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Chapter 1

Introduction

1.1 Algebras

In this note we will make full use of the main concepts of general algebra; for
a textbook exposition we direct the reader to [24] and [10]. Let A be a set.
An operation of arity n on A is a function from An to A where An is the
cartesian product of n copies of A. An operation of arity 0 on a nonempty
set has a unique value; we identify the operation with the only value in its
range an we call it a constant.

An algebra A is a pair ⟨A,F ⟩ where A is a nonempty set and F = (fi :
i ∈ I) is a family of operations on A. The set A is the universe of A; the
operations in F are the basic operations of A.

A type τ is a family (fi)i∈I of symbols that are understood to represent
operations, together with a function ρ : (fi)i∈I −→ N, which intuitively
represents the arity of the operation symbols. An algebra A = ⟨A,F ⟩ is of
type τ if for each f ∈ τ there is an operation on A, denoted by fA, whose
arity is ρ(fi). When the context is clear we will confuse the operation on A
with the operation symbol of which it is the realization. Two algebras are
similar if they have the same type.

Let A = ⟨A,F ⟩ be an algebra and B ⊆ A. Then B = ⟨B,F ⟩ is a
subalgebra of A if for all f ∈ F (of arity n) and for all b1, . . . , bn ∈ B

f(b1, . . . , bn) ∈ B.

Note that it is implicit from the definition that A and B are similar. Observe
that the intersection of any family of subalgebras of A it is still a subalgebra;
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therefore we can define the subalgebra generated by X in A as

SubA(X) =
⋂

{B : B is a subalgebra of A and X ⊆ B}.

If A and B are similar a function h : A −→ B is a homomorphism if
for every basic (n-ary) operation f and for all a1, . . . , an ∈ A

h(fi(a1, . . . , an)) = gi(h(a1), . . . , h(an)).

An injective homomorphism is a monomorphism or an embedding; a sur-
jective homomorphism is an epimorphism and a bijective homomorphism is
an isomorphism. If there is an isomorphism from A to B then the two alge-
bras are isomorphic and we write A ∼= B. A homomorphism from A to A
is an endomorphism and a bijective endomorphism is an automorphism.

The definition of direct product of a family of algebras is more complex.
Given a family of sets (Ai)i∈I a choice function ϕ on the family is a function
ϕ : I 7−→

⋃
i∈I Ai with the property that ϕ(i) ∈ Ai for all i ∈ I. The direct

product of the family of similar algebras (Ai)i∈I is denoted by
∏

i∈I Ai. It is
an algebra whose universe is {ϕ : ϕ is a choice function on (Ai)i∈I} and the
operations are defined as follows; for every n-ary operation f in the type and
for any a1, . . . an ∈

∏
i∈I Ai the realization on

∏
i∈I Ai is given by

(f(a1, . . . , an))i = f(a1i , . . . , a
n
i ).

If A = Ai for all I we will write AI and we will say that AI is a direct
power of A. In this case of course AI = {f : f is a function from T to A}.

We observe also that if I is finite, say I = {1, . . . , n}, then
∏n

i=1Ai is just
the cartesian product and the operations on

∏n
i=1Ai are defined componen-

twise.
If K is a class of similar algebras then

H(K) is the class of all homomorphic images of algebras in K;

S(K) is the class of all subalgebras of algebras in K;

P(K) is the class of all direct products of families of algebras in K;

Pfin(K) is the class of all direct products of finite families of algebras in K.

K isclosed under homomorphic images, subalgebras or (finite) direct prod-
ucts if, respectively, HK ⊆ K, SK ⊆ K or PK ⊆ K (Pfin(K) ⊆ K. A class of
algebras V is a variety if it closed under H, S and P; since the intersection of
any family of varieties is still a variety it makes sense to define, for a class K,
V(K) as the smallest variety containing K. We say that V(K) is the variety
generated by K.
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1.2 Posets and lattices

Given a set P a preorder on P , denoted by ≤ is a binary relation on P
that is reflexive and transitive; if ≤ is also antisymmetric, then it is called a
partial order and ⟨P,≤⟩ is a partially ordered set or, briefly, a poset.

Lemma 1.2.1. Given any preorder ≤ on a set P , then the relation

a ≡ b if and only if a ≤ b and b ≤ a

is an equivalence relation ≡ on P . The quotient set P/ ≡ (i.e. the set of all
≡-classes of P ) is a poset where the order relation is

a/≡ ≤ b/≡ if and only if a ≤ b.

A semilattice is an algebra ⟨S,∧ where ∧ is a binary operation called
meet that is idempotent, commutative and associative, i.e. for all a, b, c ∈ S

a ∧ a = a

a ∧ b = b ∧ a
a ∧ (b ∧ c) = (a ∧ b) ∧ c.

A lattice is an algebra L = ⟨A,∨,∧⟩ where ∨ and ∧ are binary (and ∨ is
called join), ⟨L,∨⟩ and ⟨L,∧⟩ are semilattices and moreover for all a, b ∈ L

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a.

There is a connection between posets and (semi)lattices.

Theorem 1.2.2. Let P be a poset. Then:

1. if inf≤X exists for any finite subset X ⊆ A, then, upon defining a∧b =
inf≤{a, b}, ⟨P,∧⟩ is a semilattice.

2. if inf≤X and sup≤X exist for any finite subset X ⊆ A, then, upon
defining a∧ b = inf≤{a, b} and a∨ b = sup≤{a, b}, ⟨P,∨,∧⟩ is a lattice.

Let S = ⟨S,∧⟩ be a semilattice. Then upon defining a ≤ b if and only if
a ∧ b = a, L is a poset in which every finite subset has an infimum.
Let L = ⟨L,∨,∧⟩ be a lattice. Then:
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1. for any a, b ∈ L, a ∧ b = a if and only if a ∨ b = b;

2. upon defining a ≤ b if and only if a ∧ b = a if and only if a ∨ b = b, L
is a poset in which every finite subset has supremum and infimum.

Two elements a, b of a lattice L are comparable if a ≤ b o b ≤ a;
otherwise they are incomparable. If any pair of elements in a lattice is
comparable, than L is totally ordered; any totally oredered subset of L is a
chain. Conversely an antichain is a subset of L consisting of elements that
are pairwise incomparable.

Given a ≤ b in L we will say that a is covered by b (equivalently b
is a cover of a if there is no element between a and b: ormally for all c if
a ≤ c < b, then a = c. In this case we will write a ≺ b.

A lattice is upper (lower) bounded if it a largest element (smallest
element) in the ordering; the upper and lower bound are often denoted by
1 and 0. A lattice is bounded if it is upper and lower bounded; it is clear
form the definition that every finite lattice is bounded. If L is bounded an
atom of L is an element a ∈ L is a cover of 0. Similarly a coatom is a b ∈ L
that is covered by 1.

The best way of understanding the order structure of a lattice is to draw
its Hasse diagram; an informal way of constructing the Hasse diagram of
a lattice is to put the elements on a plane in such a way that if a < b then b
is above a. Then we draw a line from a to b, every time that a ≺ b.

There are two words of caution however; first the Hasse diagram deter-
mines the order structure of a lattice if and only if the underlying ordering
is the transitive closure of the relation “a ≺ b or a = b”. Second it is not
enough to draw a set of points in the plane joined by lines to get a Hasse
diagram of a lattice. For instance the configuration in Figure 1.1 looks like
a Hasse diagram of a lattice but really isn’t.

A lattice L is complete if every subset of L has an infimum and a supre-
mum in the ordering. It is clear that a complete lattice is always bounded
(why?). An element a of a complete lattice L is compact if for every X ⊆ L,
if a =

∨
X, then a ∈ X. A lattice is algebraic if it is complete and every

element is a join of compact elements.
It is clear that every element of a finite lattice is compact, so every fi-

nite lattice is algebraic. A more relevant example is below together with a
characterization of of algebraic lattices.

Proposition 1.2.3. If A is a set and P(A) is its power set, then ⟨P(A),∪,∩⟩
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Figure 1.1: A “false” lattice

is an algebraic lattice in which the compact elements are precisely the finite
subsets.

Proposition 1.2.4. For a lattice L the following are equivalent:

1. L is complete;

2. every subset of L has a supremum;

3. every chain (i.e. totally ordered subset) of L has an infimum and a
supremum.

1.3 Closure operators and lattices

If A is a set, an operator : P(A) 7−→ P(A) is a closure operator if for
any X, Y ⊆ A

X ⊆ X;

X = X;

se X ⊆ Y allora X ⊆ Y .
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A subset of X ⊆ A is closed if X = X. It is easy to show that the
intersection of any family of closed sets is closed; this gives substance to the
following:

Theorem 1.3.1. Let be a closure operator on A and let CA the set of
closed subsets of A. Then CA = ⟨CA,∨,∧⟩ is a complete lattice where, for
U, V ∈ CA

U ∨ V = (U ∪ V ) U ∧ V = U ∩ V.
Conversely if L is a complete lattice then L is isomorphic with the lattice of
closed sets of a suitable closure operator on L.

It is easy to show that for any closure operator a closed set is equal to
the union of the closures of its finite subsets. An extension of this property
gives a very important definition.

A closure operator on A is algebraic if for all X ⊆ A

X =
⋃

{Z : Z ⊆ X Z finite}.

The following characterizes algebraic closure operators.

Lemma 1.3.2. If is a closure operator on A the following are equivalent:

1. is algebraic;

2. if a ∈ X then a ∈ Y for some finite subset Y ⊆ X;

3. every union of an upward directed set of closed sets is closed.

This allows au to prove:

Theorem 1.3.3. Let be an algebraic closure operator on A; then CA =
⟨CA,∨,∧⟩ is an algebriac lattice in which the compact elements are exactly
the closures of finite subsets of A.

Conversely any algebraic lattice L is isomorphic with the lattice of closed
sets of a suitable algebraic closure operator on A.

Algebraic closure operators (and thus algebraic lattices) are ubiquitous
in general algebra. For instance it is not hard to show that for any algebra
A and X, the operator X 7−→ SubA(X) is an algebraic closure operator and
thus subalgebra have the natural structures of an algebraic lattice1. By the
same token the lattice of normal subgroups of a group and the lattices of
ideals of a commutative ring are algebraic.

1actually this is slightly incorrect but can be fixed; can you tell why and how?
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1.4 Modular and distributive lattices

A lattice L is modular if for all a, b, c ∈ L

c ≤ a implies a ∧ (b ∨ c) = (a ∧ b) ∨ c;

a lattice L is distributive if for all a, b, c ∈ L

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

While the genesis of the term “distributive” is clear, the term “modular” is
not so obvious. It turns out (and it is an easy exercise) that the lattice of
normal subgroups of a group is modular. Thus the lattice of any Z-module
is modular and this is where the word came from.

It is obvious that every distributive lattice is modular; in Figure 1.2 are
shown the smallest non modular lattice and the smallest modular non dis-
tributive lattice.

0

a b

1

c

0

1

b

a

c

M3 N5

Figure 1.2: M3 and N5

It is obvious that distributive lattices form a variety; it is less obvious,
but nevertheless true, that modular lattices for a variety as well. M3 and
N5 turn out to be instrumental in describing those varieties, due to the two
following classical results by Dedekind. If L e M are lattices we say thatL
omits M if L does not have any sublattice isomorphic M.

Theorem 1.4.1. (Dedekind) For a lattice L the following are equivalent:

1. L is modular;

2. for all a, b, c ∈ L if c ≤ a, a ∧ b = c ∧ b and a ∨ b = c ∨ b, then a = c;

3. L omits N5.
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Theorem 1.4.2. (Dedekind) For a lattice L the following are equivalent:

1. L is distributive;

2. for all a, b, c ∈ L if a ∧ b = c ∧ b and a ∨ b = c ∨ b, then a = c;

3. L omits N5 and M3.

1.5 Congruences

Let φ : A −→ B be a homomorphism; we define the kernel of f as the
relation on A

ker(φ) = {(a, b) : φ(a) = φ(b)}.

A congruence of A is an equivalence relation θ on A which is compatible
with the basic operations; i.e. if F (x1, . . . , xn) is a basic operation of A
and (ai, bi) ∈ θ for i = 1. . . . , n, then (F (a1, . . . , an), F (b1, . . . , bn)) ∈ θ.
This yields a structure of an algebra similar to A on the quotient set A/θ
and the map a 7−→ a/θ is clearly an epimorphism, dubbed the natural
epimorphism. The following is a simple exercise.

Proposition 1.5.1. For any algebra A and θ ⊆ A × A the following are
equivalent:

1. θ is a congruence of A;

2. θ is a reflexive, symmetric and transitive subalgebra of A×A;

3. θ is the kernel of an homomorphism form A.

Since the intersection of any family of congruence is clearly a congruence,
given X ⊆ A × A one can consider the congruence generated by X in A
as the intersection of all congruence of A containing X. This congruence
is denoted by ϑA(X). Since the operator X 7−→ ϑA(X) is clearly a closure
operator (and it is easy to show that it is also algebraic) the congruence of
A form an algebraic lattice denoted by Con(A).

Congruences are important for the three homomorphism theorems below.

Theorem 1.5.2. (First Homomorphism Theorem) Let A,B similar alge-
bras h : A −→ B a homomorphism. If θ = ker(h) and g is the natural
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epimorphism,there exists a (unique) monomorphism f : A/θ −→ B satisfy-

ing fg = h. Moreover f̂ : A/θ −→ h(A), defined as f̂(a/θ) = h(a) is an

isomorphism. Hence if h is an epimorphism , then f = f̂ is an isomorphism
from A/θ to B.

A/θ

A h(A) B

g f
f̂

h i

Theorem 1.5.3. (Second Homomorphism Theorem) Let f : A −→ B and
g : A −→ C two homomorphism such that f is surjective and ker(f) ⊆
ker(g). Then there exists a (unique) homomorphism h : B −→ C satisfyin
g = h. Moreover h is a monomorphism if and only if ker(f) = ker(g).

A B

C

f

g h

Let A be and algebra nd α, β ∈ Con(A) with α ≤ β; then it is easy to
show that

β/α = {(a/β, b/β) : (a, b) ∈ α}
is a congruence of A/α.

