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CD-independent subsets in posets

Let P = (P, <) be a partially ordered set, and let a, b € P.
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CD-independent subsets in posets

Let P = (P, <) be a partially ordered set, and let a, b € P.

The elements a and b are called disjoint and we write a 1 b if

either IP has least element 0 € P and inf{a, b} =0,
or P is without 0 and the elements a and b have no common lowerbound.
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CD-independent subsets in posets

Let P = (P, <) be a partially ordered set, and let a, b € P.
The elements a and b are called disjoint and we write a 1 b if
either IP has least element 0 € P and inf{a, b} =0,
or P is without 0 and the elements a and b have no common lowerbound.

A nonempty set X C P is called CD-independent if for any x,y € X,
x<yory<x,orx Ly holds.

Maximal CD-independent sets (with respect to C) are called CD-bases.
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Digital islands

Grid
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Digital islands

Grid, height function, water level: 2
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Digital islands
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CD-independent: Comparable or Disjoint
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Digital islands

CD-independent: Comparable or Disjoint
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CD-independent: Comparable or Disjoint
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\

CD-independent: Comparable or Disjoint
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CD-independent subsets in distributive lattices
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CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets
in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).
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CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets
in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).

Any two CD-bases of a finite distributive lattice have the same number of
elements.
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CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets

in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).

Any two CD-bases of a finite distributive lattice have the same number of
elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.
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Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise
disjoint element in P if x L y holds for all x,y € D, x # y; if P has
0O-element, then {0} is considered to be a set of pairwise disjont
elements, too.
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Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise
disjoint element in P if x L y holds for all x,y € D, x # y; if P has
0O-element, then {0} is considered to be a set of pairwise disjont
elements, too.

D is a set of pairwise disjoint elements if and only if it is a
CD-independent antichain in IP.
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Order ideals

Let X C P.
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Order ideals

Let X C P.

The order ideal {y € P | y < x for some x € X} is denoted by | X.
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Order ideals

Let X C P.
The order ideal {y € P | y < x for some x € X} is denoted by | X.

The order-ideals of any poset form a (distributive) lattice with respect to
C.
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Order ideals

Let X C P.
The order ideal {y € P | y < x for some x € X} is denoted by | X.

The order-ideals of any poset form a (distributive) lattice with respect to
C.

So, the antichains of a poset can be ordered as follows:
Definition

If A1, Ay are antichains in P, then we say that A; is dominated by
Ay, and we denote it by A; < A if JA; C JAs. J

Eszter K. Horvith, Szeged Pairwise comparable or disjoint elemets in aSSAOS 2018. September 5. 18 / 63



Order ideals

Let X C P.
The order ideal {y € P | y < x for some x € X} is denoted by | X.

The order-ideals of any poset form a (distributive) lattice with respect to
C.

So, the antichains of a poset can be ordered as follows:
Definition

If A1, Ay are antichains in P, then we say that A; is dominated by
Ay, and we denote it by A; < A if JA; C JAs. J

Eszter K. Horvith, Szeged Pairwise comparable or disjoint elemets in aSSAOS 2018. September 5. 18 / 63



Order ideals

Let X C P.
The order ideal {y € P | y < x for some x € X} is denoted by | X.

The order-ideals of any poset form a (distributive) lattice with respect to
C.

So, the antichains of a poset can be ordered as follows:
Definition

If A1, Ay are antichains in P, then we say that A; is dominated by
Ay, and we denote it by A; < A if JA; C JAs. J

Remark
< is a partial order.
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D(P)

Let D(P) denote the set of all sets of pairwise disjont elements of P.
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D(P)

Let D(P) denote the set of all sets of pairwise disjont elements of P.

As sets of pairwise disjont elements of IP are also antichains, restricting <
to D(PP), we obtain a poset (D(P), ).
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D(P)

Let D(P) denote the set of all sets of pairwise disjont elements of P.

As sets of pairwise disjont elements of IP are also antichains, restricting <
to D(PP), we obtain a poset (D(P), ).

The connection between CD-bases of a poset P and the poset (D(P), <) is
shown by the next theorem:
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Theorem ( E. K. H., S. Radeleczki)

Let B be a CD-base of a finite poset (P,<), and let |B| = n.

Then there exists a maximal chain {D;}i<i<n in D(P) such that

B= D
i=1
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Theorem ( E. K. H., S. Radeleczki)

Let B be a CD-base of a finite poset (P,<), and let |B| = n.

