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Introduction - triples and quadruples

In this lecture we introduce quadruples consisting of a Boolean algebra B, a
Hilbert algebra D, a certain compatibility relation C between B and D and a
join-preserving mapping ϕ from B to a ∨-semilattice NucD of nuclei on D
(closure endomorphisms on D) that preserves both the least and the greatest
element.

Our goal is to characterize every bounded Hilbert algebra and every relatively
pseudocomplemented poset by means of a quadruple.

Notice that characterizing triples were introduced by C. C. Chen and
G.Grätzer and intensively studied by T. Katriňák and his collaborators. For
modular pseudocomplemented posets similar triples were introduced and
investigated by the I. Chajda and R. Halaš.

Also, our results on characterizing Hilbert quadruples should be compared
with the results by J. Cı̄rulis on quasi-decompositions.
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Introduction - triples and quadruples

The usual motivation for various triple constructions has been the desire for
reduction of algebras under consideration to simpler, or better known
algebraic structures.

In our construction we follow the idea of W. Nemitz for constructing bounded
implicative semilattices having a given Boolean algebra for closed algebra,
and a given implicative semilattice for dense filter.

As Nemitz we work with an action of the Boolean algebra on dense elements
but instead of factorizing the cartesian product of the Boolean algebra with
the dense filter we directly specify possible pairs of elements of our Boolean
algebra and dense elements.

The reason is that our represented structure does not have meets and
congruences do not always induce relatively pseudocomplemented posets,
i.e., we need to be more precise in other conditions.
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Hilbert algebras

Hilbert algebra (Diego): A = (A,∗,1) may be treated as a poset (A,≤)
with the greatest element 1 equipped with a binary operation ∗ such that

x∗ y = 1 if and only if x≤ y,

x≤ y∗ x, x∗ (y∗ z)≤ (x∗ y)∗ (x∗ z) .

A will be called bounded if it has a smallest element 0; in this case, for
x ∈ A we put x∗ := x∗0.

Homomorphism of Hilbert algebras: a mapping between Hilbert
algebras preserving operations ∗ and 1 (and hence preserving also
order).

The class H (H0) of all (bounded) Hilbert algebras considered as
algebras of the form (A,∗,1) ((A,∗,1,0) respectively) is equationally
definable.

Since any Boolean algebra is a bounded Hilbert algebra we will further
use the denotion (B,∗,1,0) for Boolean algebras as well.
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Relatively pseudocomplemented posets

Relative pseudocomplement of a with respect to b: is an element c of
a poset A = (A,≤), in symbols c = a∗b, such that c is the greatest
element x of A satisfying z≤ a,x =⇒ z≤ b.

Relatively pseudocomplemented poset: is a poset A = (A,≤) such
that a∗b exists for all a,b ∈ A.

S. Rudeanu has shown that the class of all relatively
pseudocomplemented posets is a proper subclass of the class of all
Hilbert algebras. Hence we may work further in the context of Hilbert
algebras.

Relatively pseudocomplemented poset: is a Hilbert algebra (A,∗,1)
such that a∗b is the greatest element of the set
{x ∈ A | z≤ a,x =⇒ z≤ b} for all a,b ∈ A.

Let R (R0) denote the class of all (bounded) relatively
pseudocomplemented posets.

Homomorphism of (bounded) relatively pseudocomplemented
posets: is a homomorphism of (bounded) Hilbert algebras.
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Implicative semilattices

Obviously, in the case when A is a meet-semilattice we have that
z≤ a,x =⇒ z≤ b is equivalent to a∧ x≤ b and hence the concept of
relative pseudocomplement in posets is a generalization of the
corresponding concept for meet-semilattices.

Implicative semilattice: is an algebra (A,∧,∗,1) of type (2,2,0) such
that (A,∧) is a meet-semilattice and (A,∗,1) is a relatively
pseudocomplemented poset.

Let I S (I S 0) denote the class of all (bounded) implicative
semilattices.

Homomorphism of (bounded) implicative semilattices: is a
homomorphism of (bounded) Hilbert algebras that preserves finite
meets.
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Basic results

We will write UI for the forgetful functor from I S to H . Fix A ∈H , a
pair (G,e), where G is an implicative semilattice and e is an injective
homomorphism from A to UI(G) is said to be an implicative semilattice
envelope of A if for every y ∈ G there exists a finite subset X ⊆ A such
that y =

∧
e(X).