Corollary 1.5.4. Let A be and algebra nd α, β ∈ Con(A) with α ≤ β. Then

(a/α)/(β/α) 7−→ a/β

is an isomorphism from (A/α)/(β/α) to A/β.
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A A/α

A/β (A/α)/(β/α)

πα

πβ
f

πβ/α

g

Theorem 1.5.5. (Third Homomorphism Theorem) Let A be an algebra
and let φ ∈ Con(A). The function on I[φ, 1A] defined by θ 7−→ θ/φ is an
isomorphism from [φ, 1A] to Con(A/φ).

Con(A)

Con(A/φ)

θ θ/φ

0A

φ

1A

0A/φ = φ/φ

1A/φ

1.6 Free algebras

An identity is a formal expression involving operation symbols. Formally,
given a type τ and set X of variables we can construct the terms of type τ .
A term is a string of symbols constructed in the following way:

• every variable is a term;
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• if F is a n-ary operation symbol in τ and g1, . . . , gn are terms, then
f(g1, . . . , gn is a term.

There is a fine point here that has to be stressed, since we will be using
it implicitly many times. The terms of type τ have the unique readability
property, in other words they are the same if and only if they are formally
the same. That is expressed in the following lemma whose proof is essentially
combinatory in nature.

Lemma 1.6.1. (Unique readability) Let f(g1, . . . , gn) and f ′(g′1, . . . , g
′
m) two

terms of the same type τ . Then (g1, . . . , gn) = f ′(g′1, . . . , g
′
m) if and only if

n = m, f = f ′ and gi = g′i for all i ≤ n.

If we denote by Tτ (X) the set of all terms of type τ then it possible to
give Tτ (X) the structure of an algebra Tτ (X) of type τ ; if f(x1, . . . , x) is an
operations in τ and g1, . . . , gn ∈ Tτ (X) then

f(g1, . . . , gn) = fg1, . . . , gn.

We have that:

Proposition 1.6.2. Let A be an algebra of type τ and let α : X −→ A be
any function; then there exists a homomorphism β : Tτ (X) −→ A such that
β(x) = α(x) for all x ∈ X.

The property in Proposition 1.6.2 suggests a definition. Let V be ant
variety; we say that an algebra U is free in V for X if

• U ∈ V;

• U is generated by X;

• for all A ∈ V and for any function α : X −→ A there exists a homo-
morphism β : U −→ A such that β(x) = α(x) for all x ∈ X.

It is not hard to show that a free algebra is totally determined by the
cardinality of the set of generators; for that reason we may assume that X
is always a cardinal. We will use this fact without any further mention. On
the other hand it is entirely nontrivial to show that free algebras exist for
any variety V, provided that either X ̸= ∅ or else the type of V contains at
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least a constant, and that this algebra, denoted by FV(X) is unique up to
isomorphism. Namely if

Θ(V) =
⋃

{θ ∈ Con(Tτ (X)) : Tτ (X)/θ ∈ V}

on can show that FV(X) ∼= Tτ (X)/Θ(V).
Let A be an algebra of type τ and p ∈ Tτ (n). We define an n-ary

operation pA on A by induction on the complexity of p. If p = xi then
pA(a1, . . . , an) = ai, i.e. the i-th projection. If p = F (p1, . . . , pk) then

pA(a1, . . . , an) = F (pA1 (a1, . . . , an), . . . , pAk (a1, . . . , an)).

Proposition 1.6.3. Let A be an algebra of type τ and let n > 0 τ does
not contain any constant. Then p 7−→ pA is an epimorphism of Tσ(n) onto
Clon(A). Therefore an operation f on A is a term of A is and only if f = pA

for some term p of type τ .

1.7 The HSP theorem

An identity of type τ (inX) is a formal expression p(x1, . . . , xn) ≈ q(y1, . . . , ym)
where p, q ∈ Tτ (X). An algebra A satisfies the identity p ≈ q if there are
pA, qA ∈ Clo(A), respectively n-ary andm-ary such that for all a1, . . . , an, b1, . . . , bm ∈
A

pA(a1, . . . , an) = qA(b1, . . . , bm).

In this case we will write A ⊨ p ≈ q and if K is a class of algebras K ⊨ p ≈ q
if A ⊨ p ≈ q for all A ∈ K. If Σ is a set of equation, then A ⊨ Σ if A ⊨ p ≈ q
for all p ≈ q ∈ Σ and similarly for K ⊨ Σ.

The importance of free algebras is clear from the following;

Theorem 1.7.1. Let V be a variety, p, q n-ary terms of the same type as V,
X a set and x1, . . . , xn ∈ X. The following are equivalent:

1. K ⊨ p ≈ q.

2. (p, q) ∈ ΘTσ(ω)(K).

3. Se FK(X) exists, then FK(X) ⊨ p ≈ q.

4. Se FK(X) exists then

pFK(X)(x1, . . . , xn) = qFK(X)(x1, . . . , xn).
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Given a set Σ of equations we define

Mod(Σ) = {A : A ⊨ Σ}

and if K is a class of algebras we define

opTh(K) = {p ≈ q : K ⊨ p ≈ q}.

Theorem 1.7.2. (The HSP theorem) For any class K of algebras

Mod(Th(K)) = HSP(K).

The HSP theorem implies (among other things) that B ∈ HSP(A) if
and only if every equation satisfied by A is also satisfied by B. Even for this
the general proof is too complex for these notes, but we can prove its finite
version:

Theorem 1.7.3. If A and B are finite algebras of the same type τ the
following are equivalent:

1. every identity satisfied by A is also satisfied by B;

2. B ∈ HSPfin(A).

Proof. That (2) implies (1), i.e. that identities are preserved by HSPfin, is
easy to prove.

For the converse suppose that |B| = k, and let b1, . . . , bk be an enumer-
ation of the elements of B. Let C = Ak and let m = |C|; then we can
enumerate the elements of C as c1, . . . , cm and we define ci = (c1i , . . . , c

m
i ) for

i = 1, . . . , k.
Let S = SubAm(c1, . . . , ck); then by Lemma ?? the elements of S are of

the form
t(c1, . . . , ck)

for some term t in the language of A.
Define α : S −→ B by setting

α(t(c1, . . . , ck) = t(b1, . . . , bk)

and observe that α is well-defined because of (1) and it is easily seen to be
surjective.
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To prove that it is a homomorphism let f be an n-ary operation and let
s1, . . . , sn ∈ S. Then there are terms t1, . . . , tn such that si = ti(c1, . . . , ck).
Now

α(f(s1, . . . , sn)) = α(f(t1(c1, . . . , ck), . . . , tn(c1, . . . , ck)))

= α(f(t1, . . . , tn)(s1, . . . , sk))

= f(t1, . . . , tn)(b1, . . . , bk)

= f(t1(b1, . . . , bk), . . . , tn(b1, . . . , bk))

= f(α(t1(c1, . . . , ck)), . . . , α(tn(c1, . . . , ck)))

= f(α(s1), . . . , α(sk))

hence α is a homomorphism.
So B ∈ HSPfin(A) and the proof is concluded.
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Chapter 2

Ideals

2.1 What is an ideal?

Given an algebra A an ideal is an “interesting subset” of the universe A, that
may or may not be a subalgebra of A; an example of the first kind is a normal
subgroup of the group and of the second kind is an ideal of a commutative
ring1. Now defining what “interesting” means is largely a matter of taste;
however there is a large consensus among the practitioners of the field that:

• an ideal must have a simple algebraic definition;

• ideals must be closed under arbitrary intersections, so that a closure
operator can be defined in which the ideals are exactly the closed sets;
this gives raise to an algebraic lattice whose elements are exactly the
ideals;

• ideals must convey meaningful information on the structure of the al-
gebra.

The three points above are all satisfied by classical ideals on lattices and of
course by ideals on a set X, where we interpret a set as an algebra in which
the set of fundamental operations is empty. We have however to be careful
here; an ideal on a set X is an ideal (in the lattice sense) on the Boolean
algebra of subsets of X. There also a significant difference between ideals
on lattices and ideals on Boolean algebras; in Boolean algebras an ideal is
always the 0-class of a suitable congruence of the algebra (really, of exactly

1we follow the modern dictum that every ring has a multiplicative unit. . .
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one congruence), while this is not true in general for lattices. As a matter of
fact, identifying the class of (lower bounded) lattices in which every ideal is
the 0-class of a congruence is a difficult problem which is still unsolved, up to
our knowledge. Of course the same property is shared by normal subgroups
of a group and (two-sided) ideals of a ring (since they are both congruence
kernels).

The problem of connecting ideals of general algebras to congruence classes
has been foreshadowed in [12] but really tackled by A. Ursini in his seminal
paper [28]. Later, from the late 1980’s to the late 1990’s, A. Ursini and the
author published a long series of papers on the subject ([30], [3], [4], [5], [2]);
the theory developed in those papers will constitute the basis of these notes.

2.2 Ideals in universal algebra

We postulated that an ideal must have a simple algebraic definition; as im-
precise as this concept might be, in our context there is a natural path to
follow. Given a type (a.k.a. a signature) σ we can consider the σ-terms
(i.e. the elements of Tσ(ω), the absolutely free countably generated algebra
of type σ); a term is denoted by p(x1, . . . , xn) to emphasize the variable in-
volved and we will use the vector notation x⃗ for x1, . . . , xn. Let Γ be a set of
σ-terms; we will divide the (finite) set of variables z1, . . . , zn+m of each term
in two subsets {x1, . . . , xn} and {y1, . . . , ym} so that every term in Γ can be
expressed as p(x⃗, y⃗) and we allow n = 0, while m must always be at least 1.
Moreover we ask that Γ be closed under composition on y⃗; this means that
if p(x⃗, y⃗ ∈ Γ), y⃗ = (y1, . . . , ym) and p1(x⃗

1, y⃗1), . . . , pm(x⃗m, y⃗m) ∈ Γ, then

p(x⃗, p1(x⃗
1, y⃗1), . . . , pm(x⃗m, y⃗m)) ∈ Γ.

If A has type σ a Γ-ideal of A is an I ⊆ A such that for any a1, . . . , an ∈ A,
b1, . . . , bm ∈ I and p(x, y) ∈ Γ, p(⃗a, b⃗) ∈ I.

The following is a simple exercise.

Lemma 2.2.1. Let σ be any type, Γ a set of σ-terms closed under composi-
tion on y⃗ and A an algebra of type σ. Then

1. the Γ-ideals of A are closed under arbitrary intersections;

2. the Γ-ideal generated by X ⊆ A, i.e. the intersection of all the Γ-ideals
containing X, is

(X)ΓA = {p(⃗a, b⃗) : a⃗ ∈ A, b⃗ ∈ X, p(x⃗, y⃗) ∈ Γ};
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3. the Γ-ideals of A form an algebraic lattice IdΓ(A).

As usual a Γ-ideal of A is principal if it generated by a single element.
It is compact if it is compact in the lattice IdΓ(A); this means that it is
generated by a finite set or equivalently is the join of finitely many Γ-ideals.
It is evident that the compact Γ-ideals of A form a join semilattice, denoted
by CIΓ(A).

2.3 0-ideals and ideal terms

At this level of generality we cannot say much more; if the type however
contains a constant we can get a more focused definition. Let V be a variety
whose type contains a constant which will denote by 0; a V, 0-ideal term
in y1, . . . , ym is a term p(x⃗, y⃗) such that

V ⊨ p(x⃗, 0, . . . , 0) ≈ 0.

Let IDV,0 be the set of all V, 0-ideal terms in V; a V, 0-ideal I of A ∈ V is a
IDV,0-ideal of A. If V = V(A) we will simply say that I is a 0-ideal of A.
As before the set IdV,0(A) of V, 0-ideals of A and the set Id0(A) of 0-ideals
of A are algebraic lattices and Id0(A) ⊆ IdV,0(A) (and the inclusion may be
strict). It is also evident that for any θ ∈ Con(A), 0/θ is a V, 0-ideal of A:

if p(x⃗, y⃗) ∈ IDV,0, a⃗ ∈ A and b⃗ ∈ 0/θ then

p(⃗a, b⃗) θ p(⃗a, 0⃗) = 0.

In general the ideals of an algebra depend on the variety to which it belongs;
we will denote by Id(A) the set of all V(A), 0-ideals of A. Similarly (X)A
for X ⊆ A will denote the V(A), 0-ideal of A generated by X. The following
three propositions are simple exercises.

Proposition 2.3.1. For any algebra A with 0, Id(A) is isomorphic with the
ideal lattice of CI(A) (semilattice ideals in the usual sense).

Proposition 2.3.2. Let R be a subalgebra of A ×A such that π2(R) = A,
where π2 denotes the second projection. If K ∈ Id(R) and I ∈ Id(A), then

(I)K = {b ∈ B : for some a ∈ I, (a, b) ∈ K}

is an ideal of A.
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In particular R may be a subdirect product or a reflexive subalgebra of
A×A.

Proposition 2.3.3. Let θ ∈ Con(A). There is a one-to-one correspondence
(which is in fact a complete lattice isomorphism) between the ideals I of A
such that 0/θ ⊆ I and the ideals of A/θ. The correspondence is

I 7−→ I/θ = {a/θ : a ∈ I}

We say that V has normal V, 0-ideals if for all A ∈ V for all I ∈ IdV,0(A)
there is a θ ∈ Con(A) with I = 0/θ. If V has normal V, 0-ideals then of course
Id0(A) = IdV,0(A) = {0/θ : θ ∈ Con(A)} so we can simply talk about 0-
ideals of A without specifying the variety. Observe that the variety of pointed
(by 0) sets has normal 0-ideals, so we can hardly expect any nice structural
theorem for varieties with 0-normal ideals.

However something can be said also in this case. Let A be an algebra in
a variety with a constant 0 and let N(A) = {0/θ : θ ∈ Con(A)}. Then

Theorem 2.3.4. [2] For any algebra A the following are equivalent:

1. A has normal ideals;

2. (X)A = 0/ϑA(X) for any X ⊆ A;

3. I/ϑA(J) = I ∨ J for any I, J ∈ Id(A);

4. I/ϑA(J) = J/ϑA(I) for any I, J ∈ Id(A);

5. the mapping from Id(A) to Con(A) sending I 7−→ ϑA(I) is one-to-one;

6. the mapping from Con(A) to Id(A) sending θ 7−→ 0/θ is onto.

Proof. (1),(2) and (6) are clearly equivalent. (2) implies (5) since, if I, J ∈
Id(A) and ϑA(I) = ϑA(J), then 0/ϑA(I) = 0/ϑA(J), hence, via (2), I = J .

