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Lattice effect algebras - special class of basic algebras

Definition (Chajda, Halaš, and Kühr AU 2009)

A basic algebra is an algebra A = (A,⊕,¬, 0, 1) of type (2, 1, 0, 0)
that satisfies the equations

x⊕ 0 = x,

¬¬x = x,

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,
¬
(
¬(¬(x⊕ y)⊕ y)⊕ z

)
⊕ (x⊕ z) = 1.
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BA = bounded lattices with antitone involutions

The relation ≤= {(x, y) ∈ A2 | ¬x⊕ y = 1} is a partial order
on A such that 0 and 1 are the least and the greatest element
of A.
The poset (A,≤) is a bounded lattice (A,∨,∧, 0, 1) where

x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y)

For each a ∈ A, the map γa : x 7→ ¬x⊕ a is an antitone
involution on [a, 1].
For each a ∈ A, the map δa : x 7→ ¬(x⊕ ¬a) is an antitone
involution on [0, a].
(A,⊕,¬, 0, 1) is determined by (A,∨,∧, 0, 1, (γa)a∈A) as
follows:

¬x = γ0(x) and x⊕ y = γy(¬x ∨ y).

(A,⊕,¬, 0, 1) is determined by (A,∨,∧, 0, 1, (δa)a∈A) as
follows:

¬x = δ1(x) and x⊕ y = ¬δ¬y(x ∧ ¬y).
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What is behind the axioms?

Every basic algebra satisfies the following conditions:

1) 0⊕ x = x,
2) ¬x⊕ x = 1,
3) x⊕ 1 = 1⊕ x = 1,
4) x ≤ y ⇒ ¬y ≤ ¬x,
5) x ≤ y ⇒ x⊕ z ≤ y ⊕ z,
6) ¬x ≤ y ⊕ z iff ¬y ≤ x⊕ z,
7) (x ∧ y)⊕ z = (x⊕ z) ∧ (y ⊕ z),
8) y ≤ x⊕ y,
9) ¬(¬(x⊕ y)⊕ y)⊕ y = x⊕ y,

The variety of basic algebras is arithmetical and congruence
regular.
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What is behind the axioms?

In addition to the negation ¬ and the addition ⊕, it is useful to
define multiplication � and two substractions (	, �) by

x� y = ¬(¬x⊕ ¬y), x	 y = ¬(y ⊕ ¬x), x� y = ¬(¬x⊕ y).

Every basic algebra satisfies the following conditions:

1) 0� x = 0 = x� 0,
2) ¬x� x = 0,
3) x� 1 = x = 1� x,
4) x� y ≤ y,
5) x ≤ y ⇒ x� z ≤ y � z, x� z ≤ y � z, z 	 x ≤ z 	 y,
6) x ≤ y iff x� ¬y = 0 iff x	 y = 0 iff x� y = 0,
7) (x ∨ y)� z = (x� z) ∨ (y � z),
(x ∨ y)� z = (x� z) ∨ (y � z),
8) x	 (y ∧ z) = (x	 y) ∨ (x	 z),
9) ¬x� y ≤ z iff ¬z � y ≤ x.
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What is behind the axioms?

The following (dual) identities 1) - 4) are equivalent to one another
and they are equivalent to lattice distributivity:

1) (x ∨ y)⊕ z = (x⊕ z) ∨ (y ⊕ z),
2) (x ∧ y)� z = (x� z) ∧ (y � z),
3) (x ∧ y)� z = (x� z) ∧ (y � z),
4) x	 (y ∨ z) = (x	 y) ∧ (x	 z).

The identities 5) - 8) are equivalent to one another and they are
stronger than lattice distributivity:

5) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z), (M)
6) x� (y ∨ z) = (x� y) ∨ (x� z),
7) x� (y ∧ z) = (x� y) ∨ (x� z),
8) (x ∨ y)	 z = (x	 z) ∨ (y 	 z).
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Interval algebras

For each a ∈ A, the map δa : x 7→ ¬(x⊕ ¬a) = a	 x is an
antitone involution on [0, a].
Corresponding interval basic algebra ... ([0, e],⊕e,¬e, 0, e), where

x⊕e y = e	 ((e	 y)	 x) and ¬ex = e	 x for x, y ∈ [0, e].

For each a ∈ A, the map γa : x 7→ ¬x⊕ a is an antitone involution
on [a, 1].
Corresponding interval basic algebra ... ([e, 1],⊕e,¬e, e, 1), where

x⊕e y = ¬(¬x⊕ e)⊕ y and ¬ex = ¬x⊕ e for x, y ∈ [e, 1].