It is well known that there is a functor S from H to I S such that, for
any A ∈H , we have an injective homomorphism e from A to UI(S(A))
and (S(A),e) is an implicative semilattice envelope of A.
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Compatibility relation

Let A = (A,∗,1) be a Hilbert algebra. The compatibility relation C on
Hilbert algebras was introduced by E. L. Marsden.

We will use an equivalent definition due to J. Cı̄rulis : elements a,b ∈ A
are said to be compatible (in symbols, a C b) if they have a lower bound c
such that a≤ b∗ c.

This lower bound c is necessary a meet of elements a and b; we call also
a meet arising in this way compatible.

A subset of A is its relative subsemilattice if it is closed under existing
compatible meets.

To emphasize that the meet of a and b is compatible, it will be written as
a∧∧b.

(A,∗,1) is an implicative semilattice if and only if all meets in A exist and
are compatible.

If (G,e) is an implicative semilattice envelope of A then
e(a∧∧b) = e(a)∧ e(b) for all a,b ∈ A such that a C b.
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Congruences

Let ConA denote the set of all congruences on a Hilbert algebra A.

A congruence θ on a relatively pseudocomplemented poset A = (A,∗,1)
will be the congruence on the Hilbert algebra A.

In particular, all results on congruences valid for Hilbert algebras will be
also true for relatively pseudocomplemented posets.

An equivalence relation θ on a poset (A,≤) is called convex if a,b,c ∈ A,
a≤ b≤ c and (a,c) ∈ θ together imply (a,b) ∈ θ , i.e. if every class of θ is
a convex subset of (A,≤).

Theorem

Let A = (A,∗,1) be a Hilbert algebra and θ ∈ ConA. Then θ is convex and any
congruence class of θ is up-directed.
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Nuclei

Definition

Let A = (A,∗,1) be a Hilbert algebra. A nucleus on A is a map j : A→ A such
that for any a,b ∈ A:

(i) a≤ b implies j(a)≤ j(b);

(ii) a≤ j(a);

(iii) ( j ◦ j)(a) = j(a);

(iv) j( j(a)∗ j(b)) = j(a∗b).

We put A j = {a ∈ A | j(a) = a} and define a binary operation ∗ j on A j by
a∗ j b = j(a∗b). Clearly, A j is a subposet of A.

Notice that any closure operator on A which is an endomorphism of A is
a nucleus on A.

The identity mapping idA and the unit mapping 1 : x 7→ 1 are examples of
nuclei.
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Nuclei

Proposition

Let A = (A,∗,1) be a Hilbert algebra and let j be a nucleus on A. Then

(i) j : A→ A is an endomorphism of A and ∗ j is the restriction of ∗ to A j.

(ii) The algebra A j = (A j,∗ j,1) is a Hilbert algebra which is a subalgebra
isomorphic to a quotient algebra of A.

(iii) The quotient homomorphism j : A→ A j is a retract with respect to the
inclusion homomorphism i : A j→ A.
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Theorem

Let A = (A,∗,1) be a Hilbert algebra.

(i) Let j be a nucleus on A. Then the relation θ j on A defined by

a θ j b if and only if j(a) = j(b),

a,b ∈ A, is a congruence on A. Moreover, any congruence class aθ j has
the greatest element j(a).

(ii) Let θ be a congruence on A such that any congruence class aθ has a
greatest element âθ . Then the mapping jθ : A→ A defined by

jθ (a) = âθ

for all a ∈ A is a nucleus on A.
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Nuclei and congruences

Let A = (A,∗,1) be a Hilbert algebra.

We will denote by ConnA the set of congruences θ on A such that any
congruence class of θ has a greatest element.

Similarly, we will denote by NucA the set of nuclei j on A.

Both sets can be ordered, ConnA via inclusion of relations and NucA as
a subposet of AA.

Due to J. Cı̄rulis we know that the set NucA is closed under composition
◦ and pointwise defined meets.

The algebra (NucA,◦,∧, idA,1) is a bounded distributive lattice, in which
◦ acts as join and the natural ordering may be defined pointwise.