Assume now (5); we claim that, for any I ∈ Id(A), we have ϑA(I) =
ϑA(0/ϑA(I)). One inclusion is obvious, since I ⊆ 0/ϑA(I). Let then (u, v) ∈
ϑA(0/ϑA(I)); by the congruence generation theorem, there exists a positive
integer n, a1, . . . , an, b1, . . . , bn ∈ 0/θ(I) and binary polynomials f1, . . . , fn
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such that

u = f(a1, b1)

f1(b1, a1) = f2(a2, b2)

...

fn(bn, an) = v.

Since ai, bi ∈ 0/ϑA(I) for all i, we have

u = f1(a1, b1) ϑA(I) φ1(0, 0) ϑA(I) f1(b1, a1)

= f2(a2, b2) ϑA(I) f2(0, 0) ϑA(I) . . . ϑA(I) fn(an, bn) = v.

So (u, v) ∈ ϑA(I) and the claim is proved. But via (5) this implies I = 0/θ(I)
and hence (2).

Assume now (2). The left-to-right inclusion in (3) is easy, since u ∈
I/ϑ(J) implies that (i, u) ∈ ϑA(J) for some i ∈ I. But 0 ∈ I, so (0, i) ∈ ϑA(I)
and hence (0, u) ∈ ϑA(I)∨ ϑA(J) ⊆ ϑA(I ∨ J). Hence, by (2) u ∈ I ∨ J . On
the other hand, if u ∈ I ∨ J , then there is an ideal term t(x⃗, y⃗), a⃗ ∈ A, i⃗ ∈ I
and j⃗ ∈ J , such that u = t(⃗a, i⃗, j⃗). But then

u = t(⃗a, i⃗, j⃗) ϑA(J) t(⃗a, i⃗, 0, . . . , 0) ∈ I.

Therefore u ∈ I/ϑA(J) and the other inclusion is proved.
That (3) implies (4) is obvious. On the other hand if in the equality in

(4) we set J = ⟨0⟩I = {0} we get at once I = I/ϑA({0}) = 0/ϑA(I). Hence
(4) implies (2) and the proof is finished.

In analogy to subdirect irreducibility let us define an algebra A to be
ideal irreducible if for any family (Iλ)λ∈Λ of ideals of A, if

⋂
λ∈Λ Iλ = (0),

then, for some λ, Iλ = (0); the concept of finitely ideal irreducible is
defined in an obvious way. An algebra A is ideal irreducible if and only if
there is a minimal nonzero ideal, which then must be principal, generated
by a monolithic element a (namely a ̸= 0 and a ∈ I for any nonzero
I ∈ Id(A)).

Proposition 2.3.5. Assume N(A) = Id(A). If a ̸= 0, a ∈ A, then there is
a θ ∈ Con(A) such that a/θ is monolithic in A/θ.
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Proof. In fact, let H be maximal in {I ∈ Id(A) : a /∈ I}, via Zorn Lemma.
Let H = 0/θ; if J ∈ I(A/θ) then by Proposition 2.3.3 J = I/θ with H ⊆ I.
Take b/θ ∈ J with b/θ ̸= 0/θ; then b ∈ I −H. Hence, by the maximality of
H, a ∈ I, Hence a/θ ∈ J .

Proposition 2.3.6. Let θ ∈ Con(A). If a /∈ 0/θ and N(A/θ) = I(A/θ),
then there is a φ ∈ Con(A), φ ⊇ θ such that a/φ is monolithic in A/φ.

Proof. In fact, apply 2.3.5 to A/θ and recall that congruences of A/θ corre-
sponds to congruences of A containing θ. We then get a congruence φ ⊇ θ
such that (a/θ)/(φ/θ) is monolithic in (A/θ)/(φ/θ), namely a/φ is mono-
lithic in A/φ.

2.4 Subtractive varieties

Almost all varieties with a good theory of ideals have a binary term whose
behavior reminds the difference between ordinary numbers. This is not a
coincidence as we will see. From now on all algebras and varieties will have
a constat 0 in their type.

A variety V is subtractive if there exists a binary term s(x, y) such that
V satisfies the equations

s(x, x) ≈ 0 s(x, 0) ≈ x.

An algebra A ∈ V is said to be 0-permutable, or to have 0-permutable
congruences if for all a ∈ A and θ, φ ∈ Con(A) , if (a, 0) ∈ θ ◦ φ, then
(a, 0) ∈ φ ◦ θ.

An algebra A is called ideal-coherent if, for any I ∈ Id(A) and θ ∈
Con(A), 0/θ ⊆ I yields that I is a union of θ-blocks.

Theorem 2.4.1. [2] For a variety V the following are equivalent:

1. for all A ∈ V and θ, φ ∈ Con(A) we have 0/(θ ∨ φ) = 0/(θ ◦ φ);

2. every algebra in V has 0-permutable congruences;

3. V is subtractive ;

4. there is a ternary term w(x, y, z) of V such that

w(x, y, y) ≈ x w(x, x, 0) ≈ 0

hold in V;
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5. there exists a positive integer m, binary terms d1(x, y), . . . , dm(x, y) and
an m+ 3-ary term q(x1, . . . , xm+3) of V such that

di(x, x) ≈ 0 for i = 1, . . . ,m

q(x, y, 0, 0, . . . , 0) ≈ 0

q(x, y, y, d1(x, y), . . . , dm(x, y)) ≈ x

hold in V;

6. V is ideal-coherent;

7. for all A ∈ V, the mapping Con(A) −→ Id(A) defined by θ 7−→ 0/θ is
a complete and onto lattice homomorphism.

Proof. (1) trivially implies (2). Assume (2) and consider F = FV(x, y); if
θ = ϑF(x, y) and φ = ϑF(y, 0), then (x, 0) ∈ θ ◦ φ. Then (x, 0) ∈ φ ◦ θ and
so the usual Mal’cev argument yields a term s(x, y) satisfying the equations.
If (3) holds we set w(x, y, z) := s(x, s(y, z)) and we check that the equations
in (4) hold. Finally if (4) holds and (a, 0) ∈ θ ◦ φ then there is a b such that
a θ b φ 0; hence

a = w(a, 0, 0) φ w(a, b, 0) θ w(b, b, 0) = 0.

So (a, 0) ∈ θ ◦φ. This implies that 0/θ ◦φ = 0/φ ◦ θ and also very easily (1).
So (1)-(4) are equivalent.

Moreover (3) implies (5) if one puts m = 1, d1(x, y) = s(x, y) and
q(x, y, z, w) = s(x, s(s(x, z), w)).

Assume then (5). Let I ∈ Id(A), θ ∈ Con(A) and 0/θ ⊆ I. Let v ∈ I
with (u, v) ∈ θ; then for all i ≤ m we have di(u, v) θ di(v, v) = 0, hence
di(u, v) ∈ I. Note that q(x, y, z⃗) is an ideal term in z⃗, so we must have

u = q(u, v, v, d1(u, v), . . . , dm(u, v)) ∈ I.

Hence (5) implies (6). For the converse, assume that V is ideal-coherent and
look at FV(x, y). Let θf be the congruence associated with the endomorphism
of FV(x, y) defined by f(x) = f(y) = x and f(0) = 0. Let

I = ({y} ∪ {d(x, y) ∈ FVx, y : d(x, y) ∈ 0/θf})A.
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Then clearly 0/θf ⊆ I, y ∈ I and (x, y) ∈ θf . Thus ideal-coherency yields x ∈
I. Then there is an ideal term t(x⃗, y, z⃗) in y ∪ z⃗ and d1(x, y), . . . , dm(x, y) ∈
0/θf with

t(u⃗, y, d1(x, y), . . . , dm(x, y)) = x.

Since any uj = uj(x, y) we do get m+ 3-ary term by setting

q(x, y, y, z1, . . . , zm) = t(u⃗, y, z1, . . . , zm).

But then q(x, y, 0, 0, . . . , 0) = 0, since q is an ideal term in y ∪ z⃗. As showed
above q(x, y, y, d1(x, y), . . . , dm(x, y)) = x and finally, for all i, di(x, y) ∈ 0/θf
that yields di(x, x) = f(di(x, y)) = f(0) = 0. Therefore (5) and (6) are
equivalent.

Assume again (5). Let A ∈ V, θ, φ ∈ Con(A) and a ∈ 0/(θ ◦ φ).
Then there is a b ∈ A with (0, b) ∈ θ and (b, a) ∈ φ. Hence we get
di(a, b) φ di(b, b) φ 0 for all i. So

0 = q(a, b, 0, 0, . . . , 0)

φ q(a, b, 0, d1(a, b), . . . , dm(a, b))

θ q(a, b, b, d1(a, b), . . . , dm(a, b)) = a,

hence (0, a) ∈ φ ◦ θ and V is 0-permutable. Therefore (5) implies (2).
Assume now (3). Let A ∈ V, θ, φ ∈ Con(A) and a ∈ 0/(θ ∨ φ). Then

there are a1, . . . , an ∈ A with

a θ a1 φ α2 θ . . . θ an φ 0.

Let us set t(x, y, z, ) = s(x, s(s(x, y), z, )) and let us induct on n. If n = 1
then a θ a1 φ 0. Hence s(a, a1) θ 0, therefore

a = t(a, a1, s(a, a1)) ∈ 0/(θ ∨ φ)

being t(x, y, z) an ideal term in y, z. Let now assume the statement true for
n and let

a θ a1 φ α2 θ . . . θ an φ an+1 θ 0.

Then s(a, an+1) φ s(a, an) θ . . . θ s(a, a) = 0, so, by induction hypothesis,
s(a, an+1) ∈ 0/θ ∨ 0/φ. But since an+1 ∈ 0/θ we get again

a = t(a, an+1, s(a, an+1)) ∈ 0/θ ∨ 0/φ.
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The case an+1 φ 0 is totally similar hence we conclude that 0/(θ ∨ φ) ⊆
0/θ ∨ 0/φ. For the converse let a ∈ 0/θ ∨ 0/φ; then there are an ideal term
p(x⃗, y⃗, z⃗) in y⃗ ∪ z⃗, a⃗ ∈ A, u⃗ ∈ 0/θ and v⃗ ∈ 0/φ with a = p(⃗a, u⃗, v⃗). If
we now set b = p(⃗a, u⃗, 0, . . . , 0) we get (b, 0) ∈ θ and (a, b) ∈ φ; therefore
a ∈ 0/(θ ∨ φ). Hence we conclude that (3) implies (7). That (7) implies
(2) follows from the fact that a ∈ 0/(θ ∨ φ) implies a ∈ 0/θ ∨ 0/φ, hence
(a, 0) ∈ θ ◦ φ.

If s(x, y) witnesses subtractivity for V we define a ternary term u(x, y, z) :=
s(x, s(s(x, y), z)) and we observe note that the following identities hold:

1. u(x, y, s(x, y)) ≈ x

2. u(x, 0, 0) ≈ 0

3. u(x, x, 0) ≈ x

4. u(x, 0, y) ≈ u(x, y, 0).

This term is very useful; the first application is yet other equivalent conditions
for subtractivity that one may add to the ones in Theorem 2.4.1.

Proposition 2.4.2. For a variety V with 0 the following are equivalent:

1. V is subtractive;

2. there is a binary term t(x, y) of V such that t(x, x) ≈ 0 and for any
A ∈ V and a, b ∈ A

a ∈ (b)A ∨ (t(a, b))A;

3. there is a binary term t(x, y) of V such that t(x, x) ≈ 0 and for any
A ∈ V and a ∈ A

a ∈ (t(a, 0))A;

Proof. If V is subtractive, A ∈ V and a, b ∈ A, then a = u(a, b, s(a, b)) ∈
(b)A ∨ (t(a, b))A. Therefore (2) holds and trivially implies (3).

Assume now (3) and let A ∈ V, θ, φ ∈ Con(A) and a ∈ A with a ∈ 0/θ◦φ.
Then there is a b ∈ A with a θ b φ 0. Now

t(a, 0) φ t(a, b) θ t(a, a) = 0

so t(a, 0) ∈ 0/φ ◦ θ which is an ideal. As a ∈ (t(a, 0))A we get a ∈ 0/φ ◦ θ,
thus V is 0-permutable and hence, by Theorem 2.4.1, subtractive.
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Another consequence is that subtractive varieties have normal ideals and
the quickest way to show it is to use the so called Mal’cev criterion whose
proof is left as an exercise,

Lemma 2.4.3. (Mal’cev) Let A be an algebra and let I ⊆ A, I non empty;
then the following are equivalent

1. there is a θ ∈ Con(A) with I = a/θ for some a ∈ A;

2. for every unary polynomial g(x) of A if a, b, g(a) ∈ I then g(b) ∈ I.

Remark 2.4.4. We observe that if V is subtractive, A ∈ V and I ∈ Id(A)
and a, b ∈ A then

b, s(a, b) ∈ I implies a ∈ I.

If we write suggestively s(a, b) as b→ a, then we get

b, b→ a ∈ I implies a ∈ I

which reminds the logical rule of modus ponens. This explains why people in
algebraic logic got interested in the general theory of ideals,

Now we can show:

Proposition 2.4.5. Every subtractive variety V has normal ideals.

Proof. Let A ∈ V and I ∈ Id(A). Let g(x) be a unary polynomial of A; then
there is an n+1-term t(y⃗, x) and a⃗ ∈ A with t(⃗a, x) = g(x). Let a, b, g(a) ∈ I
and observe that s(t(y⃗, x1), t(y⃗, x2)) is an ideal term in x1, x2. Therefore
s(g(b), g(a)) ∈ I; as g(a) ∈ I we get that g(b) = u(g(b), g(a), s(g(b), g(a))) ∈
I. By Lemma 2.4.3 I is a congruence class, hence it is 0/θ for some θ ∈
Con(A).

In a subtractive variety V we can describe the join of two ideals in the
ideal lattice very effectively.

