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1. Preliminaries

Let L be a complete lattice. A map f : L→ L is called a complete
join-endomorphism, if it preserves arbitrary joins, i.e.

f

(∨
i∈I

xi

)
=
∨
i∈I

f (xi ), for all xi ∈ L and any index set I .

In particular, f (0) = 0. It was proved by G. Grätzer and E.T. Schmidt
[GS] that the complete join-endomorphisms of L also form a complete
lattice End∨(L). Here f ∨ g for f , g ∈ End∨(L) is defined as a pointwise
join. They also proved that for a lattice L with finite bounded chains,

(T1) End∨(L) is distributive if and only if L is distributive.

(T2) If L is not distributive, then End∨(L) is not even semimodular.

S. Valentini(1994) have shown that

(Thm3) The complete join-endomorphisms of L form a quantale
with respect to the composition and the pointwise join.

Our aim here is to determine the completely join and meet-irreducible
elements in the lattice End∨(L), because these can be viewed as some
”building stones” of a complete lattice.
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Definition 1.

A quantale is an algebraic structure Q = (L,∨,�), such that (L,≤) is a
complete lattice (induced by ∨) and (L,�) is a semigroup satisfying

a�
(∨

i∈I
bi

)
=
∨
i∈I

(a� bi ) and

(∨
i∈I

bi

)
� a =

∨
i∈I

(bi � a).

for all a ∈ L and bi ∈ L, i ∈ I . Q is called commutative, if � is
commutative, and Q is unital, whenever (L,�) is a monoid. A unital
quantale in which the neutral element of � coincides to the greatest
element 1 of the lattice L is called integral.

Examples

(a) Frames are commutative quantales in which � and the meet
operation ∧ coincide.
(b)The two-sided ideals of a ring (R,+, ·) with unit form an integral
quantale (I(R),∨, •), where (I(R),∨,∩) is the complete lattice of the
ideals of R and • is their usual multiplication.
(c) For any complete lattice L, (End∨(L),∨, ·) is a unital quantale (its
unit is the identity mapping on L.)
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The complete join-endomorphisms of lattice L are strongly related with
the so-called ordered relations of L.

2. Valentini’s ordered relations

Definition 2.

A ≤-ordered relation is a binary relation R ⊆ L× L such that
(1) For any u, x , y , z ∈ L, if u ≤ x , (x , y) ∈ R and y ≤ z , then (u, z) ∈ R;
(2) For any t ∈ L, A ⊆ L, if (a, t) ∈ R for all a ∈ A, then (

∨
A, t) ∈ R;

(3) For any t ∈ L, A ⊆ L, if (t, a) ∈ R for all a ∈ A, then (t,
∧
A) ∈ R.

Let us denote by OR≤(L) the ordered relations on L. Notice, that the
smallest ordered relation with respect to ⊆ is the ”corner” relation

Γ(L) = {(x , y) ∈ L2 | x = 0 or y = 1}.

The following characterization of ordered relations was given by K. Kaarli
and V. Kuchmei:
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Proposition 1.

Let R be a binary relation on a complete lattice L. Then the following
are equivalent:
(1) R is a ≤-ordered relation;
(2) R is the universe of a complete subdirect square of L containing the
”corner” element (0, 1);
(3) R is a complete compatible binary relation on L containing Γ(L).

Valentini proved that

Proposition 2.

For any complete lattice L, (OR≤(L),∩, ◦) is a unital quantale, with the
multiplicative identity ≤ .
(Here operation ”◦” denotes the usual relational product.)

He also proved (though, using a different terminology) that

Proposition 3.

For any complete lattice L, the quantales (OR≤(L),∩, ◦) and
(End∨(L),∨, ·) are dually isomorphic.
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This dual isomorphism (anti-isomorphism) is established by the
following pair a mappings (see [KR]):

The mapping ψ : OR≤(L)→ End∨(L), ψ(R) = f R , where for each
R ∈ OR≤(L) and x ∈ L,

f R(x) :=
∧
{z ∈ L | (x , z) ∈ R},

and its inverse mapping

ψ−1(f ) = R f := {(x , y) ∈ L2 | f (x) ≤ y}.

We used this isomorphism and the lattice OR≤(L) to determine the
completely join and meet-irreducible elements in the lattice End∨(L) (i.e.
in the corresponding quantale (End∨(L),∨, ·).

An element p ∈ L\{0} of a complete lattice L is called completely
join-irreducible if for any system X ⊆ L the equality p =

∨
X implies

p ∈ X . The set of completely join-irreducible elements of L is denoted by
J(L). The completely meet-irreducible elements of L are defined dually,
consisting a set M(L).

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Quantales



This dual isomorphism (anti-isomorphism) is established by the
following pair a mappings (see [KR]):

The mapping ψ : OR≤(L)→ End∨(L), ψ(R) = f R , where for each
R ∈ OR≤(L) and x ∈ L,

f R(x) :=
∧
{z ∈ L | (x , z) ∈ R},

and its inverse mapping

ψ−1(f ) = R f := {(x , y) ∈ L2 | f (x) ≤ y}.

We used this isomorphism and the lattice OR≤(L) to determine the
completely join and meet-irreducible elements in the lattice End∨(L) (i.e.
in the corresponding quantale (End∨(L),∨, ·).

An element p ∈ L\{0} of a complete lattice L is called completely
join-irreducible if for any system X ⊆ L the equality p =

∨
X implies

p ∈ X . The set of completely join-irreducible elements of L is denoted by
J(L). The completely meet-irreducible elements of L are defined dually,
consisting a set M(L).

