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Effect algebras

Definition (Foulis, Bennett, 1994)

A partial algebra (E; ®,0,1) is called an effect algebra if 0, 1 are two
distinct elements and @ is a partially defined binary operation on E which
satisfy the following conditions for any x,y,z € E:

(Ei) x@y=y®xif x® y is defined,

(Eii) (x®y)®z=x@ (y® z) if one side is defined,

(Eiii) for every x € E there exists a unique y € E such that

x®y=1(we put x' =y),
(Eiv) if 1@ x is defined then x = 0.
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(Eiii) for every x € E there exists a unique y € E such that
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(Eiv) if 1@ x is defined then x = 0.

A partial order < on E can be introduced by:

x <y iff x®z is defined and xz=y.
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Examples of effect algebras

@ Boolean algebras — a @ b is defined iff a < b* in which case
a®b=aVhb,
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Examples of effect algebras

@ Boolean algebras — a @ b is defined iff a < b* in which case
a®b=aVhb,

@ MV-algebras — a® b is defined iff a < b’ in which case a® b= af b,

@ Interval effect algebras — let (G; +, <) be a partially ordered
commutative group, a € G,0 < a. Then [0,a] C G with
x®y=x+yiff x4+ y < ais an effect algebra.

e E(H) :=10,1] C B(#H) — an interval on bounded self-adjoint linear
operators on a complex Hilbert space H, with the usual addition,
A < B if (Ax,x) < (Bx, x) for all x € H.
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Observables

Definition
Let E be a monotone o-complete effect algebra. An observable is a map
x : B(R) — E such that
(i) x(R) =1,
(i) if AN B =10, then x(AU B) = x(A) ® x(B),
(iii) if {Aitien, Ai € Ait1, then x(lU; Ai) = V,; x(A)).

The least closed subset o(x) C R such that x(o(x)) =1 is called a
spectrum of x.
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Measurable functions (random variables)  : Q2 — R on a measure space
(2, A, p) induce o-homomorphisms x : B(R) — A by x(B) = f~1(B).
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Measurable functions (random variables)  : Q2 — R on a measure space
(2, A, p) induce o-homomorphisms x : B(R) — A by x(B) = f~1(B).

Example

Observables on the prototype effect algebra £(?) bounded positive
self-adjoint linear operators on a complex Hilbert space H between 0 and /
are (normalized) positive-operator valued measures (POVM).

v
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Spectral resolutions

Theorem (Dvureenskij, Kukovd, 2014)

Let x be an observable on a o-lattice effect algebra E. Let us set

(1) Bx(t) := x((—o00, 1)).
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Theorem (Dvureenskij, Kukovd, 2014)

Let x be an observable on a o-lattice effect algebra E. Let us set
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Then

(2) ift <s, then By(t) < By(s),

(3) Vics Bx(t) = Bu(s).
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Moreover, for any system {B(t)}tcr C E which satisfies (2) — (4) there
exists unique observable x on E for which (1) holds.
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Spectral resolutions

Theorem (Dvureenskij, Kukovd, 2014)

Let x be an observable on a o-lattice effect algebra E. Let us set

(1) Bx(t) := x((—o00, 1)).

Then

(2) ift <s, then By(t) < By(s),

(3) Vics Bx(t) = Bu(s),

(4) Ater Bx(t) =0,V cg Bx(t) = 1.

Moreover, for any system {B(t)};cr C E which satisfies (2) — (4) there
exists unique observable x on E for which (1) holds.

We call {Bx(t)}+cr a spectral resolution of x.
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Olson order

Definition (Dvurecenskij, 2016)
Let x,y € BO(E) be bounded observables on a monotone o-complete
effect algebra E. A relation < on BO(E) given by

x <y iff B,(t) <g B«(t)

for every t € R is a partial order, so called Olson order.
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The sum of observables

Theorem (Dvureenskij, 2016)
Let E be a o-frame effect algebra and let x,y € BO(E). Let:

Bary(t) = \/ (Bu(r) A By(t 1))

reQ

for all t € R. Then there is a unique bounded observable z on E such that
B,(t) = Byxyy(t) for every t € R. We call z the sum of x,y.

v
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Theorem (Dvureenskij, 2016)
Let E be a o-frame effect algebra and let x,y € BO(E). Let:

Bty (t) := \/ (Bx(r) A By(t —r))
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for all t € R. Then there is a unique bounded observable z on E such that
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v