Lemma 2.4.6. If V is subtractive, A ∈ V and I, J ∈ Id(A) then

I ∨ J = {u(a, b, c) : a ∈ A, b ∈ I, c ∈ J}.
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Proof. Let K = {u(a, b, c) : a ∈ A, b ∈ I, J ∈ J}; a generic element b ∈ (K)A
is of the form

p(⃗a, u(d1, e1, f1), . . . , u(dm, em, fm))

where p(x⃗, y⃗) is an ideal term in y⃗, a⃗, d1, . . . , dm ∈ A, e1, . . . , em ∈ I,
f1, . . . , fm ∈ J . Let

c = p(⃗a, u(d1, e1, 0), . . . , u(dm, em, 0));

hence c ∈ I. Since

s(p(x⃗, u(z1, y1, w1), . . . , u(zk, yk, wk))), p(x⃗, u(z1, y1, 0), . . . , u(zk, yk, 0))

is an ideal term in w⃗ we have that s(b, c) ∈ J . It follows that b = u(b, c, s(b, c)) ∈
K. Hence (K)A ⊆ K and thus equality holds.

So K is an ideal containing I, J and it is clearly the smallest. This proves
the thesis.

Proposition 2.4.7. If V is subtractive, then for all A ∈ V, Id(A) is a
modular lattice.

Proof. Let I, J,H ∈ Id(A) and suppose that I ⊆ J , I ∨ H = J ∨ H and
I ∩H = J ∩H. If a ∈ J , then a ∈ I ∨H, so by (the proof of) Lemma 2.4.6
for some c ∈ I we have that s(a, c) ∈ H. As I ⊆ J , c ∈ J and thus s(a, c) ∈
J ∩H = I ∩H. In particular s(a, c) ∈ I and thus a = u(a, c, s(a, c)) ∈ I. So
J ⊆ I and hence I = J ; this proves modularity of Id(A).
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Chapter 3

Congruence regularity

3.1 Ideal determined varieties

A variety V is congruence 0-regular if for all A ∈ V and θ, φ ∈ Con(A),0/θ =
0/φ implies θ = φ. 0-regularity was introduced and characterized in [12];
when the variety is also subtractive, then it is said to be ideal determined.

Theorem 3.1.1. [18] For a variety V the following are equivalent:

1. V is ideal determined;

2. any algebra in V has 0-regular and 0-permutable congruences;

3. there exists a natural number m, binary terms d1(x, y), . . . , dm(x, y) and
a m+ 3-term q such that

di(x, y) ≈ 0 for i = 1, . . . ,m implies x ≈ y

di(x, x) ≈ 0 for i = 1, . . . ,m

q(x, y, 0, 0, . . . , 0) ≈ 0

q(x, y, y, d1(x, y), . . . , dm(x, y)) ≈ x

hold in V;

4. the mapping from Con(A) −→ Id(A) defined by θ 7−→ 0/θ is a lattice
isomorphism.

The proof can easily patterned after the one of Theorem 2.4.1 and it is
left to the reader. Examples of ideal determined varieties: groups, rings,
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R-modules, R-algebras, residuated lattices (and any of their fragments con-
taining → and 1) and many others.

In an ideal determined variety the congruence permute at 0 and they are
completely determined by the ideals. This does not mean however that the
congruence must permute away from zero.

Remark 3.1.2. (Implication algebras) An implication algebra (a.k.a.
Hilbert algebra) is a →, 1-subreduct of a Heyting algebra. It is well-known
[11] that implication algebras form a variety axiomatized by

x→ x ≈ 1

(x→ y) → x ≈ x

(x→ y) → y ≈ (y → x) → x

x→ (y → z) ≈ y → (x→ z).

Now 1 → x ≈ (x → x) → x ≈ x by the first two equations, so y → x is a
subtraction term relative to 1. Next if x→ y ≈ y → x ≈ 1 then

x ≈ 1 → x ≈ (y → x) → x

(x→ y) → y ≈ 1 → y ≈ y.

which of course implies 1-regularity of congruences. So the variety of impli-
cation algebras is ideal determined; it is not congruence permutable though
as shown in [25]. In the same paper it is shown that it is congruence 3-
permutable; this means that for any implication algebra A and θφ ∈ Con(A),
θ ◦ φ ◦ θ = φ ◦ θ ◦ φ.

However this is not true in general; in [27] the author proved that the
variety of lower BCK-semilattices is ideal determined and 4-permutable but
not 3-permutable. As a final fact in [15] it is shown that for every n there is an
ideal determined variety that is congruence n-permutable but not congruence
n+ 1-permutable.

In many cases there is no need to check for closure under all the ideal
terms to ascertain if a subset of an algebra is an ideal. This concept can be
formalized as follows: if V is a variety a base for the V-ideal terms is any
set T of ideal terms such that T contains 0, T is closed under compositions
and the following holds: for any A ∈ V and any I ⊆ A, I ∈ Id(A) if an only

if for any t(x⃗, y⃗) ∈ T , a⃗ ∈ A and b⃗ ∈ I, t(⃗a, b⃗) ∈ I. The interesting case
is the one in which the base is finite and the reader can check in a minute
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that groups and rings have a finite base for their ideal terms. This is not a
coincidence and to see why we first need a technical lemma.

Lemma 3.1.3. [12] For a variety V the following are equivalent:

1. there is an m and binary terms d1, . . . , dm such that the equivalence

d1(x, y) ≈ . . . ≈ dm(x, y) ≈ 0 if and only if x ≈ y

hold in V;

2. there is an m, binary terms d1, . . . , dm an quaternary terms g1, . . . , gm
such that the equations

g1(x, y, d1(x, y), 0) ≈ x

gi(x, y, 0, di(x, y)) ≈ gi+1(x, y, di+1(x, y), 0) i = 1, . . . ,m− 1

gm(x, y, 0, dm(x, y)) ≈ y

hold in V;

3. V is congruence 0-regular.

Theorem 3.1.4. [29] Let V be an ideal determined variety of finite type.
Then V has a finite base for ideal terms.

Proof. Let d1, . . . , dm be the terms whose existence is guaranteed by Lemma
3.1.3. We first observe that if A ∈ V, θ ∈ Con(A) and I = 0/θ ∈ Id(A) then
for all a, b ∈ A

(a, b) ∈ θ if and only if di(a, b) ∈ I i = 1, . . . ,m.

Next if f is an n-ary basic operation of V we consider the free algebra in V
generated by x1, . . . , xn, y1, . . . , yn and the ideal I generated by {di(xk, yk) :
i = 1, . . . ,m, k = 1. . . . , n}; clearly di(f(x⃗), f(y⃗)) ∈ I for i = 1, . . . ,m and
thus there exist ideal terms ri,f , i = 1, . . . , n such that

ri,f (x, y, 0, . . . , 0) ≈ 0

ri,f (x, y, d1(x1, y1), . . . , dm(x1, y1), . . . , d1(xn, yn), . . . , dm(xn, yn)) ≈ di(f(x⃗), f(y⃗))

hold in V.
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Next since congruences are symmetric and transitive relations this means
that for i = 1, . . . , n di(x, y), di(z, y) ∈ I implies di(x, z) ∈ I. Hence there
are terms qi, i = 1, . . . , n such that

qi(x, y, z, 0, . . . , 0) ≈ 0

qi(x, y, z, d1(x, y), . . . , dm(x, y), d1(z, y), . . . , dm(z, y)) ≈ di(x, z)

hold in V.
Finally let q be the term whose existence is requested in point (4) of

Theorem 3.1.1. We claim that

T = {0, di, ri,f , qi, q}

is a base for ideal terms for V. We have to check that T is closed under
composition and that is is in fact a base. Both proofs are routine and are
left as an exercise.

3.2 Protomodular varieties

In many ideal determined varieties there is a strong additive structure in the
following sense: if s(x, y) is the subtraction term, then there is another binary
term t(x, y) such that t(y, s(x, y)) ≈ y holds in the variety. This happens for
instance in groups, rings and Boolean algebras.

This property, when properly generalized, corresponds to an interesting
categorical property called protomodularity. Let us stress that protomod-
ularity is a concept defined in category theory; besides the rather unfortunate
choice of the name (more on that later) when one tries to translate it into
the universal algebraic language some adjustments must be made.

Let V be a variety of algebras; if A,B,C ∈ V and f : A −→ C, g : B −→
C are homomorphisms, the pullback of A and B along C, denoted by
A×CB is the subalgebra of A×B consisting of all the pairs (a, b) such that
f(a) = g(b). It is readily checked that A ×C B is a subalgebra of A × B.
Moreover if pA, pB are the projections of A×C B into A, B then the square
in Figure 3.1 has the universal mapping property in the following sense.

Lemma 3.2.1. Let A,B,C ∈ V, consider the pullback of A and B along C,
let D ∈ V such that f ′ : D −→ A, g′ :−→ B be homomorphism. If ff ′ = gg′,
then the function h : D −→ A ×C B defined by h(d) = (f ′(d), g′(d)) is the
unique homomorphism such that the following diagram commutes:
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D

A×C B B

A C

g′

f ′

h

pB

pA g

f

Figure 3.1: Pullback

Let now B in V and let r(B) = {A ∈ K : B is a retract of A}.

Theorem 3.2.2. Let E,B ∈ V and let f : E −→ B be a homomorphism; if
A,A′ ∈ r(B) and g : A′ −→ A is a homomorphism, then there is a unique
homomorphism f ∗(g) : E ×B A′ −→ E ×B A that makes the diagram in
Figure 3.2 commute.

E×B A′ A′

E×B A A

E B

pA′

f∗(g) g

f

Figure 3.2:

Proof. It is enough to apply Lemma 3.2.1 to the pullback of E and A along
B.

Let R(B) be the category whose objects are in r(B) and whose morphisms
are just homomorphisms between algebras in r(B); then f ∗ can be seen as a
functor from R(B) to R(E), where f ∗(A) = E×B A.

A variety V of algebras is protomodular if for all E,B ∈ V and for all
f : E −→ B the functor f ∗ reflects isomorphisms. In other words if for any
A,A′ ∈ r(A) and g : A′ −→ A

f ∗(g) is an isomorphism implies g is an isomorphism.
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Lemma 3.2.3. A variety V is protomodular if and only if for all E,B ∈ V
and for all monomorphisms f : E −→ B, if A,A′ ∈ r(A) and g : A′ −→ A
is a monomorphism, then

f ∗(g) is an isomorphism implies g is an isomorphism.

As a monomorphism is just a subalgebra injection up to isomorphisms
we can reformulate the theorem in the following way.

Theorem 3.2.4. For a prevariety V the following are equivalent:

1. V is protomodular;

2. if E ≤ B ≤ A′ ≤ A ∈ V with B a retract of A, witness α, if α−1(E) ≤
A′, then A′ = A;

3. if E ≤ B ≤ A ∈ V with B a retract of A, witness α, then A =
SubA(α−1(E) ∪B).

Point (3) above can be taken as the simplest algebraic definition of a pro-
tomodular variety; really nothing has been done with it since the formulation
which is more common for categories is the one in which the category has
an initial object. When we go to algebraic categories, then an initial object
is not necessarily present. However since any variety V can be seen as a
concrete category with free objects, the initial object, if it exists, is exactly
the free algebra over the empty set. Now for any variety FV(∅) exists if and
only if the language of V contains at least a constant and in this case it is the
algebra generated by the constant elements. We will see in the next section
that in this case protomodularity has a nice algebraic description.

Remark 3.2.5. There is a problem which, to the best of my knowledge, is
still open: are there protomodular varieties with no initial objects? Which
means are there protomodular (pre)varieties in which the free algebra over
the empty set does not exist?

Theorem 3.2.6. For a variety V with a constant 0 the following are equiv-
alent:

1. V is protomodular;

2. for all A,B ∈ V, where B is a retract of A via α and E is the subalgebra
of B generated by 0, then A = SubA(α−1(E) ∪B);
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3. there is an n ∈ N, e1, . . . , en ∈ E, an n+1-ary term t and binary terms
d1, . . . , dn such that

di(x, x) ≈ ei i = 1, . . . , n

t(y, d1(x, y), . . . , dn(x, y)) ≈ x

holds in V.

Proof. (2) is just an instance of Theorem 3.2.4(3), so (1) implies (2).
Assume then (2) and let A = FV(x, y) and B = FV(y); then α(x) =

α(y) = y and A = SubA(α−1(E) ∪ B) where E is the subalgebra of B
generated by the constants. Since x ∈ A, there is an n + 1-ary term t and
binary terms d1, . . . , dn such that

x ≈ t(y, d1(x, y), . . . , dn(x, y))

where t1, . . . , tn ∈ E. This means that di(y, y) = α(di(x, y)) is in the subal-
gebra generated by the constants. It follows that there are e1, . . . , en ∈ EV

such that di(x, x) ≈ ei, i = 1, . . . , n. This proves (3).
Assume now (3) and let B ≤ A ∈ V where B is a retract of A via α.

Then if E is the subalgebra of B generated by the constants and a ∈ A we
have

a = t(α(a), d1(α(a), a), . . . , dn(α(a), a))

and α(di(α(a), a)) = di(α(a), α(a)) = ei ∈ E. Therefore A = SubA(α−1(E)∪
B). Now if E′ ≤ B ≤ A ∈ V, then E ≤ E′ and, a fortiori, A = SubA(α−1(E ′)∪
B). Thus V is protomodular by Theorem 3.2.4.

We stress, even if there is no need, that we are not asking that the con-
stants e1, . . . , en be distinct.

Corollary 3.2.7. If V is protomodular then it is congruence permutable. If
Theorem 3.2.4 holds for e1 = · · · = en = 0, then it is ideal determined.

Proof. If V is protomodular, then consider the term

m(x, y, z) := t(z, d1(x, y), . . . , dn(x, y)).

Then

m(x, y, y) ≈ t(y, d1(x, y), . . . , dn(x, y)) ≈ x

m(x, x, y) ≈ t(y, d1(x, x), . . . , dn(x, x)) ≈ t(x, e1, . . . , em)

≈ t(x, d1(x, x), . . . , dn(x, x)) ≈ x
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So m(x, y, z) is a Mal’cev term for V, which is then congruence permutable.
If it is pointed then E = {0} and so di(x, x) ≈ 0 for i = 1, . . . , n. Hence
the term s(x, y) = t(0, d1(x, y), . . . , dn(x, y)) is a subtraction term for V.
Moreover if di(x, y) ≈ 0 for i = 1, . . . , n then

x ≈ t(y, d1(x, y), . . . , dn(x, y)) ≈ t(y, 0, . . . , 0) ≈ t(y, d1(y, y), . . . , dn(y, y)) ≈ y.

This shows that V is 0-regular and hence ideal determined.