Theorem

Let A = (A,∗,1) ∈R and j ∈ NucA. Then A j = (A j,∗ j,1) ∈R.
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Example

The poset A = (A,≤) with the Hasse diagram

rr rr rr
@
@

�
��
�

�
�

H
HH

H
�
�
@
@

0

a b

c d

1

is relatively pseudocomplemented and the operation table of ∗ looks as follows:

∗ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 b 1 1 1
b a a 1 1 1 1
c 0 a b 1 d 1
d 0 a b c 1 1
1 0 a b c d 1

Triples and quadruples 18 / 34



Introduction - triples and quadruples
Basic notions, definitions and results

Congruences and nuclei on Hilbert algebras
Characterizing quadruples

Congruences
Nuclei
Nuclei and congruences
Implicative filters
Open nuclei
Glivenko equivalence

Nuclei and congruences

Example

We have Φ := {0,b}2∪{a,c,d,1}2 ∈ ConA. Hence (A/Φ,∗′,1Φ) is a relatively
pseudocomplemented poset.

Remark

Unfortunately, contrary to the class of Hilbert algebras, the class of relatively
pseudocomplemented posets is not closed under substructures. Consider e.g. our
relatively pseudocomplemented poset A = (A,∗,1) from previous example and its
subset S = {0,c,d,1}. It is immediate that S is closed under ∗. However, this ∗ is not
a relative pseudocomplementation in S = (S,∗,1). Namely, the relative
pseudocomplement of c with respect to 0 in S is d but d differs from 0 = c∗0.

rr rr
@
@
�
�

�
�
@
@

0

c d

1
∗ 0 c d 1
0 1 1 1 1
c 0 1 d 1
d 0 c 1 1
1 0 c d 1
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Implicative filters

An implicative filter F of a Hilbert algebra A is a non-empty subset of A
satisfying y,y∗ z ∈ F implies z ∈ F .

Denote by FilA the set of all implicative filters of A and, for any subset B
of A, put θ B := {(x,y) ∈ A2 | x∗ y,y∗ x ∈ B}.

Theorem (Diego 1965,1966)

Let A = (A,∗,1) be a Hilbert algebra. Then the mappings Φ 7→ 1Φ and F 7→ θ F
are mutually inverse isomorphisms between the lattices (ConA,⊆) and
(FilA,⊆).
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Open nuclei

Let A = (A,∗,1) be a Hilbert algebra, F ⊆ A an implicative filter of A and
a ∈ A.

F = (F,∗,1) is a Hilbert subalgebra of A.

We define a mapping uF
a : F → F as follows:

uF
a (x) = a∗ x

for all x ∈ F .

Since F is an upper set in A our definition is correct.

It is well know that uF
a is an endomorphism of F and a closure operator

on F.

We then define the following congruence θ
F
a on F:

x θ
F
a y if and only if uF

a (x) = uF
a (y) (♣)

for all x,y ∈ F . If A = F we put θ a = θ
A
a .
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Glivenko equivalence

Let A = (A,∗,1,0) be a bounded Hilbert algebra.

We define a mapping γA
0 : A→ A as follows:

γ
A
0 (x) = (x∗0)∗0

for all x ∈ A.

We then define the so-called Glivenko equivalence ΓA
0 on A by

(x,y) ∈ Γ
A
0 if and only if x∗0 = y∗0 if and only if γ

A
0 (x) = γ

A
0 (y).

Theorem (S. Rudeanu)

Let A = (A,∗,1) be a bounded Hilbert algebra with smallest element 0. Then
γA

0 : A→ A is an endomorphism of A such that the identity
x∗ γA

0 (y) = γA
0 (x)∗ γA

0 (y) is satisfied, γA
0 ∈ NucA, ΓA

0 ∈ ConnA and
(A/ΓA

0 ,∗′,1′,0′) is a Boolean algebra.
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Characterizing quadruples

Let A = (A,∗,1,0) be a bounded Hilbert algebra. In what follows, we shall
denote, by x∗ = x∗0 and by B(A) the Boolean algebra (B0(A),∗,1,0).
For a ∈ B(A), put

Fa := {x ∈ A | x∗∗ = a}.