Theorem (Dvure&enskij, 2016)

Let E be a o-frame effect algebra and BO(E) the set of all bounded
observables on E. Then BO(E) is a distributive lattice and a lattice
ordered commutative semigroup w.r.t. Olson order and the sum of
observables.

v
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Theorem (Dvure&enskij, 2016)

Let E be a o-frame effect algebra and BO(E) the set of all bounded
observables on E. Then BO(E) is a distributive lattice and a lattice
ordered commutative semigroup w.r.t. Olson order and the sum of
observables.

v

In the rest of talk, E will denote a o-frame effect algebra.
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Expressions of the sum of observables

Let x,y € BO(E), o(x) C [ax, bx),o(y) C [ay, by) for some
ayx, bg,ay, by eRand let K :=QnN(axVt—cy,t—a,Ac). Then

Beiy(t) = \/ (Bulr) A By (t — r)).

rek
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Expressions of the sum of observables

Let x,y € BO(E), o(x) C [ax, bx),o(y) C [ay, by) for some
ayx, bg,ay, by eRand let K :=QnN(axVt—cy,t—a,Ac). Then

Beiy(t) = \/ (Bulr) A By (t — r)).

rek
v

We have
By (t) = x((o0, t)).

32 /55



Expressions of the sum of observables

Let x,y € BO(E), o(x) C [ax, bx),o(y) C [ay, by) for some
ayx, bg,ay, by eRand let K :=QnN(axVt—cy,t—a,Ac). Then

Beiy(t) = \/ (Bulr) A By (t — r)).

rek
v

We have

Let us set
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Expressions of the sum of observables

Let x,y € B(R). Let M C R be a subset of R such that for every
p € o(x) there exists M, C M such that p = \ Mp. Then

By (t) = \/ (Bu(m] A B (t — m)).
meM
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Expressions of the sum of observables

Theorem

Let x,y € B(R). Let M C R be a subset of R such that for every
p € o(x) there exists M, C M such that p = \ Mp. Then

By (t) = \/ (Bu(m] A B (t — m)).
meM

We can take M = o(x), i.e., the expression becomes finite when x is a
simple observable.
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Expressions of the sum of observables

Corollary

Let x,y be bounded observables on a o-distributive lattice effect algebra
E. Then there exists at most countable set M C o(x) such that

By (t) = \/ (Bu(m] A By (t — m)).
meM
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Expressions of the sum of observables

Corollary

Let x,y be bounded observables on a o-distributive lattice effect algebra
E. Then there exists at most countable set M C o(x) such that

By (t) = \/ (Bu(m] A By (t — m)).
meM

| \

Theorem
Let x,y € BO(E). Then

By (t] = A (Bl V By(t — ) = A\ (Bu(r] V By (t — ).

reQ reQ

A\
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Continuity of the spectral resolution

@ For an observable x, we have \/__, Bx(s) = By(t) for any t € R.

s<t
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Continuity of the spectral resolution

@ For an observable x, we have \/__, B(s) = Bx(t) for any t € R.
o We say that x has a continuous spectral resolution if for any

t € R, \sor Bx(s) = Bx(t).

@ x has a continuous spectral resolution iff for every t € o(x),

x({t}) = 0.

Let x,y € BO(E) such as x has a continuous spectral resolution and y is
simple. Then x + y has a continuous spectral resolution.
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Continuity of the spectral resolution

Let / be a set and {J; | i € I} a family of non-empty sets. A complete
lattice L is completely distributive if for any subset {x;}ic/ jc of L we

have /\iel(\/jej xij) = V.o (Nier Xifi))-
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Continuity of the spectral resolution

Let / be a set and {J; | i € I} a family of non-empty sets. A complete
lattice L is completely distributive if for any subset {x;}ic/ jc of L we

have /\iel(\/jej xij) = V.o (Nier Xifi))-

Let x,y € BO(E) be bounded observables on a completely distributive
lattice effect algebra E. If x has a continuous spectral resolution, then
X + y has a continuous spectral resolution.
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Spectra of the sum

Let x,y € BO(E). Then o(x +y) C o(x) + o(y).
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Spectra of the sum

Let x,y € BO(E). Then o(x +y) C o(x) + o(y).

Let x,y € BO(E) such that |o(x)| = m and |o(y)| = n. Then

o(x+y)C{r+s|reo(x),sco(y)} thatis,

o(x+y)| <m-n.