3.3 Classically ideal determined varieties

Clearly if a variety is protomodular and pointed, i.e. there is exactly one
constant, then the hypotheses of Corollary 3.2.7 are automatically satisfied.
However the variety of Boolean algebras is ideal determined, not pointed
since E = {0, 1} and still satisfies the hypotheses of Corollary 3.2.7 for e1 =
· · · = en = 1. This suggests a definition: a variety V is classically ideal
determined if it satisfies (4) of Theorem 3.2.4 with e1 = · · · = en = 0. In
other words a variety V is classically ideal determined is there is an n ∈ N,
binary terms d1, . . . , dn and a n+ 1-ary term t such that

di(x, x) ≈ 0 i = 1. . . . , n

t(y, d1(x, y), . . . , dn(x, y)) ≈ x.

The following is obvious:

Proposition 3.3.1. A classically ideal determined variety is 0-regular and
congruence permutable, hence ideal determined.

Varieties that are 0-regular and congruence permutable have been de-
scribed in [2]:

Theorem 3.3.2. [2] For a variety V the following are equivalent:

1. V is 0-regular and congruence permutable;

2. there is an n ∈ N, an n + 2-ary term p and binary terms d1, . . . , dn
such that

di(x, x) ≈ 0 i = 1, . . . , n

p(x, y, 0, . . . , 0) ≈ y

p(x, y, d1(x, y), . . . , dn(x, y)) ≈ x
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Proof. (Sketch) For (2) implies (1) observe that

m(x, y, z) = p(x, z, d1(x, y), . . . , dn(x, y))

is a Mal’cev term for V. Conversely, let F = FV(x, y) and consider the
congruence

θ = ϑF({(0, d(x, y)) : d(x, x) = 0}).

Then we can show that 0/θ = 0/ϑF(x, y) and thus 0-regularity forces θ =
ϑF(x, y). In particular (y, x) ∈ θ; now by an old result by H. Werner [31] in
a congruence permutable variety a congruence is just a reflexive subalgebra
of the square, so there is an n ∈ N, and d1, . . . , dn such that

(y, x) ∈ SubF2({(y, y), (x, x), (0, d1(x, y)), . . . , (0, dn(x, y))}).

From here we proceed a s usual to get the thesis.

So apparently varieties that are 0-regular and congruence permutable
do not coincide with classically ideal determined varieties. To substantiate
this with an example we need a better characterization of classically ideal
determined variety.

A subalgebra S ≤ A × A is classical if (a, b) ∈ S implies (a, a) ∈ S.
Of course any congruence is a classical subalgebra of A×A and a standard
argument (really Lemma 3.3.3 below) shows that the classical subalgebras of
A×A form an algebraic lattice CS(A). Classical subalgebras were introduced
in [30] and there are two facts proved there that will be useful in the sequel.

For any subset X of A× A we define

X∆ = {(a, a) : there is a b ∈ A with (a, b) ∈ X}.

Lemma 3.3.3. [30] Let A be any algebra and let X ⊆ A × A; then the
classical subalgebra generated by X, denoted by CSA(X) can be defined in
the following way. Let

X0 = X

Xn+1 = SubA2(Xn ∪X∆
n );

then CSA(X) =
⋃

n∈NXn.

The following technical result, appearing in [30], is not hard to prove and
it is left to the reader.
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Lemma 3.3.4. [30] Let A be an algebra, and let S,T ∈ CS(A). If S =
CSA(X) and X∆ ⊆ T∆, then S∆ ⊆ T .

A variety V is classically 0-regular if for all A ∈ V and S,T ∈ Cs(A) if
0/S = 0/T and S∆ ⊆ T and T∆ ⊆ S, then S = T. Clearly every classically
0-regular variety is 0-regular as well.

A variety V is 0-coherent if for all A ∈ B, for all θ ∈ Con(A) and for all
B ≤ A, if 0/θ ⊆ B, then B is a union of θ-blocks.

Theorem 3.3.5. [30] For a variety V the following are equivalent:

1. V is classically ideal determined;

2. V is classically 0-regular;

3. V is 0-coherent.

Proof. Assume (1) and let t be the terms witnessing classical ideal determi-
nacy. Let A ∈ V and S,T ∈ Cs(A) with 0/S = 0/T and S∆ = T∆. Suppose
that (a, b) ∈ S; since S is classical (a, a) ∈ S and thus (0, di(b, a)) ∈ S for all
i. Hence (0, di(b, a)) ∈ T for i = 1, . . . , n and moreover (a, a) ∈ T∆ ⊆ T . It
follows that

(a, b) = (t(a, d1(a, a), . . . , dn(a, a)), t(a, d1(b, a), . . . , dn(b, a))

= (t(a, 0, . . . , 0)), t(a, d1(b, a), . . . , dn(b, a))

= t((a, a), (0, d1(b, a)), . . . , (0, dn(b, a))) ∈ T.

A symmetric argument proves that (2) holds.
Assume now (2); to prove (1) we will proceed in stages. Let F = FV(x, y)

and let f be the endomorphism of F defined by f(x) = f(y) = x. We define
three classical subalgebras of F× F:

R = CSA({(x, x)} ∪ {(0, d(x, y)) : d(x, x) = 0})

T = CSA({(x, y)}.

We will show that
R = S ⊆ ker(f),

from which the conclusion follows easily. First one can show that R, T ⊆
ker(f) with a standard induction on the generating sets of T and R, using
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Lemma 3.3.3. Next let us show that T = R; since V is 0-regular it is enough
to check that 0/T = 0/R, that T∆ = R and that R∆ ⊆ T .

Let u ∈ 0/T; since T ≤ ker(f), if u = t(x, y), then 0 = f(u) =
f(t(x, y)) = t(x, x), so (0, u) ∈ R and u ∈ 0/R. Conversely let (0, d(x, y)) ∈
R; then d(x, x) = 0 and as (x, x), (x, y) ∈ T we get

(0, d(x, y)) = d((x, x), (x, y)) ∈ T

and thus 0/S = 0/T.
To show that T∆ = R and R∆ ⊆ T we use Lemma 3.3.4. As T∆ =

{(x, x)}, clearly T∆ ⊆ R. Conversely suppose that (u, u) ∈ R∆; then either
u = x and (x, x) ∈ T since it is a classical subalgebra, or else u = 0. But
then (0, 0) ∈ R∆ ⊆ R and since 0/R = 0/T , (0, 0) ∈ T as well. Thus we have
shown that R = T .

In particular (x, y) ∈ R and

R = CSA({(x, x)} ∪ {(0, d(x, y)) : d(x, x) = 0}).

Since the classical subalgebras form an algebraic lattice, then is an n ∈ N
and d1, . . . , dn ∈ F with di(x, x) = 0 such that

(x, y) ∈ CSA({(x, x), (0, d1(x, y)), . . . , (0, dn(x, y))}).

From here a standard Mal’cev argument (using the description of generation
of classical subalgebras in Lemma 3.3.3) yields the terms witnessing classical
ideal determinacy of V.

Assume now (1), i.e. that V is classically ideal determined witness t, d1, . . . , dn.
Let A ∈ V, θ ∈ Con(A) and B ≤ A; if 0/θ ⊆ B for i = 1, . . . , n a ∈ b/θ and
b ∈ B then di(a, b) θ di(b, b) = 0 and thus di(a, b) ∈ B for i = 1, . . . , n. But
then

a = t(b, d1(a, b), . . . , dn(a, b)) ∈ B

so b/θ ⊆ B and B is a union of θ-blocks. Hence (3) holds.
Conversely, assume (3), let F = F(x, y) and let f be the endomorphism

of F defined by f(x) = f(y) = x. Let B be the subalgebra of F generated
by {y} ∪ {d(x, y) : f(d(x, y)) = 0}; then 0/ker(f) ⊆ B and by 0-coherence
x ∈ B, since (x, y) ∈ ker(f). From here the usual Mal’cev argument gives
the terms for classical ideal determinacy.

We now can show that not every congruence permutable 0-regular variety
is classically ideal determined.
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Example 3.3.6. This example is a subalgebra of an algebra described in [3],
Example 6.3. Let A = {0, a, b, c}; on A we define the following operations:

• d(x, y) is a binary operation whose table is

d 0 a b c
0 0 a b c
a a 0 c a
b b c 0 a
c c a a a

• t(x, y, z) is a ternary operation defined by

g(x, y, z) =


x, if z = 0;
y, if d(x, y) = z;
z, otherwise.

We spare the reader the tedious verification that in A the following equations
hold:

d(x, x) ≈ 0

t(x, y, 0) ≈ x

t(x, y, d(x, y)) ≈ x.

By Theorem 3.3.2, V(A) is a congruence permutable 0-regular variety. How-
ever it is easy to check that the partition {{a, b}, {0, c}} induces a congruence
on A and that {0, a, c} is the universe of a subalgebra of A. So V(A) is not
0-coherent and thus, by Theorem 3.3.5, it is not classically ideal determined.

3.4 Strongly subtractive varieties

Let V be a subtractive variety, witness s(x, y); we say that V is strongly
subtractive if for all A ∈ V and I ∈ Id(A) the relation

(a, b) ∈ I∗ if and only if s(b, a) ∈ I

is a congruence of A. Note that I∗ is necessarily reflexive and this allows us
to prove a result similar to the one by Werner [31] in congruence permutable
variety.
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Proposition 3.4.1. Let A be an algebra in a subtractive variety and I ∈
Id(A); then the following are equivalent:

1. I∗ is a congruence;

2. I∗ is a subalgebra of A×A.

Proof. Suppose that I∗ is a subalgebra of A×A. To prove it is a congruence
we only need to prove that I∗ is symmetric and transitive. First observe that

0/I∗ = {a : (0, a) ∈ I∗} = {a : s(a, 0) ∈ I} = I.

Then suppose that (a, b) ∈ I∗; then since (a, a) ∈ I∗ we get that (0, s(a, b)) ∈
I∗ and so s(a, b) inI. By definition (b, a) ∈ I∗. Similarly if (a, b), (b, c) ∈ I∗

since symmetry holds we get (0, s(c, a)) ∈ I∗ and as before (a, c) ∈ I∗.

Theorem 3.4.2. If V is 0-regular and strongly subtractive then it is classi-
cally ideal determined.

Proof. If the hypotheses hold then V is subtractive witness, say, s(x, y). Let
F = FV(x, y) and let θ = ϑF(x, y) and let I = 0/θ; since V is strongly
subtractive the relation

(u, v) ∈ I∗ if and only if s(v, u) ∈ I

is a congruence of F. Now u ∈ 0/I∗ if and only if u ∈ I = 0/θ; as V is 0-
regular, θ = I∗ and in particular (x, y) ∈ I∗. Therefore (x, y) belongs to the
subalgebra of F2 generated by {(y, y)}∪{(s(u, v), 0) : s(u, v) ∈ 0/θ}; since the
lattice of subalgebras is algebraic, there is an n and u1, . . . , un, v1, . . . , vn ∈ F
such that (x, y) belongs to the subalgebra generated by

{(y, y)} ∪ {(s(ui(x, y), vi(x, y)), 0) : i = 1, . . . , n}.

Let now di := s(ui, vi) for i = 1, . . . , n; then there is an n+ 1-ary term t such
that

(x, y) = t((y, y), (d1(x, y), 0), . . . , (dn(x, y), 0))

and thus x = t(y, d1(x, y), . . . , dn(x, y)). Next let φ be endomorphism of F
sending x, y 7−→ x; then θ ⊆ ker(φ). So

di(x, x) = s(ui(x, x), vi(x, x)) θ s(ui(x, y), vi(x, y)) θ 0

and thus
di(x, x) = f(di(x, x)) = f(0) = 0

for i = 1, . . . , n. Hence V is classically ideal determined.
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Many examples of strongly subtractive varieties come either from classical
algebras or the algebraization of logical systems. In the first class we quote
groups, rings, R-modules and more generally associative algebras over a ring.
Note that they are all congruence permutable and 0-regular (for a suitable
constant) so they are classically ideal determined. In the second class we
start from left-complemented monoids. A left-complemented monoid is
an algebra A = ⟨A,→, ·, 1⟩ such that

1. ⟨A, ·, 1⟩ is a monoid;

2. for a, b, c ∈ A

a→ a = 1

(a→ b)a = (b→ a)b

ab→ c = a→ (b→ c).

Left-complemented monoid were introduced by Bosbach [9] and they have
been investigated at large mainly because of their connection with algebraic
logic. We leave it to the reader to show that they are subtractive (relative to
1) with s(x, y) := y → x; to prove that they are strongly subtractive however,
one has to dive deeply into the arithmetic of those structures and this is
beyond the scope of this note. We will only say that they are congruence
permutable and 1-regular so they are classically ideal determined as well. For
a general discussion about these structures we refer the reader to [6].

We observe also that there are strongly subtractive varieties that fail to
be 0-regular, but for an example we will have to wait till Section 4.5. The last
result of this section is a characterization of strongly subtractive varieties.

Theorem 3.4.3. For a variety V the following are equivalent:

1. V is strongly subtractive witness s(x, y);

2. V is subtractive and for all n-ary basic operation f of V there is an
3n-ary term rf such that

s(f(x), f(y)) ≈ rf (x,y, s(x1, y1), . . . , s(xn, yn))

holds in V.
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Proof. Assume (1) and let f be an n-ary operation. Consider the free algebra
F in V generated by x1, . . . , xn, y1, . . . , yn and let I be the ideal generated
by {s(xi, yi), i = 1, . . . , n}. Since V is subtractive, the is a congruence θ of
F with I = 0/θ. Since V is strongly subtractive, (f(x⃗), f(y⃗)) ∈ θ∗. Hence
(s(f(x⃗), f(y⃗)), 0) ∈ θ and so s(f(x⃗), f(y⃗)) ∈ I. From here a standard argu-
ment yields a term rf with the desired properties. Thus we can conclude
that V satisfies (2).