Then there exists a maximal chain {D;}i<i<n in D(P) such that

B= D
i=1

m
Moreover, for any maximal chain {D;}1<j<m in D(P) the set D = |J D;

i=1
is a CD-base in (P, <) with |[D| = m.
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IP; és D(P1), maximalis Ianc D(IP;)-ben

Eszter K. Horvath, Szeged airwise comparable or disjoint elemets in aSSAOS 2018. September 5. 29 / 63



IP; és D(P1), maximalis Ianc D(IP;)-ben

Eszter K. Horvath, Szeged airwise comparable or disjoint elemets in aSSAOS 2018. September 5. 30 /63



]Pz and D(]Pz)
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P, és D(P,), maximalis Ianc D(IP,)-ben
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]P3 and D(]Pg,)
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IP5 és D(P3), maximalis Ianc D(IP3)-ban
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IP5 és D(P3), maximalis Ianc D(IP3)-ban
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Proof

Any poset (P, <) without least element becomes a poset with 0 by adding
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Proof

Any poset (P, <) without least element becomes a poset with 0 by adding
a new element 0 to P. In this way both the number of the elements in the CD-bases of P and the length of the maximal chains
in D(P) are increased by one. Therefore, without loss of generality we may assume that P contains 0 and |P| > 2.

To prove the first part of Theorem 1.5, assume that B is a CD-base in P. Then clearly 0 € B and |B| > 2. Let D; = max(B).
Take any m; € D; and form Dy = max(B \ {m1}). Then, in view of Lemma 1.7, D1, D, € D(P), D1 > Dy, and D is a
maximal element in D(P). Further, suppose that we already have a sequence (D;, m;), 1 < i < k (k > 2) such that m; € D;,
Dy > ... > Dy in D(P) and

Dy =max(B\ {mq, ..., m_1}).

We show that for all i € {1, ...,k — 1} and d € Dy we have d # mj. (5)
This is clear for i = 1 since m; € max(B) andd € B, d # my. If2 < i < k — 1, then m; € max(B \ {m1,...,mj_1}), and
sinced € B\ {m1,...,mi_1}, d > m; would imply m; =d € B\ {m1,...,m;, ..., my_1}, a contradiction.

Further, if |[B\ {my, ..., mg_1}| > 2, then form the next set Dy 1 := max(B \ {my, ..., mx_1, my}) and let

my41 € Dyyq. Since Dy q is an antichain in the CD-base B, it is a disjoint set, and clearly Dyy1 # Dy.
In order to prove Dy > D1, consider the subposet (/(Dy), <). By Proposition 1.4, By := B N I(Dy) is a CD-base in
(I(Dx), <). We claim that

By =B\ {my,...,mg_1}.

Indeed, Dy = max(B \ {my, ..., mg_1}) implies B\ {my,...,my_1} C BN I(Dy) = Bg. On the other hand, (5) implies
{my,...,mg_1} N I(Dg) = 0, whence we get By C B\ {my, ..., mg_1}, proving our claim. Hence D, = max(By), and
Dy1 = max (B\ {mq, ..., mg_1, mc}) = max(By \ {my}).

Now, by applying Lemma 1.7, we obtain that Dy < Dy holds in D(/(Dy)). Finally, observe that any S € D(P) with

S < Dy is also a disjoint set in (/(Dy), <) according to (A). Moreover, since Dy 1 < Dy holds in D(/(Dy)),

Dyy1 < S < Dy implies either S = Dy or S = Dy 1. This means that Dy 1 < Dy holds in D(P), too.

Thus we conclude by induction that the chain Dy > ... > Dy > ... can be continued as long as the condition

|B\ {my,...,mg_1}| > 2isstill valid. Since P is finite, the process stops after finite - let say n — 1 steps, when
|B\ {my,...,mp_1}| =1, and the last set is D, = B\ {my, ..., my_1}. As0 € B, and since 0 ¢ max(X) whenever
|X] > 2, weget {0} =B\ {mq,...,mp_1} = Dp. As D; is a maximal element and D, = {0} is the least element in

D(P), D1 > ... > Djp is a maximal chain in D(P). Since B = {my, ..., m,_1,0}, we obtain |B| = n.
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Bizonyitas

To prove the second part of Theorem 1.5, assume that the disjoint sets Dy, ..., Dy, form a maximal chain C:

Dy <...<Dnp

m
in D(P). Then D; = {0}. Let D = U D;. First, we prove that the set D is CD-independent. Indeed, take any x,y € D, i.e.

x € Dj and y € Dj for some 1 < i < i < m. Then x < z for some z € D; by (A). Assume that x and y are not comparable.
Then z # y, and z L y implies x L y by (1). This means that D is CD-lndependent.

