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Introduction

The concept of hypergroup over group was introduced in 2008
by S. Dalalyan and consists of a set and of a group with 6 mappings
which satisfy 12 axioms. This concept arises when one tries to extend the
concept of quotient group in case of any subgroup of the given group.
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Definition of hypergroup over group

Let H be a group. A (right) hypergroup over group H is a set M
together with a system of structural mappings Ω = (Φ,Ψ,Ξ,Λ), where

(Φ) Φ : M × H → M, Φ(a, α) := aα,

(Ψ) Ψ : M × H → H, Ψ(a, α) := aα,

(Ξ) Ξ : M ×M → M, Ξ(a, b) := [a, b],

(Λ) Λ : M ×M → H, Λ(a, b) := (a, b)

are mappings which satisfy following conditions.

P1) The mapping Ξ is a binary operation on M such that
(i) any equation [x , a] = b with elements a, b ∈ M has a unique

solution in M,
(ii) (M,Ξ) has a left neutral element o ∈ M, i.e. [o, a] = a for any

element a ∈ M.

Shant Navasardyan (YSU) Independence of Axioms September 3, 2018 4 / 11



Definition of hypergroup over group

Let H be a group. A (right) hypergroup over group H is a set M
together with a system of structural mappings Ω = (Φ,Ψ,Ξ,Λ), where

(Φ) Φ : M × H → M, Φ(a, α) := aα,

(Ψ) Ψ : M × H → H, Ψ(a, α) := aα,

(Ξ) Ξ : M ×M → M, Ξ(a, b) := [a, b],

(Λ) Λ : M ×M → H, Λ(a, b) := (a, b)

are mappings which satisfy following conditions.
P1) The mapping Ξ is a binary operation on M such that

(i) any equation [x , a] = b with elements a, b ∈ M has a unique
solution in M,

(ii) (M,Ξ) has a left neutral element o ∈ M, i.e. [o, a] = a for any
element a ∈ M.

Shant Navasardyan (YSU) Independence of Axioms September 3, 2018 4 / 11



Definition of hypergroup over group

P2) The mapping Φ is a (right) action of the group H on the set M, that
is

(i) (aα)β = aα·β for any elements α, β ∈ H and for every a ∈ M,
(ii) aε = a for each a ∈ M, where ε is the neutral element of the group

H.

P3) For any element α ∈ H, there exists an element β ∈ H such that
α = oβ.
P4) The following identities hold:

(A1) a(α · β) = aα · aαβ,

(A2) [a, b]α = [a
bα, bα],

(A3) (a, b) · [a,b]α = a(bα) · (abα, bα),

(A4) [[a, b], c] = [a(b,c), [b, c]],

(A5) (a, b) · ([a, b], c) = a(b, c) · (a(b,c), [b, c]).

We denote hypergroup over group by MH .
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Independence of axioms of hypergroup over group

Theorem 1

The system {(P1), (P2), (P3), (A1), (A2), (A3), (A4), (A5)} of axioms of
hypergroup over group is independent.
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The case of faithful action Φ

Definition

The action Φ of the group H on the set M is called faithful, if there is no
non-trivial element α ∈ H such that Φ(a, α) = aα = a for all elements
a ∈ M.

Let H be a group, M be a set and Ω = (Φ,Ψ,Ξ,Λ) be a system of
mappings.

Theorem 2

If the conditions (P1), (P2), (A2), (A4) are satisfied, the action Φ is
faithful and Φ(o, α) = oα = o for any element α ∈ H, then the conditions
(P3), (A1), (A3), (A5) are satisfied also.
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The standard construction of hypergroup over group

Let G be a group and H be a subgroup of G . Consider a right
transversal of the subgroup H in the group G , i.e. a subset M ⊂ G such
that |M ∩Ha| = 1 for every element a ∈ G . Then for every element g ∈ G
there are unique α ∈ H and a ∈ M such that g = α · a.

So the elements
a · α and a · b have unique decomposition

a · α = aα · aα, a · b = (a, b) · [a, b] for any elements α ∈ H, a, b ∈ M.

So we can define mappings

Φ : M × H → M, Φ(a, α) = aα,

Ψ : M × H → H, Ψ(a, α) = aα,

Ξ : M ×M → M, Ξ(a, b) = [a, b],

Λ : M ×M → H, Λ(a, b) = (a, b)
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Theorem 3

The set M together with the system of structural mappings
Ω = (Φ,Ψ,Ξ,Λ) is a hypergroup over group H, i.e. the axioms
(P1)− (P4) are satisfied.

In this case we say that the hypergroup over group MH is obtained by
standard construction.

Let MH and M ′H′ be hypergroups over group with systems of
structural mappings Ω = (Φ,Ψ,Ξ,Λ) and Ω′ = (Φ′,Ψ′,Ξ′,Λ′) respectively.
Then the pair (f0, f1), consisted of isomorphism f0 : H → H ′ and bijection
f1 : M → M ′, is called an isomorphism between MH and M ′H′ if:

Φ ◦ f1 = (f1 × f0) ◦ Φ′,

Ψ ◦ f0 = (f1 × f0) ◦Ψ′,

Ξ ◦ f1 = (f1 × f1) ◦ Ξ′,

Λ ◦ f0 = (f1 × f1) ◦ Λ′.
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The universality property of standard construction

Theorem 4

For every hypergroup MH there exists a hypergroup MH obtained in
standard construction and isomorphic to MH .

We construct the hypergroup over group MH as follows. Let
G = {αa : α ∈ H, a ∈ M}, consider on G the operation

αa · βb = (α · aβ · (aβ, b))[aβ, b].

This is a group operation, and H = {(α · (o, o)−1)o : α ∈ H} is a
subgroup of G . The set M = {εa : a ∈ M} is a right transversal of H,
and the corresponding hypergroup over group (obtained by standard
construction) MH is isomorphic to MH .

We call the group G the exact product of H and M related with
the hypergroup over group MH .

Shant Navasardyan (YSU) Independence of Axioms September 3, 2018 10 / 11



The universality property of standard construction

Theorem 4

For every hypergroup MH there exists a hypergroup MH obtained in
standard construction and isomorphic to MH .

We construct the hypergroup over group MH as follows. Let
G = {αa : α ∈ H, a ∈ M}, consider on G the operation

αa · βb = (α · aβ · (aβ, b))[aβ, b].

This is a group operation, and H = {(α · (o, o)−1)o : α ∈ H} is a
subgroup of G . The set M = {εa : a ∈ M} is a right transversal of H,
and the corresponding hypergroup over group (obtained by standard
construction) MH is isomorphic to MH .

We call the group G the exact product of H and M related with
the hypergroup over group MH .

Shant Navasardyan (YSU) Independence of Axioms September 3, 2018 10 / 11



The universality property of standard construction

Theorem 4

For every hypergroup MH there exists a hypergroup MH obtained in
standard construction and isomorphic to MH .

We construct the hypergroup over group MH as follows. Let
G = {αa : α ∈ H, a ∈ M}, consider on G the operation

αa · βb = (α · aβ · (aβ, b))[aβ, b].

This is a group operation, and H = {(α · (o, o)−1)o : α ∈ H} is a
subgroup of G . The set M = {εa : a ∈ M} is a right transversal of H,
and the corresponding hypergroup over group (obtained by standard
construction) MH is isomorphic to MH .

We call the group G the exact product of H and M related with
the hypergroup over group MH .

Shant Navasardyan (YSU) Independence of Axioms September 3, 2018 10 / 11



Thank You !!!
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