Conversely assume (2) and let A ∈ V and θ ∈ Con(A). Let φ be the
subalgebra generated by θ∗; then if (a, 0) ∈ φ there are a1, . . . , an, b1, . . . , bn
with (ai, bi) ∈ θ∗ and a term u such that u(a1, . . . , an) = a and u(b1, . . . , bn) =
0. Then

a = s(a, 0) = s(u(a1, . . . , an), u(b1, . . . , bn)) = ri,u(a,b, s(a1, b1), . . . , s(an, bn));

since s(ai, bi) ∈ 0/θ for all i we may conclude that a ∈ 0/θ and hence that
(a, 0) ∈ θ∗. This implies that 0/φ = 0/θ∗ for all i. The fact that this implies
that θ∗ is a subalgebra is left as an exercise to the reader.
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Chapter 4

The ideal commutator theory

4.1 A primer on the TC-commutator

Here we recall the basic definitions of the TC-commutator (a.k.a. the term
condition commutator( for congruences; our reference text is [13]. If α, β are
congruences of any algebra A, then

1. M(α, β) is the set of all 2 × 2 matrices(
t(⃗a1, b⃗1) t(⃗a2, b⃗2)

t(⃗a2, b⃗1) t(⃗a2, b⃗2)

)

where t is an n + m-ary term, a⃗1 α a⃗2 (componentwise) and b⃗1 β b⃗2

(componentwise).

2. α centralizes β modulo γ (in symbols C(α, β; γ)) if

whenever

(
a b
c d

)
∈M(α, β) and a γ b then also c γ d.

3. [α, β] =
∧
{γ : C(α, β; γ)}.

This definition is perfectly general. In case A belongs to a congruence mod-
ular variety, three things happen:

1. the TC-commutator is the unique binary operation on Con(A) that
satisfies the set of conditions we consider meaningful for a honest to
God commutator;
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2. the TC-commutator is symmetric, i.e. [α, β] = [β, α];

3. [α, β] may be characterized in a different way (see [13], Chap. IV) and
in particular the Hagemann-Herrmann definition is no more dependent
on terms. Let ∆α,β be the congruence on α (regarded as a subalgebra
of A × A), generated by all pairs ⟨⟨u, u⟩, ⟨v, v⟩⟩ where u β v. Then
⟨a, b⟩ ∈ [α, β] if and only if ⟨⟨a, b⟩⟨b, b⟩⟩ ∈ ∆α,β if and only if for some
c, ⟨⟨a, b⟩⟨c, c⟩⟩ ∈ ∆α,β.

4.2 The ideal commutator

In this section we develop a basic theory of the commutator of ideals in a
subtractive variety, borrowing heavily from [3], [4] and [30]. Let V be any
variety; t(x⃗, y⃗.z⃗) is a commutator term in y⃗, z⃗ if it is an ideal term in y⃗
and and ideal term in z⃗.

For A ∈ V and nonempty H,K ⊆ A we define the commutator of K
and H as

[K,H] = {t(⃗a, b⃗, c⃗) : t a commutator term in y⃗, z⃗, a⃗ ∈ A, b⃗ ∈ K, c⃗ ∈ H}

We should have written [K,H]A to stress the algebra or even [K,H]A,V to
stress the variety too. However we will see that at least the dependency from
V can be avoided. Here is a summary of the property of the ideal commutator
whose proof is left to the reader.

Proposition 4.2.1. [30] If V is any variety, A ∈ V and H,K ⊆ A then:

1. [H,K]A,V ∈ IdV(A);

2. [H,K]A,V = [K,H]A,V;

3. [H,K]A,V = [(H)VA, (K)VA]A,V.

It follows that the commutator is symmetric and it is worthless to consider
commutators of subsets other than ideals. In particular, when there is no
danger of confusion, we will write [a, b]A instead of [(a)A, (b)A]A. To get more
information (and a definition of commutator that is not term-dependent) we
need to assume that V be subtractive.

First an auxiliary definition: if A ∈ V and I ∈ Id(A) we define

I# = SubA2(I ∪ {(a, a) : a ∈ J}.
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Then it is easy to show (but see [2]) that I ∈ Id(A) if and only if 0/I# = I.
Let now A ∈ V be an algebra and I, J ∈ Id(A) ; we define

KI,J = the ideal of I# generated by {(a, a) : a ∈ J}
[I, J ]0 = 0/KI,J = {a : (0, a) ∈ KI,J}

Proposition 4.2.2. For any A ∈ V and I, J ∈ Id(A), [I, J ]0 is an ideal and
[I, J ] ⊆ [I, J ]0. If V is s-subtractive then [I, J ] = [I, J ]0.

Proof. The first claim follows from Proposition 2.3.2. To avoid cumbersome
notations we will consider terms with a minimal number of variables; the
argument is clearly general.

Let a = t(b, i, j) ∈ [I, J ], where t is a commutator term in y, z and b ∈ A,
i ∈ I, j ∈ J . Then in I#

(0, a) = t((b, b), (0, i), (j, j)) ∈ KI,J .

On the other hand suppose that V is s-subtractive and a ∈ [I, J ]0, i.e. (0, a) ∈
KI,J . Then for some ideal term t(x, y) in y and for some (u, v) ∈ I# and
r ∈ J we have

(0, a) = t((u, v), (r, r))

i.e. 0 = t(u, r) and a = t(v, r). On the other hand, since (u, v) ∈ I#, there
is a term q(x, y), h ∈ I and b ∈ A with

(u, v) = q((0, h), (b, b)),

therefore 0 = t(q(0, b), r) and a = t(q(h, b), r). Hence we get

a = s(s(a, 0), s(0, 0))

= s(s(t(q(h, b), r), t(q(h, b), 0)), s(t(q(0, b), r), t(q(0, b), 0)))

But the term

s(s(t(q(y, x), z), t(q(y, x), 0)), s(t(q(0, x), z), t(q(0, x), 0)))

is a commutator term in y, z. Since h ∈ I and r ∈ J we get a ∈ [I, J ].

Now we can show that the commutators of two ideals in an algebra in a
subtractive variety depends only on the algebra and not on the variety.
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Proposition 4.2.3. If V is subtractive, A ∈ V and I, J ∈ Id(A), then

[I, J ]A = {t(⃗a, i⃗, j⃗) : t any term, a⃗ ∈ A, i⃗ ∈ I, j⃗ ∈ J and

t(⃗a, 0⃗, 0⃗) = t(⃗a, i⃗, 0⃗) = t(⃗a, 0⃗, j⃗) = 0}

Proof. Let
ΣI,J = SubI#×I#({((0, 0), (a, a)) : a ∈ J};

then one easily checks that KI,J = 0/ΣI,J .
Notice also that, if X, Y ⊆ A× A, then

SubA×A(X ∪ SubA×A(Y )) = SubA×A(X ∪ Y ).

Hence

ΣI,J = SubI#×I#({⟨(0, 0), (b, b)⟩ : b ∈ J}∪{⟨(a, a), (a, a)⟩ : a ∈ A}∪{⟨(0, c), (0, c)⟩ : c ∈ I}).

Therefore (c, d) ∈ KI,J if and only if ⟨(0, 0), (c, d)⟩ ∈ ΣI,J if and only if there
is a term t(x⃗, y⃗, z⃗) such that

⟨(0, 0), (c, d)⟩ = t(⟨
−−−−−−→
(0, 0)(b, b)⟩, ⟨

−−−−−−−−→
(a, a), (a, a)⟩, ⟨

−−−−−−−→
(0, i), (0, i)⟩)

for some b⃗ ∈ J , a⃗ ∈ A and i⃗ ∈ I. The conclusion follows.

From Proposition 4.2.3 we can infer other similar characterizations for
[I, J ] in a subtractive algebra. We list two of them.

Proposition 4.2.4. If A is subtractive and I, J ∈ Id(A), then

1. [I, J ]A = {s(t(⃗i, j⃗), t(⃗i, 0⃗)) : t a polynomial of A,
i⃗ ∈ I, j⃗ ∈ J and s(t(⃗0, j⃗), t(⃗0, 0⃗)) = 0};

2. [I, J ]A = {s(s(t(⃗i, j⃗), t(⃗i, 0⃗)), s(t(⃗0, j⃗), t(⃗0, 0⃗))) : t a polynomial of A, i⃗ ∈
I, j⃗ ∈ J}.

Remark 4.2.5. The dependency on A of the commutator cannot be avoided
even in case of ideal determined varieties: in [13] there is an example of a loop
G having a normal subloop N such that [N,N]N = {1} but [N,N]G ̸= {1}.

In groups this cannot happen, since in groups we can describe the com-
mutator of two (normal) subgroups using the commutators. Those, in our
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language, are pure (i.e. without parameters) commutator terms. Namely if
G is a group and N,M ◁ G then

[N,M]G = SubG({n−1m−1nm : n ∈ N,m ∈M}).

In other words the only commutator term we have to concern about is
y−1z−1yz and this clearly implies that the commutator of N,M is the same
in any group that contains both of them.

4.3 Commutator identities

Consider an algebraic language having symbols for the join, intersection,
0,1 and the commutator; identities in that language are called commutator
identities. We say that a class K of algebras satisfies the commutator
identity p ≈ q and we will write

K ⊨id p ≈ q,

if p ≈ q holds in Id(A) for all A ∈ K.
The proof of the following proposition is routine and it is left as an exer-

cise.

Proposition 4.3.1. For any algebra A the following are equivalent:

1. A ⊨id [x, y] = x ∩ y ∩ [A,A];

2. A ⊨id [x, y ∩ z] = [x, y] ∩ z;

3. A ⊨id [x, y] = [x,A] ∩ y;

4. A ⊨id [x, x] = x ∩ [A,A];

5. A ⊨id x ⊆ [A,A] =⇒ x = [x, x];

6. for all a ∈ A, if a ∈ [A,A] then [a, a] = (a)A.

Is there an equivalent algebraic condition corresponding to the satisfac-
tion of any of the conditions in Proposition 4.3.1? Yes, but we need some
definitions. An algebra A is (finitely) ideal irreducible if every (finite)
family of ideals different form {0} does not intersect to {0}. Ideal irreducibil-
ity is equivalent to the existence of a minimal nonzero ideal which has to be
generated by a single element, called the monolithical element of A.
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An algebra A is ideal abelian if [A,A] = {0}; it is ideal prime if for
all I, J ∈ Id(A), [I, J ] = {0} implies I = {0} or J = {0}.

Theorem 4.3.2. [3] For a subtractive variety V the following are equivalent:

1. V ⊨id [x, y ∩ z] ≈ [x, y] ∩ z;

2. every ideal irreducible algebra in V is either ideal abelian or ideal prime.

Proof. Assume (1) and let I, J ∈ Id(A) with [I, J ] = {0}. Then

[I, J ] = I ∩ J ∩ [A,A].

and if A is not abelian then [A,A] ̸= {0}. Since A is ideal irreducible,
I ∩ J = {0} and again either I = {0} or J = {0}; i.e. A is ideal prime.

Assume (2); by Proposition 4.3.1 it is enough to show that if A ∈ V,
I ∈ Id(A) and I ⊆ [A,A] then [I, I] = I. Assume by contradiction that
there exists a ∈ I \ [I, I]; using Zorn Lemma let U be maximal in

{J ∈ Id(A) : [I, I] ⊆ J, a /∈ J}

and let θ ∈ Con(A) such that U = 0/θ. Let L be a nonzero ideal of A/θ ;
for some J ⊋ U we have L = {b/θ : b ∈ J} and for some b ∈ J , (0, b) /∈ θ,
i.e. b ∈ J − U . So a ∈ J , namely a/θ ∈ L and A/θ is ideal irreducible; by
hypothesis A/θ is either ideal abelian or ideal prime.

Observe that [I, I] ⊆ U , I ̸⊆ U and

[U ∨ I, U ∨ I] ⊆ U ∨ [I, I] = U,

therefore

[(U ∨ I)/θ, (U ∨ I)/θ]A/θ = [U ∨ I, U ∨ I]/θ ⊆ U/θ = {0/θ},

while (U ∨ I)/θ ̸= {0/θ}, since a/θ ∈ (U ∨ I)/θ. Hence A/θ is not ideal
prime and so it must be ideal Abelian. This implies

{0/θ} = [A/θ,A/θ]A/θ = [A,A]/θ

and since I ⊆ [A,A] we would have I/θ = {0/θ}, which is absurd since
a/θ ̸= 0/θ. It follows by contradiction that (2) implies (1).
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4.4 Ideal neutral varieties

An algebra A is ideal neutral if the commutator of ideals reduces to the
intersection. This is equivalent to saying that A ⊨id [x, y] ≈ x ∩ y. For a
variety being ideal neutral is equivalent to several other conditions but first
we need some preliminary definitions.

Let Aλ ∈ V for λ ∈ Λ and let B be a subdirect product of (Aλ)λ∈Λ.
An ideal K of B is a product ideal if there is a family (Iλ)λ∈Λ such that
Iλ ∈ Id(Aλ) and K =

∏
λ∈Λ Iλ.

We say that a variety V

• has no skew ideals on finite subdirect products if for any family
(Ai)

n
i=1 of algebras in V whenever B is a subdirect product of (Ai)

n
i=1,

every ideal of B is a product ideal ;

• is ideal distributive if for all A ∈ V, Id(A) is a distributive lattice.

The following is obvious:

Proposition 4.4.1. For a subtractive variety V the following are equivalent:

1. V is ideal distributive;

2. for all A ∈ V and θ, φ, ψ ∈ Con(A)

0/(θ ∨ φ) ∧ ψ = 0/(θ ∧ ψ) ∨ (φ ∧ ψ).

Next we need some more information on ideals of subdirect products; the
proof of the following is straightforward and is left to the reader.

Proposition 4.4.2. Let Aλ ∈ V for λ ∈ Λ and let B be a subdirect product
of (Aλ)λ∈Λ. If πλ is the λ-th projection, πλI ∈ I(Aλ) for any I ∈ Id(B). For
I ∈ Id(B), define

I|λ = {(aµ)µ∈Λ : aµ = 0 if µ ̸= λ and aλ ∈ πλ(I)}.

Then I|λ ∈ Id(B) and moreover⋂
λ∈Λ

(I ∨ I|λ) ⊆
∏
λ∈Λ

πλ(I).
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Proposition 4.4.3. Let V be subtractive, A1, . . . ,An ∈ V and A a subdirect
product of A1, . . . ,An. If I ∈ Id(A), then (πi are the projections)

n∏
i=1

πi(I) ⊆
n⋂

i=1

(I ∨ I|i).

Hence I is a product ideal if and only if

I =
n∏

i=1

πi(I) =
n⋂

i=1

(I ∨ I|i).