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Quantales



This dual isomorphism (anti-isomorphism) is established by the
following pair a mappings (see [KR]):

The mapping ψ : OR≤(L)→ End∨(L), ψ(R) = f R , where for each
R ∈ OR≤(L) and x ∈ L,

f R(x) :=
∧
{z ∈ L | (x , z) ∈ R},

and its inverse mapping

ψ−1(f ) = R f := {(x , y) ∈ L2 | f (x) ≤ y}.

We used this isomorphism and the lattice OR≤(L) to determine the
completely join and meet-irreducible elements in the lattice End∨(L) (i.e.
in the corresponding quantale (End∨(L),∨, ·).

An element p ∈ L\{0} of a complete lattice L is called completely
join-irreducible if for any system X ⊆ L the equality p =

∨
X implies

p ∈ X . The set of completely join-irreducible elements of L is denoted by
J(L). The completely meet-irreducible elements of L are defined dually,
consisting a set M(L).

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Quantales



This dual isomorphism (anti-isomorphism) is established by the
following pair a mappings (see [KR]):

The mapping ψ : OR≤(L)→ End∨(L), ψ(R) = f R , where for each
R ∈ OR≤(L) and x ∈ L,

f R(x) :=
∧
{z ∈ L | (x , z) ∈ R},

and its inverse mapping

ψ−1(f ) = R f := {(x , y) ∈ L2 | f (x) ≤ y}.

We used this isomorphism and the lattice OR≤(L) to determine the
completely join and meet-irreducible elements in the lattice End∨(L) (i.e.
in the corresponding quantale (End∨(L),∨, ·).

An element p ∈ L\{0} of a complete lattice L is called completely
join-irreducible if for any system X ⊆ L the equality p =

∨
X implies

p ∈ X . The set of completely join-irreducible elements of L is denoted by
J(L). The completely meet-irreducible elements of L are defined dually,
consisting a set M(L).

by Sándor Radeleczki, Math. Institute, Univ. of Miskolc (joint research with Kalle Kaarli, Tartu Univ.)Quantales



In what follows, for any elements a, b of the lattice L we will use the
notations ↓ a = {x ∈ L | x ≤ a} and ↑ b = {x ∈ L | x ≥ b}.

Theorem 1.

(i) The completely join-irreducible elements of OR≤(L) are exactly the
relations

Γ(L) ∪ (↓ j × ↑ m) ⊆ L2

where j ∈ J(L) and m ∈ M(L).
(ii) The completely meet-irreducible elements of End∨(L) are exactly the
maps of the form (with j ∈ J(L), m ∈ M(L)):

f (x) =

 0, if x = 0
m, if x ≤ j , x 6= 0
1, otherwise

Concerning the join-irreducible elements of End∨(L) we have obtained
the following results:
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Theorem 2.

(i) Let p ∈ J(L) and m ∈ M(L). Then any mapping f : L→ L of the
form

f (x) =

{
0, if x ≤ m
p, otherwise

is a completely join-irreducible element of End∨(L).

(ii) If L is a finite distributive lattice, then the (completely)
join-irreducible elements of End∨(L) are exactly the mappings given in
the above (i).

A complete tolerance of a complete lattice L is a reflexive, symmetric
relation T on L compatible with arbitrary suprema and infima, i.e. for
any system of pairs (ai , bi ) ∈ T , i ∈ I we have(∧

i∈I

ai ,
∧
i∈I

bi

)
∈ T and

(∨
i∈I

ai ,
∨
i∈I

bi

)
∈ T .

If in addition the above T is transitive, then it is called a complete
congruence of L.
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If T ⊆ L2 is a complete tolerance of L, then for any x ∈ L we define:
xT :=

∧
{z ∈ L | (x , z) ∈ T} and xT :=

∨
{z ∈ L | (x , z) ∈ T}.

It is known that for any complete tolerance T of L the map λT : x 7→ xT ,
x ∈ L is a decreasing complete ∨-endomorphism, and µT : x 7→ xT , x ∈ L
is an increasing complete ∧-endomorphism of the lattice L.
Notice that T is a congruence if and only if λT and µT are idempotent
mappings (i.e. (λT )2 = λT .)

Definition 3.

(a) A lattice L with 0 is called pseudocomplemented if for each x ∈ L
there exists an x∗ ∈ L such that for any y ∈ L, y ∧ x = 0⇔ y ≤ x∗.
(b) A bounded lattice L is called double-pseudocomplemented if both L,
both its dual Ld are pseudocomplemented.

Proposition 4.

Let L be a finite lattice and θ ⊆ L2 a congruence of it which is maximal
with respect to the property θ∗ 6= 4. Then the mapping λθ : L→ L,
λθ(x) = xθ, is a decreasing join-irreducible element of End∨(L).
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As an immediate consequence of the first theorem (Thm1.) we obtain

Corollary 1.

If L is a double-pseudocomplemented complete lattice, then OR≤(L) is
pseudocomplemented and End∨(L) is dually pseudocomplemented.

Remark
The form of the atoms and the dual atoms (coatoms) of OR≤(L) and
End∨(L) can be easily deduced from Thm1 and Thm2. For instance, we
obtain:

Corollary 2.

The dual atoms of End∨(L) are exactly the maps of the form:

f (x) =

 0, if x = 0,
d , if x = a,
1, otherwise

where a is an atom, and d is a dual atom of L.
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