There exists an example of x,y € BO(E) such that |o(x + y)|=m-n.
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Extremal points of the spectrum of the sum

Let x,y € BO(E). TFAE:

1.) if p,q € Q and B(p) > 0,B,(q) > 0, then B.(p) A B,(q) > 0,
2) Ao(x)+ Aoly) € o(x +),

3) Ao(x)+ Aoly) = Aalx +y).

Moreover, TFAE:

1) ifp,geQ p<\o(x),qg<Vol(y), then B«(p)V B,(q) <1,
2) Volx)+Valy) e alx+y)

3) Vo) +Voly) = Valx+y).
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Inverse elements

@ Let f : R — R be a mapping defined by f(t) := —t. Define
—x : B(R) — E by —x(A) := x(f(A)),
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Inverse elements

@ Let f : R — R be a mapping defined by f(t) := —t. Define
—x : B(R) — E by —x(A) := x(f(A)),

o If x(A) A x(A) = 0 for every A € B(R), then we call x a sharp
observable.

Theorem (Dvurelenskij 2016)

Let E be a o-frame effect algebra. The set of sharp bounded observables
SBO(E) C BO(E) is with respect to Olson order and the sum of
observables a lattice-ordered group in which —x is the inverse element of x
and the neutral element qq is given by o(qo) = {0}. Moreover, SBO(E) is
a subsemigroup and a sublattice of the lattice-ordered semigroup BO(E).
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Inverse elements

@ Let f : R — R be a mapping defined by f(t) := —t. Define
—x : B(R) — E by —x(A) := x(f(A)),

o If x(A) A x(A) = 0 for every A € B(R), then we call x a sharp
observable.

Theorem (Dvurelenskij 2016)

Let E be a o-frame effect algebra. The set of sharp bounded observables
SBO(E) C BO(E) is with respect to Olson order and the sum of
observables a lattice-ordered group in which —x is the inverse element of x
and the neutral element qq is given by o(qo) = {0}. Moreover, SBO(E) is
a subsemigroup and a sublattice of the lattice-ordered semigroup BO(E).

Let x,y € BO(E). Then (—x) + (—y) = —(x + y).
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Decomposition to a sharp and a meager part

By X (X respectively) we denote the least (greatest) sharp observable
greater (less) than x. We say that x is a meager observable if (%) = {a}
and a dense observable if o(X) = {b}.
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Decomposition to a sharp and a meager part

By X (X respectively) we denote the least (greatest) sharp observable
greater (less) than x. We say that x is a meager observable if (%) = {a}
and a dense observable if o(X) = {b}.

Let x € BO(E). Then x = X + xm = X + x4 where xp, is a meager
observable and x4 a dense observable. Moreover, we have xp, = —(—x)q4

and \ o(xm) =\ o(xqg) = 0.
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Decomposition to a sharp and a meager part

By X (X respectively) we denote the least (greatest) sharp observable
greater (less) than x. We say that x is a meager observable if (%) = {a}
and a dense observable if o(X) = {b}.

Theorem

Let x € BO(E). Then x = X + xm = X + x4 where xn, is a meager
observable and x4 a dense observable. Moreover, we have xp, = —(—x)q4

and \ o(xm) =\ o(xqg) = 0.

Theorem

Subsets MoBO(E), DoBO(E) C BO(E) of meager, resp. dense,
observables such that \ o(xm) =0, resp. \/ o(xq) =0, forms
subsemigroups and sublattices of the lattice-ordered semigroup BO(E).
Moreover,

| \

BO(E) = SBO(E) & MoBO(E) = SBO(E) & DoBO(E).

53 /55



References

B Dvure€enskij, A., Pulmannovd, S.: “New Trends in Quantum
Structures”, Kluwer Acad. Publ., Dotrecht, Ister Science, Bratislava,
2000, 541 + xvi pp.

Dvure€enskij, A., Kukovd, M: Observables on Quantum Structures,
Inf. Sci. 262, 215-222 (2014).

Dvuregenskij, A.:Olson Order of Quantum Observables, Int. J. Theor.
Phys. 55, 4896-4912 (2016).

Dvurelenskij, A.: Sum of observables on MV-effect algebras, Soft
Computing DOI: 10.1007/s00500-017-2741-1.

) & & &

Janda, J., Xie, Y.: The spectrum of the sum of observables on
o-complete MV-effect algebras, Soft Comput. (2018),
https://doi.org/10.1007 /s00500-018-3078-0.

54 /55



Thank you for your attention!
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