Proof. The proof is by induction on n. Assume n = 2 and let (a1, a2) ∈
π1(I) × π2(I); then for some k, h, (a1, k) ∈ I and (h, a2) ∈ I. Hence (0, k) ∈
I|2, (0, a2) ∈ I|2 and (0, s(a2, k)) ∈ I|2. Therefore

(a1, a2) = (u(a1, a1, 0), u(a2, k, s(a2, k)) = u((a1, a1), (a1, k), (0, s(a2, k))) ∈ I∨I|2.

The inductive step is totally similar.

Theorem 4.4.4. [3] For a subtractive variety V the following are equivalent:

1. V is ideal distributive ;

2. V has no skew ideals on finite subdirect products;

3. V ⊨id [x, y] = x ∩ y;

4. there are four ternary terms q1, . . . , q4 such that the following identities
hold in V:

qi(x, y, 0) = 0 i = 1, . . . , 4

q1(x, y, x) = q2(x, y, y)

q3(x, y, x) = q4(x, y, s(x, y)) = s(x, q1(x, y, x));

5. there is a binary term b(x, y) such that the following identities hold in
V:

b(x, x) = 0 b(0, x) = 0 b(x, 0) = x.
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Proof. First we show that (1),(2) and (3) are equivalent. Assume (1) and
let B be a subdirect product of A1, . . . ,An where A ∈ V. Then, since⋂n

i=1 I|i = {(0, 0)}, via Proposition 4.2.4 we get

I = (I ∨
n⋂

i=1

I|i) ∩B

=
n⋂

i=1

(I ∨ I|n) ∩B =
n∏

i=1

πi(I) ∩B =
n∏

i=1

πi(I).

So I is a product ideal and (2) holds.
Assume now (2) and suppose that (3) fails; i.e. there is an A ∈ V and

I, J ∈ Id(A) such that [I, J ] ̸= I ∩ J . Then, if H = I ∩ J , [H,H] ̸= H. Let
θ ∈ Con(A) such that [H,H] = 0/θ and let f be the natural epimorphism of
A onto A/θ; then

[f(H), f(H)]A/θ = f([H,H]) = {0}A/θ = {0/θ}

but of course f(H) ̸= {0/θ}. Therefore we have an algebra B = A/θ ∈ V
and an ideal N = f(H) of B with [N,N ] = {0} but N ̸= {0}.

We will show that KN,N (defined in Section 4.2) is a skew ideal of

N ′ = SubB×B({(0, n) : n ∈ N} ∪ {(b, b) : b ∈ B})

which is a subdirect power of B. Since [N,N ]0 = [N,N ] = {0} we have that
if (0, a) ∈ KN,N , then a = 0. Suppose by contradiction that

KN,N = (I ′ × J ′) ∩N ′ (∗)

for some I ′, J ′ ∈ Id(B). If a ∈ J ′ and (0, a) ∈ N ′, then a = 0. If b ∈ I ′

and (b, 0) ∈ N ′, since (b, b) ∈ N we get (s(b, b), s(b, 0)) = (0, b) ∈ N ′, hence
again b = 0. Let now h ∈ N , h ̸= 0; then (h, h) ∈ KN,N , (0, h) ∈ N ′ but
(0, h) /∈ KN,N , since h /∈ [H,H]. It follows that (0, h) /∈ I ′×J ′, hence h /∈ J ′,
which in turn implies (h, h) /∈ (I ′ × J ′) ∩N ′, contradicting (∗). Hence KN,N

is a skew ideal of N ′. This argument is local: we have in fact shown that if
A is subtractive and Id(A) ̸⊨id [x, y] ≈ x ∩ y, then in V(A) there is a skew
ideal.

Finally (3) implies (1) by the properties of the commutator; hence (1),
(2) and (3) are equivalent.
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Assume (1) and let F be the algebra in V freely generated by {x, y, z}.
In F

(x) ∩ ((y) ∨ (s(x, y))) ⊆ ((x) ∩ (y)) ∨ (x ∩ (s(x, y))).

Now x belongs to the left side, hence for some w ∈ (x) ∩ (y), we have
s(x,w) ∈ (x)∩ (s(x, y)). From here we get the qi’s and their identities in the
standard way so (4) holds.

Assume (4) and define b(x, y) = q3(x, y, x), then

b(x, 0) = s(x, q1(x, 0, x)) = s(x, q2(x, 0, 0)) = s(x, 0) = x

b(x, x) = q4(x, x, 0) = 0

b(0, x) = s(0, q1(0, y, 0)) = s(0, 0) = 0

and (5) holds. Finally (5) clearly implies (1) and this concludes the proof.

4.5 Ideal abelian algebras

Let A be any algebra; A is called abelian (see [24]) if for every term t(x, y⃗),
for every a, b, u⃗, v⃗ ∈ A, if t(a, u⃗) = t(a, v⃗) then t(b, u⃗) = t(b, v⃗). By Mal’cev’s
criterion, this is equivalent to saying that the diagonal of D(A) = {(a, a) :
a ∈ A} is a congruence class of A×A. In congruence modular varieties, this
is equivalent to: [1A, 1A] = 0A in Con(A) [13].

We recall that a subtractive algebra A is ideal abelian if [A,A] = {0};
a subtractive variety V is ideal abelian if it consists entirely of ideal abelian
algebras. This is of course equivalent to saying that V ⊨id [x, y] = 0.

From Proposition 4.2.4 we get two equivalent conditions for being ideal
abelian:

∀ t(x, y⃗) term, ∀u, v, a⃗, b⃗ ∈ A,

s(t(u, a⃗), t(u, b⃗)) = 0 if and only if s(t(v, a⃗), t(v, b⃗)) = 0
(TCi)

∀ t(x, y⃗) term, ∀ v, a⃗, b⃗ ∈ A,

s(t(0, a⃗), t(0, b⃗)) = 0 if and only if s(t(v, a⃗), t(v, b⃗)) = 0
(TC0)

Let now V be a subtractive variety and let IAB(V) be the class of ideal abelian
algebras in V. Then, since by (TCi) or (TC0) the condition of being ideal
abelian is expressible by quasiequations, IAB(V) is closed under subalgebras
and direct products. Moreover:
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Lemma 4.5.1. Let A, B belong to a subtractive variety V; let I, J ∈ Id(A)
and let g be a homomorphism from A onto B. Then g([I, J ]A) = [g(I), g(J)]B.

Proof. Let u ∈ g([I, J ]A); then there is a commutator term for V in y⃗, z⃗ and

elements a⃗ ∈ A, b⃗ ∈ I and c⃗ ∈ J with

u = g(t(⃗a, b⃗, c⃗)) = t(g(⃗a), g(⃗b), g(c⃗)) ∈ [g(I), g(J)]B.

The reverse inclusion is equally obvious.

Thus we get:

Corollary 4.5.2. For every subtractive variety V, IAB(V) is a variety.

Proof. We need only observe that if g : A −→ B is a onto homomorphism
and U, V ∈ Id(B), then g−1(U), g−1(V ) ∈ Id(A). Then we apply Lemma
4.5.1.

A more interesting observation is the following:

Proposition 4.5.3. [30] If V is subtractive then IAB(V) is strongly subtrac-
tive.

Proof. According to Proposition 3.4.1 we will show that if A ∈ IAB(V) and
I ∈ Id(A), then I∗ is a subalgebra of A×A. First observe that if t(x⃗, y⃗) is
an ideal term in y⃗, then the identity

s(t(x⃗, y⃗), t(z⃗, y⃗)) ≈ 0

holds in IAB(V), simply because the shown term is a commutator term in
x⃗ ∗ z⃗, y⃗. Let f be an n-ary operation; then

s(f(u(x1, y1, 0), . . . , u(xn, yn, 0)), f(y⃗))

is an ideal term in y⃗. Therefore in IAB(V)

0 ≈ s(s(f(u(x1, y1, 0), . . . , u(xn, yn, 0)), f(y⃗)), s(f(u(y1, y1, 0), . . . , u(yn, yn, 0)), f(y⃗)))

≈ s(s(f(u(x1, y1, 0), . . . , u(xn, yn, 0)), f(y⃗)), s(f(y⃗), f(y⃗)))

≈ s(f(u(x1, y1, 0), . . . , u(xn, yn, 0)), f(y⃗)).

This means that

s(f(u(x1, y1, z1), . . . , u(xn, yn, zn)), f(y⃗))

is an ideal term for IAB(V) in z⃗. Therefore, if (ai, bi) ∈ I∗ then also (f (⃗a), f (⃗b)) ∈
I∗.
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For an even more interesting observation we need a definition. Let A be
an algebra and consider KA,A; then

K+
A,A = (KA,A))A×A.

Lemma 4.5.4. If A is subtractive and ideal abelian, then 0/K+
A,A = {0}.

Proof. Let (0, d) ∈ K+
A,A; then (with a harmless reduction of the number of

variables) there are an ideal term t(x, y) in y and (b, c) ∈ A × A, (u, v) ∈
K+

A,A such that (0, d) = t((b, c), (u, v)). In turn there are an ideal term
p(x, y, z) in y, z, a, i, j ∈ A such that (u, v) = p((a, a), (0, i), (j, j)). Notice
that t(b, p(a, 0, j)) = 0 and t(b, p(a, 0, 0)) = 0, hence by (TCi)

s(t(c, p(a, 0, j)), t(c, p(a, 0, 0))) = 0.

But t(c, p(a, 0, 0)) = 0, hence t(c, p(a, 0, j)) = 0 and also t(c, p(a, i, 0)) = 0.
Therefore, by Proposition 4.2.3, d = t(c, p(a, i, j)) ∈ [A,A]A =, i.e. d =
0.

Now we can show:

Proposition 4.5.5. [3] Let A be subtractive. If M3 is a 0-1-sublattice of
Id(A), then A is ideal Abelian. Moreover the following are equivalent:

1. A is ideal Abelian and non trivial;

2. Id(A×A) has M3 as a 0-1-sublattice;

3. π−1
1 (0) and π−1

2 (0) have a common complement in Id(A×A);

4. for some subdirect product S of A × A, Id(S) has an M3 as a 0-1-
sublattice.

Proof. Suppose that {(0), I, J,K,A} form the M3 in question. Then

[A,A] = [I ∨ J, I ∨K]

≤ [I, I] ∨ [J, I] ∨ [I,K] ∨ [J,K]

≤ I ∨ (J ∧K) = I

Then [A,A] ≤ J∨(I∧K) = J ; hence [A,A] ≤ I∧J = (0) and A is i-Abelian.
(3) −→ (2) −→ (4) are obvious. Assuming (4), since S is i-Abelian, also

A is i-Abelian, being a homomorphic image of S; hence (4) −→ (1).
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To prove (1) −→ (2), consider K+
A,A in I(A×A). For any a, b ∈ A we have

(a, a) ∈ K+
A,A and s((a, b), (a, a)) = (0, s(b, a)) ∈ π−1

1 (0), therefore (a, b) ∈
K+

A,A ∨ π−1
1 (0). Also (b, b) ∈ K+

A,A and s((a, b), (b, b)) ∈ π−1
2 (0), therefore

(a, b) ∈ K+
A,A ∨ π−1

2 (0). Now by the previous lemma K+
A,A ∩ π−1

1 (0) = (0),

therefore, since I(A × A) is modular, K+
A,A ∩ π−1

2 (0) = (0). It follows that

{(0), π−1
1 (0), π−1

2 (0), K+
A,A, A× A} form an M3 in I(A×A).

What is the relation between being abelian and ideal abelian for varieties?
By Proposition 4.5.3 every ideal abelian variety V is strongly subtractive; in
particular {0}# ∈ Con(A) for an A ∈ V. From now on we will denote {0}#
by ∆A.

Proposition 4.5.6. [3] Let A be subtractive. If A is ideal abelian then
A/∆A is abelian. Conversely if ∆A ∈ Con(A) and A/∆A is abelian, then
A is ideal Abelian.

Proof. To avoid too many decorations we will denote a/∆A simply by a∆.

Let t(x, y⃗) be a term and suppose that t(u∆, a⃗∆) = t(u∆, b⃗∆); then we have

t(u, a⃗)∆ = t(u, b⃗)∆ which in turn implies s(t(u, a⃗), t(u, b⃗)) = 0. Since A is

ideal Abelian, for any v ∈ A, s(t(v, a⃗), t(v, b⃗)) = 0 and with obvious steps

t(v∆, a⃗∆) = t(v∆, b⃗∆). On the other hand, once we know that the relation
∆A is a congruence, if A/∆A isaAbelian we can repeat the argument above
almost verbatim to conclude that A is ideal abelian.

4.6 Affine algebras

Let A be a subtractive algebra, witness s(x, y). We define a term

p(x, y, z) := s(x, s(y, z))

and we observe that, if p(x, y, z) is given, one can recover s(x, y) = p(x, y, 0)
and that p(x, y, z) obeys the laws

p(x, y, y) ≈ x p(x, x, 0) ≈ 0

of 0-permutability.
An n-ary operation f on A will be called affine if for any a1, . . . , an, b1, . . . , bn ∈

A satisfies

s(f(a1, . . . , an), f(b1, . . . , bn)) = s(f(s(a1, b1), . . . , s(an, bn)), f(0, . . . , 0)).
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It turns out that this is equivalent to: there is an n-ary term tf such that,
for any a1, . . . , an, b1, . . . , bn ∈ A,

s(f(a1, . . . , an), f(b1, . . . , bn)) = tf (s(a1, b1), . . . , s(an, bn)).

One easily sees that the composition of affine operations is still affine.
Hence if every basic operation of a subtractive algebra A is affine, then every
term operation of A is affine as well; in particular s(x, y) commutes with
itself, i.e. satisfies

s(s(x, x′), s(y, y′)) ≈ s(s(x, y), s(x′, y′)). (*)

It follows that if s commutes with itself in A then so does in any B ∈ V(A).
By Theorem 3.4.3 if every basic operation of A is affine, then A is strongly
subtractive. The converse does not hold in view of Proposition 4.6.2 below:
just consider non Abelian groups. We have a Lemma whose easy verification
is left to the reader.

Lemma 4.6.1. If s(x, y) commutes with itself in A, then:

1. s(0, s(0, x)) = x;

2. if s(x, y) = 0, then x = y;

3. ps(x, y, z) defined above is a Mal’cev term for A.

