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Introduction

• P. Hell, J. Nešetřil, Graphs and Homomorphisms, Oxford
Lecture Series in Mathematics and Its Applications 28, Oxford
University Press, 2004.

• type τ = (F ,R)

• A homomorphism of a structure A = (A,F ,R) to
B = (B,F ,R) is a mapping ϕ : A→ B commuting with all
operations f ∈ F and such that each relation ρ ∈ R is
compatible with ϕ.

• Define A ≤ B if there is a homomorphism of A to B.
≤ is a quasi-order.

• Set A ∼ B if A ≤ B and B ≤ A.
The system of algebraic structures of type τ factorized by the
equivalence ∼ is partially ordered.
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Introduction

Properties of the homomorphism order investigated for relational
structures, mostly for graphs, in algebraic category theory, random
and combinatorial context

• existence of suprema and infima (supremum is a disjoint sum,
infimum is a categorical or relational product)

• maximal chains and antichains
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Basic notions

• monounary algebra (A, f )

• well vizualisable: corresponding directed graph (A,E ) such
that

(x , y) ∈ E ⇔ f (x) = y

• connected: ∀ x , y ∈ A ∃ n,m ∈ N ∪ {0} such that
f n(x) = f m(y)

• connected component of (A, f ): maximal connected
subalgebra

• c ∈ A is cyclic if f k(c) = c for some k ∈ N
• the set of all cyclic elements of some connected component of
A is cycle of (A, f )
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Notation and aim

• L - the class of all connected monounary algebras

• L= L/∼ - the class L factorized by ∼

• Note! in the class of all (not necessarily connected)
monounary algebras

• supremum = disjoint union
• infimum = direct product
• disjoint union of connected monounary algebras is never

connected, direct product of connected monounary algebras
fails to be connected in general

• Aim: L with the homomorphism order is a lattice.

• some properties of L
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Basic notions

• (A, f ) is unbounded if

(i) there exists no sequence {an}n∈N0 of elements in A such that
f (an) = an−1 for each n ∈ N

(ii) if x ∈ A, n ∈ N, then there is m ∈ N such that
f −(m+n)(f m(x)) 6= ∅.

• (A, f ) is bounded if (A, f ) satisfies (i) and does not fulfill (ii).

• (Z, suc), (N, suc) and (Zm, suc) - the algebras such that suc
is the operation of the successor
(i.e., (Zm, suc) is an m-element cycle)
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Lemma
Let (A, f ) ∈ L.
(i) (N, suc) ≤ (A, f ) ≤ (Z1, suc).
(ii) If m ∈ N, then (Z, suc) ≤ (Zm, suc).

(iii) (Zn, suc) ≤ (Zm, suc) if and only if m divides n

(iv) If (A, f ) contains no cycle, then (A, f ) ≤ (Z, suc).

Lemma
Let (A, f ) ∈ L.
(a) (A, f ) ∼ (Z, suc) if and only if (A, f ) contains a subalgebra
isomorphic to (Z, suc).

(b) (A, f ) ∼ (Zm, suc) (m ∈ N) if and only if (A, f ) contains an
m-element cycle.

(c) (A, f ) ∼ (N, suc) if and only if (A, f ) is bounded.



Shape of the partially ordered class L

Lemma
The system L is a proper class.

Proposition

The partially ordered class L is bounded, with the upper bound
[(Z1, suc)]∼ and with the lower bound [(N, suc)]∼. Further, L is a
disjoint union of a one element set {[(Z, suc)]∼} and of two parts,
the upper one L1 (over [(Z, suc)]∼) and the lower one L2 (below
[(Z, suc)]∼). Next, L1 is dually isomorphic to N ordered by
divisibility.
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The lattice L

The following theorem is proved by a constructive way:.

Theorem
The partially ordered class L forms a lattice.

Theorem
The lattice L is distributive.

Idea of proof:
• class of all sequences of ordinals (∧, ∨ coordinate-wise) is a

distributive lattice
• class S of all increasing sequences of ordinals is a distributive

lattice
• S factorized by some congruence is a distributive lattice
• this lattice is isomorphic to L
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Antichains in L

The following theorem was proved in

1978

, in that time
formulated in the language of category theory.

Theorem

(i) If M is an antichain in L then M is a set with at most
continuum elements.

(ii) There exists an antichain M in L possessing continuum
elements.
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Thank You for Your Attention !