Lemma
For every e ∈ A, the interval algebras [0, e] and [¬e, 1] are
isomorphic.
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MV-algebras as special class of basic algebras

MV-algebras were introduced by C.C.Chang (in 1950’s) as an
algebraic counterpart of Lukasiewicz multiple valued logic (in
1920’s) .
By an MV-algebra is meant an algebra A = (A,⊕,¬, 0) of type
(2, 1, 0) satisfying the axioms:
(MV1) a⊕ (b⊕ c) = (a⊕ b)⊕ c
(MV2) a⊕ b = b⊕ a
(MV3) a⊕ 0 = a
(MV4) ¬¬a = a
(MV5) a⊕ ¬0 = ¬0
(MV6) ¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

Usually we denote ¬0 by 1 and we read (MV5) as a⊕ 1 = 1.

Antitone involution on [a, 1]: γa : x 7→ ¬x⊕ a
MV-algebras = associative basic algebras
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Orthomodular lattices as special class of basic algebras

The logic of quantum mechanic is axiomatized by means of
orthomodular lattices (G. Birkhoff, J. von Neumann in 1940’s)

Orthomodular lattice is a bounded complemented lattice
A = (A,∨,∧,′ , 0, 1) satisfying the orthomodular law:

x ≤ y ⇒ x ∨ (x′ ∧ y) = y

Antitone involution on [a, 1]: γa : x 7→ x′ ∨ a
OML’s: x⊕ y = (x ∧ y′) ∨ y

Orthomodular lattices = basic algebras satisfying

x ≤ y ⇒ y ⊕ x = y
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Effect basic algebras as special class of basic algebras

An effect algebra (Foulis, Bennett, 1994) is a partial structure
(A; +, 0, 1) satisfying:

x+ y = y + x if one side is defined;
(x+ y) + z = x+ (y + z) if one side is defined;
for every x there is a unique x′ such that x′ + x = 1;
if x+ 1 is defined, then x = 0.
The underlying order: x ≤ y iff y = x+ z for some z.
Lattice-ordered effect algebras (lattice effect algebras) are
equivalent to effect basic algebras, i.e., basic algebras
satisfying

x⊕ y ≤ ¬z ⇒ (x⊕ y)⊕ z = x⊕ (z ⊕ y).

Antitone involution on [a, 1]: γa : x 7→ x′ + a
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Effect basic algebras as special class of basic algebras

The class of lattice effect algebras includes both MV-algebras and
orthomodular lattices:

Relative to the variety of effect basic algebras:
MV- algebras ... x⊕ y = y ⊕ x
orthomodular lattices ... x⊕ x = x

The smallest variety containing both the variety of MV-algebras
and the variety of orthomodular lattices was recently axiomatized
by Kühr et. al. (2015).
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Distributive, standard and neutral elements in lattice

Definition
Let (L,∨,∧) be a lattice and let a be an element of L.

The element a is called distributive if
a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y), for all x, y ∈ L.
The element a is called standard if
x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y), for all x, y ∈ L.
The element a is called neutral if
(a∧ x)∨ (x∧ y)∨ (y ∧ a) = (a∨ x)∧ (x∨ y)∧ (y ∨ a), for all
x, y ∈ L.

Dually distributive and dually standard elements are defined dually.

Neutr(L) j Stand(L) j Distr(L)
Neutr(L) j Standδ(L) j Distrδ(L)

Neutr(L) forms a distributive sublattice in L
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Sharp, central and boolean elements in basic algebra

Definition
Let (A,⊕,¬, 0, 1) be a basic algebra and let a be an element of A.

The element a ∈ A is said to be sharp if a ∧ ¬a = 0;
equivalently, a ∨ ¬a = 1, (equivalently, a⊕ a = a). The sharp
elements form neither a subalgebra of (A,⊕,¬, 0, 1) nor
sublattice of (A,∨,∧) in general.
The element a ∈ A is said to be central if the mapping
x 7→ (x ∧ a, x ∧ ¬a) is an isomorphism of A onto
[0, a]× [0,¬a], or equivalently, (x, y) 7→ x ∨ y is an
isomorphism of [0, a]× [0,¬a] onto A. The central elements
form a subalgebra of A (Boolean algebra).
An element a ∈ A is said to be boolean if a⊕ x = a ∨ x for all
x ∈ A. The boolean elements form a subalgebra of A
(Boolean algebra).

