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Fact
The category (BPos,�, 2) is a monoidal category.a

aHere, 2 is a 2-element chain
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[0, 1] is a monoid

Proposition
The real interval [0, 1], equipped with multiplication of reals is a monoid in
the monoidal category (BPos,�, 2).
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Every monoid induces a monad

There is a monad (S , µS , ηS) on BPos associated with [0, 1]. Explicitly,
S : BPos→ BPos is an endofunctor given by the rule
S(A) = A�[0, 1]

ηS : idBPos → S is a natural transformations given by ηSA(x) = x�1
and
µS : S ◦ S → S is a natural transformation given by
µSA(x�ρ�ψ) = x�(ρ.ψ).

This monad is called the free [0, 1]-action monad on BPos.
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Distributive laws [Beck, 1969]

If S ,T are monads on a category, it may happen that T ◦ S can be
made to a monad.
The additional data needed to do that is a natural transformation
λ : ST → TS , satisfying certain conditions.
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Distributive laws [Beck, 1969]

S
SηT

~~

ηTS

  
ST

λ
// TS

T
ηST

}}

TηS

!!
ST

λ
// TS

SST

µST
��

Sλ // STS
λS // TSS

TµS

��
ST

λ
// TS

STT

SµT

��

λT // TST
Tλ // TTS

µTS
��

ST
λ

// TS
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Example
There is a distributive law between

the ‘free abelian group’ monad on Set and
the ‘free monoid’ monad on Set.

The composite monad is the ‘free ring’ monad.
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Results

Theorem
There is a distributive law between

the Kalmbach monad T on BPos and
the free [0, 1]-action monad on BPos.
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Results

Theorem
The category of algebras for the composite monad TS is equivalent for the
category of effect algebras equipped with multiplication with a scalar,
satisfying the following conditions:
(C1) a.1 = a

(C2) (a.ρ).ψ = a.(ρ.ψ)

(C3) If a + b is defined, then a.ρ+ b.ρ is defined and (a + b).ρ = a.ρ+ b.ρ

Note: these are not convex effect algebras, the axiom
(C4) If ρ+ ψ < 1, then a.ρ+ a.ψ is defined and a.(ρ+ ψ) = a.ρ+ a.ψ.
is missing.
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What next?

Call the algebras on the previous slide weak effect algebras.

Problem
Are convex effect algebras algebras for a monad over weak effect algebras?
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