Now, assume that D is not a CD-base. Then there is an x € P\ D such that D U {x} is CD-independent. Next, consider the
set

E={D;eC|x¢dforalldec D}

Clearly, D; = {0} € & since x £ 0. Let D; € £. Then d L x or d < x holds for each d € D; because D U {x} is
CD-independent. Thus T; := {x} U {d € D; | d £ x} is a disjoint set, and d < x or d € T; holds for all d € D;. Hence

D; < T, (6)

in view of (A) and x ¢ D;. Observe that Dy, ¢ £ since Dy, < Tp, is not possible because C is a maximal chain. Thus, there
exists a k < m — 1 such that Dy € £ but Dy 1 ¢ £. This means that x ;{ d for all d € Dy, and x < z holds for some

z € Dyyq. Then Ty = {x} U {d € Dy | d £ x} € D(P) satisfies D < T in virtue of (6). Since T) \ {x} C Dy < Dy4q
and x < z, for each t € T thereis a v € Dyyq with t < v. In view of (A) we get Dy < T) < Dy because

x ¢ Dyyq1 C D. Since this fact contradicts Dy < Dy 1, we conclude that D is a CD-base.

Further, in view of (4), it follows that any set D; \ D; _1, 2 < i < m contains exactly one element, let say, a;. Observe also that

D= LTJlDf = DU <_LTJZ(D/' \ Di—l))-

Since D; = {0} and D; \ D;_1 = {a;}, we get D = {0, a2, ..., am }. We prove that all the elements 0, a3, ..., am are
different: Clearly, 0 ¢ {a, ..., am}. Takeany i,j € {2,...,m}, i <j. Then D; < D;_; < D;. As a; € Dj, thereis a
b€ Dj_1 with0 < a; < bby (A). Asa; € Dj \ Dj_1, b < aj or b L aj holds by (2). Since both facts imply a; # a;, we
conclude that D contains m different elements.
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If Dy < Do in D(P), then D, = {a} U{y € D;\ {0} | y L a} for some
minimal element a of the set

S={seP\(D1U{0}) |y Lsory<sforallye Di}.

Moreover, D; < {a} U{y € D1\ {0} | y L a} holds for any minimal
element a of the set S.
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[llustration for Lemma 1

S
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[llustration for Lemma 1
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[llustration for Lemma 1

S
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[llustration for Lemma 1
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Assume that B is a CD-base with at least two elements in a finite poset
P=(P,<), M= max(B), and me M. Then M and N := max(B \ {m})
are disjoint sets.

Moreover M is a maximal element in D(P), and N < M holds in D(P).
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[llustration for Lemma 2
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[llustration for Lemma 2
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[llustration for Lemma 2
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[llustration for Lemma 2
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Corollary

Let P =(P, <) be a finite poset.
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Corollary

Let P =(P, <) be a finite poset.

The poset P is called graded, if all its maximal chains have the same
cardinality.
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Corollary

Let P =(P, <) be a finite poset.

The poset P is called graded, if all its maximal chains have the same
cardinality.

The CD-bases of P have the same number of elements if and only if the
poset D(P) is graded. J
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Corollary

Let B C P be a CD-base of P, and (B, <) the poset under the restricted
ordering.
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Corollary

Let B C P be a CD-base of P, and (B, <) the poset under the restricted
ordering.

Then any maximal chain C = {Di}i1<j<m in D(B)
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Corollary

Let B C P be a CD-base of P, and (B, <) the poset under the restricted
ordering.