C(A) j B(A) j S(A) C(A) = S(A) for any MV-algebra A
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Characterization of distributive elements

Lemma
Let (A,⊕,¬, 0, 1) be a basic algebra. For any a ∈ A, the following
are equivalent:
(i) a ∈ Distr(A) in the lattice (A,∨,∧);
(ii) ¬a ∈ Distrδ(A) in the lattice (A,∨,∧);
(iii) (x ∨ y)⊕ a = (x⊕ a) ∨ (y ⊕ a) for all x, y ∈ A;
(iv) fa : x 7→ x ∨ a is a lattice homomorphism from A onto [a, 1];
(v) αa = {(x, y) ∈ A2 | a ∨ x = a ∨ y} (the kernel of fa) is a
lattice congruence of A.
(vi) f¬a : x 7→ x∧a is a lattice homomorphism from A onto [0,¬a];
(vii) β¬a = {(x, y) ∈ A2 | ¬a ∧ x = ¬a ∧ y} (the kernel of f¬a) is
a lattice congruence of A.

P. Emanovský Special Elements in Pseudocomplemented Lattice Effect Algebras



Characterization of standard elements

Lemma
Let (A,⊕,¬, 0, 1) be a basic algebra. For any a ∈ A, the following
are equivalent:
(i) a ∈ Stand(A) in the lattice (A,∨,∧);
(ii) ¬a ∈ Standδ(A) in the lattice (A,∨,∧);
(iii) (a ∨ x)⊕ y = (x⊕ y) ∨ (a⊕ y) for all x, y ∈ A.
(iv) α̃a = {(x, y) ∈ A2 : x ∨ y = (x ∧ y) ∨ a1 for some a1 ≤ a}
is a congruence of (A,∨,∧), in which case a ∈ Distr(A) and
α̃a = αa;
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Characterization of neutral elements

Lemma
Let (A,⊕,¬, 0, 1) be a basic algebra. For any a ∈ A, the following
are equivalent:

(i) a ∈ Neutr(A) in the lattice (A,∨,∧);

(ii) a ∈ Distr(A) ∩Distrδ(A), and for all x, y ∈ A, whenever
x ∨ a = y ∨ a and x ∧ a = y ∧ a, then x = y.

(iii) αa = {(x, y) ∈ A2 | a ∨ x = a ∨ y} and
βa = {(x, y) ∈ A2 | a ∧ x = a ∧ y} are lattice congruences such
that αa ∩ βa = ∆A.
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Neutr(A) ∩ S(A) is a Boolean algebra

Lemma
Let (A,⊕,¬, 0, 1) be a basic algebra. Then Neutr(A) ∩ S(A) is a
subalgebra of (A,∨,∧,¬, 0, 1), and Neutr(A) ∩ S(A) is a Boolean
algebra in its own right.

Remark. In general, Neutr(A) ∩ S(A) is not a subalgebra of the
basic algebra (A,⊕,¬, 0, 1) .

B(A) j Neutr(A) ∩ S(A)
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Characterization of boolean elements

Theorem
Let (A,⊕,¬, 0, 1) be a basic algebra. For any a ∈ A, the following
are equivalent:
(i) a ∈ B(A);
(ii) a ∨ (x⊕ y) = (a ∨ x)⊕ y for all x, y ∈ A;
(ii) a ∈ S(A) and a⊕ (x⊕ y) = (a⊕ x)⊕ y for all x, y ∈ A;
(iii) the equivalence αa = {(x, y) ∈ A2 | a ∨ x = a ∨ y} is a weak
congruence of the algebra (A,⊕,¬, 0, 1).

Weak congruence of a basic algebra is an equivalence relation θ
with the property that

(x, y) ∈ θ implies (¬x,¬y) ∈ θ and (x⊕ z, y ⊕ z) ∈ θ.

Any weak congruence is a lattice congruence (compatible with ¬),
but the converse fails to be true in general. Thus weak congruences
of (A,⊕,¬, 0, 1) are a special case of congruences of
(A,∨,∧,¬, 0, 1).
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When αa is a congruence of (A,⊕,¬, 0, 1)?