The sets Fa are equivalence classes of the Glivenko equivalence on A.

The greatest element of Fa is a.

We say that an element x ∈ A is dense if x∗ = 0, i.e., if and only if x ∈ F1.

We denote by D(A) the set of all dense elements of A.

Note that B(A)∩D(A) = {1}, D(A) is an implicative filter on A and
(D(A),∗,1) is a Hilbert subalgebra of A.
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Characterizing quadruples

Let us consider the mapping ha : Fa→ D(A) given by x 7→ a∗ x, x ∈ Fa.

Every x ∈ Fa is uniquely determined by a∗ x, i.e., x = a∧∧(a∗ x).

Hence ha is an injective isotone mapping.

Denote by Da the set ha(Fa).

Then ha is an order isomorphism between Fa and Da and

a∗ha(x) = ha(ha(x)) = ha(x).

Da = {d ∈ D(A) | d∧a exists in A and a∗ ≤ d = a∗ (d∧a)}
= {d ∈ D(A) | a C d and a∗d = d}.

Any x ∈ A is completely determined by a pair (a,d), where a = x∗∗ ∈ B(A)
and d = a∗ x = a∗d ∈ Da, and every such pair (a,d), a ∈ B(A), d ∈ Da
determines exactly one element x of Fa such that x = d∧∧a.
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Every x ∈ Fa is uniquely determined by a∗ x, i.e., x = a∧∧(a∗ x).

Hence ha is an injective isotone mapping.

Denote by Da the set ha(Fa).

Then ha is an order isomorphism between Fa and Da and

a∗ha(x) = ha(ha(x)) = ha(x).

Da = {d ∈ D(A) | d∧a exists in A and a∗ ≤ d = a∗ (d∧a)}
= {d ∈ D(A) | a C d and a∗d = d}.

Any x ∈ A is completely determined by a pair (a,d), where a = x∗∗ ∈ B(A)
and d = a∗ x = a∗d ∈ Da, and every such pair (a,d), a ∈ B(A), d ∈ Da
determines exactly one element x of Fa such that x = d∧∧a.
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Characterizing quadruples

We have compatibility relation C(A)⊆C ∩(B(A)×D(A)) and
C(A) =

⋃
a∈B(A){a}×Da = {(a,d) ∈C ∩(B(A)×D(A)) | uD(A)

a (d) = d}.
It holds ({1}×D(A))∪ (B(A)×{1})⊆C(A).

For any a ∈ B(A) we have that uD(A)
a = a∗ (−) is a nucleus on D(A) and

we obtain a join-preserving mapping ϕ : B(A)→ NucD(A) defined by
ϕ(a) = uD(A)

a∗ such that ϕ(0) = uD(A)
1 = idA and ϕ(1) = uD(A)

0 = 1.

The compatibility relation C(A) has the following property:

(a,d),(b,e) ∈C(A) =⇒ (a∗b,ϕ(a∗)(d ∗ e)) ∈C(A).
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Characterizing quadruples

Definition

A characterizing quadruple is a quadruple (B,D,C,ϕ), where

(i) B = (B,∗B,1,0) is a Boolean algebra;

(ii) D = (D,∗D,1) is a Hilbert algebra;

(iii) ϕ : B→ NucD is a join-preserving mapping that preserves both the least and
the greatest element.

(iv) C⊆ B×D such that

(a,d),(b,e) ∈ C =⇒ (a∗B b,ϕ(a∗)(d ∗D e)) ∈ C,ϕ(a∗)(d) = d

and
({1}×D)∪ (B×{1})⊆ C.
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Characterizing quadruples

Note that if A is a bounded implicative semilattice then our definition of a
quadruple will coincide with that of a triple as defined by Nemitz or by
Chajda, Halaš and Kühr.

The relation C(A) = {(a,d) ∈ B(A)×D(A) | uD(A)
a (d) = d} is uniquely

determined (hence there is no need for a quadruple).