Then any maximal chain C = {D;}i1<j<m in D(B) is also a maximal chain
in D(P).
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lllustration: P and D(P)
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lllustration: P and D(P), B and D(B)
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lllustration: P and D(P), B and D(B); a maximal chain
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lllustration: P and D(P), B and D(B); other
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A set of pairwise disjoint elements D of a poset (P, <) is called complete,
if there is no p € P\ D such that D U {p} is also a set of pairwise disjoint
elements.
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P, D(P) and DC(P)
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Equivalent conditions

Let P = (P, <) be a finite poset with 0. Then the following conditions are
equivalent:

(i) The CD-bases of P have the same number of elements, J
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Equivalent conditions

Let P = (P, <) be a finite poset with 0. Then the following conditions are
equivalent:

(i) The CD-bases of P have the same number of elements, J

(i) D(P) is graded. )
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Equivalent conditions

Let P = (P, <) be a finite poset with 0. Then the following conditions are
equivalent:

(i) The CD-bases of P have the same number of elements, J
(i) D(P) is graded. )
(iii) DC(P) is graded. J

Eszter K. Horvith, Szeged Pairwise comparable or disjoint elemets in aSSAOS 2018. September 5. 56 / 63



Special cases
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Special cases

Tolerance lattices of algebras belonging to congruence distributive varieties
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Special cases

Tolerance lattices of algebras belonging to congruence distributive varieties
(0-modular (but not necessarily modular))

Closure lattices of finite convex geometries
(weakly 0-modular)
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CD-bases in semilattices and lattices

Let (P, <) be a poset and A C P. (A, <) is called a sublattice of (P, <),
if (A, <) is a lattice such that for any a, b € A the infimum and the
supremum of {a, b} is the same in the subposet (A, <) and in (P, <).

Theorem (E. K. H., S. Radeleczki)

Let P = (P, <) be a poset with 0 and B a CD-base of it. Then
(D(B), <) is a distributive cover-preserving sublattice of the poset
(D(P), <)
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CD-bases in semilattices and lattices

Let (P, <) be a poset and A C P. (A, <) is called a sublattice of (P, <),
if (A, <) is a lattice such that for any a, b € A the infimum and the
supremum of {a, b} is the same in the subposet (A, <) and in (P, <).

Theorem (E. K. H., S. Radeleczki)

Let P = (P, <) be a poset with 0 and B a CD-base of it. Then
(D(B), <) is a distributive cover-preserving sublattice of the poset
(D(P), <)

If P is a A-semilattice, then for any D € D(P) and Dy, D2 € D(B) we
have
(D1 VD)) AND = (D1 AD)V (D2 D)

in (D(P),<).
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CD-bases in particular lattice classes

An interval system (V,Z) is an algebraic closure system satisfying the
axioms:

(lo) {x} € Z forall x € V, and 0 € Z;
(L) A, BET and AN B # 0 imply AU B € T;
(

l,) For any A, B € Z the relations AN B # 0, AZ B and B £ A imply
A\B€Z (and B\AcI).
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CD-bases in particular lattice classes

An interval system (V,Z) is an algebraic closure system satisfying the
axioms:

(lo) {x} € Z forall x € V, and 0 € Z;
(L) A, BET and AN B # 0 imply AU B € T;
(

l,) For any A, B € Z the relations AN B # 0, AZ B and B £ A imply
A\B€Z (and B\AcI).

If (V,I) is a finite interval system, then the CD-bases of the lattice (Z,C)
contain the same number of elements.
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Island domain

UeCCKCP(U)

Let h: U — R be a height function and let S € C be a nonempty set.

We say that S is an pre-island with respect to the triple (C, IC, h), if every
K € K with S < K satisfies

min h(K) < min h(S).
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Island domain

UeCCKCP((U)
Let h: U — R be a height function and let S € C be a nonempty set.

We say that S is an pre-island with respect to the triple (C, IC, h), if every
K € K with S < K satisfies

min h(K) < min h(S).

We say that S is a island with respect to the triple (C, IC, h), if every
K € K with S < K satisfies

h(u) <minh(S) forallue K\ S.
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Connective island domains

Definition

A pair (C,K) is an connective island domain if

VABeC: (ANB#0Pand BZ A) — IKeK:ACKCAUB.
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Connective island domains

Theorem 5. (S. Foldes, E. K. H., S. Radeleczki, T. Waldhauser)

The following twoo conditions are equivalent for any pair (C, K):

(i) (C,K) is a connective island domain. ]
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Connective island domains

Theorem 5. (S. Foldes, E. K. H., S. Radeleczki, T. Waldhauser)

The following twoo conditions are equivalent for any pair (C, K):

(i) (C,K) is a connective island domain. ]
(ii) Every system of pre-islands corresponding to (C, K) is
CD-independent. J
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Thank you for your attention!

Think. thr‘k. think.

Thank you for your attention!
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