Lemma
Let (A,⊕,¬, 0, 1) be a basic algebra. The following are equivalent
for any a ∈ A:
(i) x⊕ (y ∨ a) = (x⊕ y) ∨ a for all x, y ∈ A;
(ii) a ∈ S(A) and x⊕ (y ⊕ a) = (x⊕ y)⊕ a for all x, y ∈ A;
(iii) fa : x 7→ x ∨ a is a homomorphism of (A,⊕,¬, 0, 1) onto the

interval basic algebra [a, 1];
(iv) αa is a congruence of (A,⊕,¬, 0, 1).
If a ∈ A satisfies these conditions, then a ∈ B(A).
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Characterization of central elements

Theorem
Let A be a basic algebra. For any a ∈ A, the following are
equivalent:

(i) a ∈ C(A);
(ii) x⊕ (y ∨ z) = (x⊕ y) ∨ z for all x, y ∈ A and z ∈ {a,¬a};
(iii) a ∈ S(A) and x⊕ (y ⊕ z) = (x⊕ y)⊕ z for all x, y ∈ A and

z ∈ {a,¬a};
(iv) αa and α¬a are congruences of (A,⊕,¬, 0, 1).
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Special elements in lattice effect algebras

Definition
Two elements x, y in a lattice effect algebra are said to be
compatible (in symbols x↔ y) if there exist x1, y1, z ∈ A such
that x = x1 + z, y = y1 + z and x1 + y1 + z is defined. In the
language of basic algebras we have

x↔ y iff x⊕ y = y ⊕ x iff x ≤ x⊕ y;

.

K(A) = {a ∈ A : a↔ x for all x ∈ A} ... compatibility center
(subalgebra of A, MV-algebra)

Riečanová, Z. (1997) ... C(A) = S(A) ∩K(A)

a ∈ C(A) iff (x ∧ a) ∨ (x ∧ ¬a) = x for all x ∈ A
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Special elements in lattice effect algebras

Lemma
Let A be a lattice effect algebra. If a ∈ B(A), then
(x ∧ a) ∨ (x ∧ ¬a) = x for all x ∈ A.

Corollary

For any lattice effect algebra A, C(A) = B(A).

Theorem

If (A,⊕,¬, 0, 1) is an effect basic algebra, then

C(A) = B(A) = S(A) ∩Distr(A) = S(A) ∩Distr∂(A)

= S(A) ∩ Stand(A) = S(A) ∩ Stand∂(A)

= S(A) ∩Neutr(A).
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Basic algebras with pseudocomplementation

Definition
By a basic algebra with pseudocomplementation or a
pseudocomplemented basic algebra we mean an algebra
A = (A,⊕,¬, ∗, 0, 1) of type (2, 1, 1, 0, 0) where (A,⊕,¬, 0, 1) is a
basic algebra and ∗ is pseudocomplementation on its underlying
lattice, i.e., for every x ∈ A, x∗ is the pseudocomplement of x (i.e.
y ≤ x∗ iff x ∧ y = 0) .

(A,∨,∧, ∗, 0, 1) ... p-algebra

In fact, for every x ∈ A,
x+ = ¬(¬x)∗

is the dual pseudocomplement of x because y ≥ ¬(¬x)∗ iff
¬y ≤ (¬x)∗ iff ¬x ∧ ¬y = 0 iff x ∨ y = 1. Thus (A,∨,∧, ∗,+, 0, 1)
is a double p-algebra. Obviously,

x∗ = ¬(¬x)+.
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Basic algebras with pseudocomplementation

A∗ = {x∗ : x ∈ A} ... boolean algebra, xt y = (x∨ y)∗∗, the meet
in A∗ agrees with x ∧ y in A

A+ = {x+ : x ∈ A} ... boolean algebra, join in A+ agrees with
x ∨ y in A and the meet in A+ is given by x u y = (x ∧ y)++

Theorem
The class of pseudocomplemented basic algebras is a variety which
can be axiomatized by the axioms of basic algebras together with
the identities

0∗ = 1, 1∗ = 0 and x ∧ (x ∧ y)∗ = x ∧ y∗.
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Basic algebras with pseudocomplementation

Lemma
Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation.
(i) If a ∈ S(A), then a+ ≤ ¬a ≤ a∗.
(ii) If a ∈ S(A) ∩Distr(A), then a = (¬a)∗. Dually, if

a ∈ S(A) ∩Distrδ(A), then a = (¬a)+. Hence
S(A) ∩Distr(A) ⊆ A∗ and S(A) ∩Distrδ(A) ⊆ A+.

(iii) If a ∈ S(A) ∩Distr(A) ∩Distrδ(A), then ¬a = a∗ = a+.