Theorem

Let A = (A,∗,1,0) be a bounded Hilbert algebra. Then the quadruple
Q = (B(A), D(A),C(A),ϕ) is a characterizing quadruple.
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Representation theorem for Hilbert algebras

Definition

We say that two characterizing quadruples (B1,D1,C1,ϕ1) and (B2,D2,C2,ϕ2)
are isomorphic if there is an isomorphism f of Boolean algebras from the
Boolean algebra B1 to the Boolean algebra B2 and an isomorphism g of
Hilbert algebras from the Hilbert algebra D1 to the Hilbert algebra D2 such
that ( f ×g)(C1) = C2 and the following diagram

B1

f

��

ϕ1
// NucD1

g

��
B2

ϕ2
// NucD2.

commutes, where g is the isomorphism of NucD1 to NucD2 assigning to each
j ∈NucD1 the nucleus g◦ j ◦g−1 on D2. Note that, for all a ∈ B1 and all d ∈ D2,
ϕ2( f (a))(d) = g(ϕ1(a)(g−1(d))).
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Representation theorem for Hilbert algebras

Theorem

Two bounded Hilbert algebras are isomorphic if and only if their associated
characterizing quadruples are isomorphic.

Sketch of the proof:

Suppose that the characterizing quadruples (B(A1),D(A1),C(A1),ϕ1)
and (B(A2), D(A2), D(A2),ϕ2) are isomorphic.

Then we obtain isomorphic characterizing quadruples
Q1 = (B(A1),S(D(A1)), B(A1)×ψ1 S(D(A1)),ψ1) and
Q2 = (B(A2),S(D(A2)),B(A2)×ψ2 S(D(A2)),ψ2) where

ψi(ai) = S(uD(Ai)
a∗i

) = uD(S(Ai))
a∗i

, ai ∈ Ai and

B(A1)×ψ1 S(D(A1)) = {(ai,di) ∈ B(Ai)×S(D(Ai)) | u
S(D(Ai))
ai (di) = di},

i = 1,2 and we use the fact that the corresponding implicative envelopes
are isomorphic.
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Representation theorem for Hilbert algebras

Theorem

For any characterizing quadruple Q = (B,D,C,ϕ) there exists a bounded
Hilbert algebra AQ whose associated characterizing quadruple
Q(AQ) = (B(AQ), D(AQ),C(AQ), ϕQ), is isomorphic to Q.

Sketch of the proof:

We start with characterizing quadruple Q = (B,D,C,ϕ) and construct a
new characterizing quadruple Q̃ = (B, D̃, C̃, ϕ̃) defined as follows:

We put D̃ = S(D), C̃ = B×ϕ D̃ = {(a,d) ∈ B×S(D) | ϕ̃(a∗)(d) = d} and
ϕ̃(a) = S(ϕ(a)) for all a ∈ B.

Since for implicative semilattices the theorem is valid we obtain that Q̃ is
isomorphic to Q(AQ̃) and then we restrict to B(AQ) and D(AQ).

(a,d)∗AQ (b,e) = (a∗B b,ϕ(a∗)(d ∗D e)).
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Example

Let B = (B,∗B,1,0) be a Boolean algebra and D = (D,∗D,1) be a Hilbert algebra.

Let ϕ : B→ NucD be a join-preserving mapping that preserves both the least and the
greatest element.

(a) We put C = ({1}×D)∪ (B×{1}).

Clearly, (a,d),(b,e) ∈ C implies (a∗B b,ϕ(a∗)(d ∗D e)) ∈ C and ϕ(a∗)(d) = d.

Then Q = (B,D,C,ϕ) is a characterizing quadruple and the corresponding Hilbert
algebra will be (AQ,∗AQ ,(1,1),(0,1)), AQ = C.

Evidently, this is the smallest Hilbert algebra with prescribed Boolean algebra of
closed elements isomorphic to B and prescribed Hilbert algebra of dense elements
isomorphic to D and the construction does not depend on ϕ .
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Example

(b) We put C = {(a,d) ∈ B×D | ϕ(a∗)(d) = d}. One can easily check that
Q = (B,D,C,ϕ) is a characterizing quadruple.

Now, the corresponding Hilbert algebra (AQ,∗AQ ,(1,1),(0,1)) is the greatest Hilbert
algebra with prescribed Boolean algebra of closed elements isomorphic to B,
prescribed Hilbert algebra of dense elements isomorphic to D and chosen action of B
on D.
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Appendix

Thank you for your attention.
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