Corollary
Let A be a pseudocomplemented basic algebra. Then
C(A) ⊆ B(A) ⊆ A∗ ∩A+.
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Basic algebras with pseudocomplementation

Example.
Let (A,⊕,¬, 0, 1) be the basic algebra with the following
underlying lattice (the so-called “benzene”- is neither distributive
nor lattice effect algebra):

0

1

a b

¬b ¬a

The linearly ordered intervals bear unique antitone involutions, thus
⊕ is determined by the lattice and ¬. The basic algebra is obviously
pseudocomplemented and S(A) = A, but A∗ = {0,¬a,¬b, 1} and
A+ = {0, a, b, 1}. So it can happen that S(A) * A∗ and
S(A) * A+. Moreover, (¬b)∗ = ¬a 6= ¬¬b = b and a+ = b 6= ¬a.
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Basic algebras with pseudocomplementation

Lemma

Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation. Then the underlying lattice is modular if
and only if it is distributive, in which case S(A) ⊆ A∗ ∩A+ and
¬a = a∗ = a+ for every a ∈ S(A).

Riečanová, Z. (2009) ... For any lattice effect algebra A,
S(A) ⊆ A∗ ∩A+ and ¬a = a∗ = a+ for every a ∈ S(A).
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Pseudocomplemented basic algebras with A∗ ⊆ S(A)

Lemma

Let A be a pseudocomplemented basic algebra such that
A∗ ⊆ S(A) or, equivalently, A+ ⊆ S(A). Then A satisfies the
Stone identity

x∗∗ ∨ x∗ = 1,

as well as the dual Stone identity

x++ ∧ x+ = 0.
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Pseudocomplemented basic algebras satisfying (M)

Lemma

Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation satisfying the identity (M). Then

C(A) = B(A) = S(A) = A∗ = A+.

Consequently, the double p-algebra (A,∨,∧, ∗,+, 0, 1) is a double
Stone algebra.

x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z), (M)
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Variety of PBA with C(A) = A∗

The condition C(A) = A∗ is equivalent to the satisfaction of the
identities

x⊕(y∨z∗) = (x⊕y)∨z∗ and x⊕(y∨¬z∗) = (x⊕y)∨¬z∗. (1)

Lemma
Let (A,⊕,¬, ∗, 0, 1) be an arbitrary basic algebra with
pseudocomplementation. If a ∈ C(A), then αa as well as
βa = α¬a is a factor congruence of (A,⊕,¬, ∗, 0, 1).
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Subdirectly irreducible members of the variety

Theorem

Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation such that C(A) = A∗. The following
statements are equivalent:
(i) (A,⊕,¬, ∗, 0, 1) is a subdirectly irreducible algebra;
(ii) the underlying lattice is a chain;
(iii) (A,⊕,¬, ∗, 0, 1) is a simple algebra.

Corollary

Every finite basic algebra which satisfies the identity (M) is an
MV-algebra.
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Corollary for pseudocomplemented lattice effect algebras

Corollary

Let (A,⊕,¬, ∗, 0, 1) be a lattice effect algebra with
pseudocomplementation. Then C(A) = A∗ iff (A,⊕,¬, 0, 1) is an
MV-algebra.
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THE END. THANK YOU!
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Discriminator variety of psudocomplemented basic algebra

Corollary
The variety of pseudocomplemented basic algebras satisfying the
identities (1) is a discriminator variety.

Discriminator term ... t(x, y, z) = (x ∨ d(x, y)∗) ∧ (z ∨ d(x, y)∗∗)
where d(x, y) = (x� y) ∨ (y � x)

t(a, a, c) = (a ∨ 1) ∧ (c ∨ 0) = c

t(a, b, c) = (a ∨ 0) ∧ (c ∨ 1) = a for all a, b, c ∈ A with a 6= b.
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(A,∨,∧,¬, 0, 1) as a subdirect product

Lemma
Let (A,⊕,¬, 0, 1) be a basic algebra. Let B is a subalgebra of
(A,∨,∧,¬, 0, 1) which is a Boolean algebra. For every x ∈ A \ {0}
there exists a maximal ideal M of the Boolean algebra B such that
x /∈ (M ]. Consequently,

⋂
{(M ] |M is a maximal ideal of B} =

{0}.

For any ideal I of B, the relation αI =
⋃
{αa | a ∈ I} is also a

congruence of (A,∨,∧,¬, 0, 1).

For any ideal I of B(A), we have (x, y) ∈ αI iff x� y, y � x ∈ (I].

Corollary

Let (A,⊕,¬, 0, 1) be a basic algebra. Then
⋂
{αM |M is a

maximal ideal of B(A)} = ∆A and hence the algebra
(A,∨,∧,¬, 0, 1) is a subdirect product of the quotient algebras
(A/αM ,∨,∧,¬, [0]αM , [1]αM ) where M is a maximal ideal of the
Boolean algebra B(A).
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