Notice also that if s commutes with itself in A, then A is 0-regular: if θ, φ
are congruences of A, 0/θ = 0/φ and (a, b) ∈ θ then s(a, b) ∈ 0/θ = 0/φ.
So, in A/θ, s(a/φ, b/φ) = 0/φ and thus a/φ = b/φ by Lemma 4.6.1. So
(a, b) ∈ φ.

The classical definition of affine algebra is as follows: an algebra A is
affine if there exists an abelian group ⟨A,+,−, 0⟩ with the same universe of
A and a ternary term t(x, y, z) such that

• t(x, y, z) = x− y + z;

• for any n-ary term fand for all x,y, z ∈ An

f(x− y + z) = f(x) − f(y) + f(z).

The following proposition establishes a connection between affine operations
on a subtractive algebra and being affine.
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Proposition 4.6.2. [3] For an algebra A in a subtractive variety the follow-
ing are equivalent:

1. A is affine witness p(x, y, z);

2. every basic operation (and thus any term operation) of A is affine;

3. A is abelian;

4. D(A) is an ideal of A×A and s commutes with itself in A;

5. D(A) is an ideal of A ×A and A generates a congruence permutable
variety with Mal’cev term p(x, y, z) such that

p(x, y, z) = z implies x = y.

Hence V(A) is ideal determined and strongly subtractive.

Proof. Assume (1) and let’s assume, without loss of generality, that f be a
unary basic operation. Then

s(f(x), f(y)) = f(x) − f(y) + f(0) − f(0)

= p(f(x), f(y), f(0)) − f(0)

= f(p(x, y, 0)) − f(0) = s(f(s(x, y)), f(0)).

For (2) −→ (3) define a binary relation Θ on A× A by setting

⟨a, b⟩Θ ⟨a′, b′⟩ if and only if s(a, b) = s(a′, b′).

Θ is obviously an equivalence relation; to show that it is a congruence of
A × A, take a basic operation f (again we suppose f unary) and assume
⟨a, b⟩Θ ⟨a′, b′⟩:

s(f(a), f(b)) = tf (s(a, b)) = tf (s(a′, b′))

= s(f(a′), f(b′)).

Therefore

fA×A(⟨a, b⟩) = ⟨f(a), f(b)⟩Θ ⟨f(a′), f(b′)⟩ = fA×A(⟨a′, b′⟩).

Moreover ⟨a, b⟩Θ ⟨0, 0⟩ if an only if s(a, b) = 0 if and only if (via Lemma
4.6.1) a = b, i.e. D(A) = ⟨0, 0⟩/Θ.
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For (3) −→ (4), assuming D(A) = ⟨0, 0⟩/Θ for some Θ ∈ Con(A × A)
we have to show that (∗) holds. Let L and R be the left and the right hand
side of (∗) respectively. In A×A we have

⟨L,R⟩ = s(⟨s(a, a′), s(a, b)⟩, ⟨s(b, b′), s(a,′ b′)⟩);

but

⟨s(a, a′), s(a, b)⟩ = s(⟨a, a⟩, ⟨a′, b⟩) Θ s(⟨b, b⟩, ⟨a′, b⟩) = ⟨s(b, a′), 0⟩

and

⟨s(b, b′), s(a′, b′)⟩ = s(⟨b, a′⟩, ⟨b′, b′⟩) Θ s(⟨b, a′⟩, ⟨a′, a′⟩) = ⟨s(b, a′), 0⟩.

Therefore
⟨L,R⟩Θ s(⟨s(b, a′), 0⟩, ⟨s(b, a′), 0⟩) = ⟨0, 0⟩.

This implies ⟨L,R⟩ ∈ D(A) and hence L = R.
Next assume (4). By Lemma 4.6.1, p is a Mal’cev term for A and hence

for the variety it generates. Moreover, assume p(x, y, z) = z; then by Lemma
4.6.1

s(s(x, s(y, z)), s(0, s(0, z))) = s(z, z) = 0.

Since s commutes with itself we then have

0 = s(s(x, 0), s(s(y, z), s(0, z))) = s(x, s(s(y, 0), s(z, z))) = s(x, s(y, 0)) = s(x, y).

Via Lemma 4.6.1(2) we finally get x = y.
Finally (5) −→ (1) is a basic result on Abelian algebras (see [17]).

Corollary 4.6.3. Let V a subtractive variety and A ∈ V. Then the following
are equivalent:

1. A is ideal abelian;

2. ∆A ∈ Con(A) and A/∆A is affine.

An algebra A is Hamiltonian if every subalgebra of A is a block of some
congruence of A. A variety is Hamiltonian if it consists of Hamiltonian
algebras. A subtractive algebra is Hamiltonian if and only if every subalgebra
is an ideal. For subtractive varieties it is possible to strengthen the well-
known Klukovits’ result for Hamiltonian varieties [21]:
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Proposition 4.6.4. A subtractive variety V is Hamiltonian if and only if no
ideal term t(x⃗, y⃗) in y⃗ depends on x⃗, i.e. there is a term st(y⃗) such that

t(x⃗, y⃗) ≈ st(y⃗)

holds in V.

Proof. Let V be Hamiltonian and let t(x⃗, y⃗) be an ideal term in y⃗. Let F be
the free algebra in V on x⃗, y⃗ and let B be the subalgebra of F generated by
y⃗. Then B is an ideal of F and hence t(x⃗, y⃗) ∈ B. So there exists a term
st(y⃗) with

st(y⃗) = t(x⃗, y⃗).

The converse is obvious.

Being abelian or Hamiltonian are unrelated properties for single algebras.
In [20] Kiss and Valeriote produced an example of a (non subtractive) alge-
bra which is abelian but not Hamiltonian. The same holds for subtractive
algebras.

Example 4.6.5. [3] We construct a finite algebra A in which ∆ ∈ Con(A),
∆ ̸= 0A and A/∆ is ideal abelian. By Corollary 4.6.3 A will not be Abelian.

Let A = ⟨{0, a, b, c, d}, s⟩ where s is defined by the following table:

s 0 a b c d

0 0 a b c d
a a 0 c b b
b b c 0 a a
c c b a 0 0
d d b a 0 0

It is clear that s(x, y) is a commutative subtraction term and it is easily
seen that ∆ ∈ Con(A). Next we observe that A/∆ is weakly isomorphic to
Z2 × Z2, the Klein group and it is of course Abelian. Also observe that

∆ = (0)(a)(b)(cd) θ0 = (0a)(bcd) θ1 = (0b)(acd) α = (0cd)(ab)

are congruences of A and, together with 1A, they sit in Con(A) as an M3.
Therefore M3 is a 0-1-sublattice of Id(A), hence A is ideal abelian.

Moreover:
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• A is subdirectly irreducible (with monolith ∆) but not ideal irreducible.

• A is not Hamiltonian since {0, a, b, c} is a subalgebra which is not the
block of any congruence.

• A is strongly subtractive, since it is ideal abelian. But A generates a
variety which is not ideal determined, otherwise it would be abelian,
which is not.

For a variety however, being Hamiltonian has stronger consequences. In
particular it is an easy exercise to show that if A ×A is Hamiltonian then
A is abelian; hence every Hamiltonian variety is abelian.

Theorem 4.6.6. [3] For a subtractive variety V the following are equivalent:

1. V is Hamiltonian;

2. V is abelian and classically ideal determined;

3. V is ideal abelian and ideal determined;

4. any algebra in V is affine.

Proof. Assume (1); since any Hamiltonian variety is abelian, V is ideal de-
termined. Moreover the term u(x, y, z) is an ideal term in y, z; hence there
exists an su(y, z) = u(x, y, z). Hence

su(y, s(x, y)) = u(x, y, s(x, y)) = x

which is enough to ensure classical ideal determinacy.
Now (2) trivially implies (3), so let’s the latter. In this case V is abelian

and congruence modular, so (4) follows from Proposition 4.6.2.
Finally assume (4) and let A ∈ V; let B be a subalgebra of A and p(x⃗, y⃗)

be an ideal term in x⃗, y⃗. Let a⃗ ∈ A and b⃗ ∈ B; since A is affine p is affine by
Proposition 4.6.2 and thus there is a term tp such that

p(⃗a, b⃗) = s(p(⃗a, b⃗), p(⃗a, 0⃗))

= tp(s(a1, a1), . . . , s(an, an), s(b1, 0), . . . , s(bm, 0))

= tp(0, . . . , 0, b1, . . . , bm) ∈ B.

Therefor BId(A) and A is Hamiltonian.

Corollary 4.6.7. A subtractive ideal abelian algebra A generates a Hamil-
tonian variety if and only if A is affine.
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Chapter 5

Equationally definable principal
ideals

5.1 Foreword

In a generic variety, dealing with the join of two congruences of an algebra is
somewhat complex; in general one has to deal with longer and longer chains
of relational products and, unless some form of congruence permutability
is present, there might be no upper bound for the length of the chains.
Finiteness does not help either; of course in a finite algebra A there is an
upper bound for the length of the chains but it is trivial to produce an
example of an algebra A generating a variety in which no such bound can
exist. In contrast the join of two ideals is a subtractive variety is nice;
essentially (Lemma 2.4.6) if b ∈ A and I, J ∈ Id(A), then b ∈ I ∨ J if and
only if there is an a ∈ I with s(b, a) ∈ J . This can be easily generalized to
multiple joins: for every n ≥ 2, there is an n-ary term sn such that for any
A ∈ V and I1, . . . , In ∈ Id(A) the following holds:

a ∈
n∨

i=1

Ii if and only if there are ci ∈ Ii, i = 2, . . . , n

such that sn(a, c2, . . . , cn) ∈ I1. (†)

A further motivation is in the relation of having equationally definable
principal ideals with the algebrization of the natural deduction system of
logic. Take the introduction and elimination rules for implication → in clas-
sical (or intuitionistic) natural deduction
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[A]
|
B

A→ B

A A→ B

B

In an algebraic-logical setting, these may be translated as:

b ∈ (a)A ∨ I if and only if a→ b ∈ I

where I is an ideal. In a subtractive variety, this is equivalent to:

b ∈ (a)A if and only if a→ b = 0.

This (see Theorem 5.3.1 below) means exactly that the principal ideals are
equationally definable.

Also, there exist natural examples of varieties which are subtractive and
have equationally definable principal ideals, but are neither ideal determined
nor have equationally definable principal congruences.

We close this section with the description of some classes of algebras that
will be used repeatedly in the sequel.

A Brouwerian semilattice [22] is an algebra ⟨A,→,∧, 1⟩ such that for
any a, b, c ∈ A

1. ⟨A,∧, 1⟩ is an upper bounded semilattice;

2. a→ a = 1;

3. (a→ b) ∧ a = (b→ a) ∧ b;

4. (a ∧ b) → c = a→ (b→ c).

If A is a Brouwerian semilattice and a, b, c ∈ A, then

c ≤ a→ b if and only if a ∧ c ≤ b.

Hence a → b is the relative pseudocomplement of a and b. The variety BS
of Brouwerian semilattice is of course ideal determined. Moreover it can be
shown that the class of →-subreduct of BS coincides with the variety HI of
Hilbert algebras and that the congruences (hence the ideals) of a Brouwerian
semilattice coincide with those of its →-reduct.

62



Since we will be dealing with partially ordered structures in which the
constant is the smallest element in the ordering, we feel that the dual concepts
are more suitable.

A dual Brouwerian semilattice is a join semilattice with dual relative
pseudocomplementation, i.e. an algebra ⟨A,∨, ∗, 0⟩ such that

a ∗ b ≤ c if and only if b ≤ a ∨ c.

A dual Hilbert algebra is the ∗-subreduct of a dual Brouwerian semilattice.
The distinction between Brouwerian semilattices (Hilbert algebras) and dual
Brouwerian semilattices (dual Hilbert algebras) is of course purely notational.

5.2 Definability of principal ideals

For the notion of definable principal congruences and equationally definable
principal congruences we refer to the literature, mainly to [14], [8] and [7].

If K is a class of algebras, we say that K has definable principal ideals
(DPI) if there is a first order formula Ψ(x, y, y1, . . . , yn) in the language of K
such that for all A ∈ K, a, b ∈ A

a ∈ (b)A if and only if A ⊨ ∃y1, . . . , yn Ψ(a, b, y1, . . . , yn).

Proposition 5.2.1. [5] Let K be a class of algebras with a constant 0.

1. If K has normal ideals and has definable principal congruences, then K
has definable principal ideals.

2. If K is contained in an ideal determined variety and has definable prin-
cipal ideals then K has definable principal congruences.

Proof. For 1. just remember that, by normality of ideals, if A ∈ K and
a, b ∈ A, then

a ∈ (b)A if and only if (0, a) ∈ ϑ(0, b).

Hence if Ψ(x, y, z, w, z1, . . . , zk) defines principal congruences, then

Ψ(0, x, 0, y, z1, . . . , zk)

defines principal ideals in K.
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For 2., assume K is contained in an ideal determined variety V and let
d1, . . . , dn be the binary terms witnessing 0-regularity for V. One easily checks
that (see for instance [18])

(a, b) ∈ ϑA(c, d) if and only if

di(a, b) ∈ ⟨d1(c, d), . . . , dn(c, d)⟩A for i = 1, . . . , n.

Next using subtractivity and recalling (†) in Section 5.1, if Ψ(x, y, z1, . . . , zn)
defines principal ideals in K then the formula

∧m∧
i=1

∧m−1∧
r=1

(Ψ(zir, dr(z, t), y
i,r
1 , . . . , y

i,r
k )

∧
∧m∧
i=1

φ(sn(di(x, y), zi1, . . . , z
i
m−1), dm(z, t), yi,m1 , . . . , yi,mk ))

defines principal congruences in V.

We say that K has equationally definable principal ideals in the
broad sense (EDPI# for short) if there are terms pi, qi i = 1, . . . , k such
that for all A ∈ K, a, b ∈ A

a ∈ (b)A if and only if ∃u1, u2, · · · ∈ A s.t.

pi(a, b, u1, u2, . . . ) = qi(a, b, u1, u2, . . . ) for all i = 1, . . . , k

Let EDPC# denote the corresponding notion for congruences; by adapt-
ing the proofs of Proposition 5.2.1 we get:

Theorem 5.2.2. [5] Let K be a class of algebras with 0.

1. If for all A ∈ K, N(A) = IK(A) and if K has EDPC#, then it has
EDPI#.

2. If K is contained in an ideal determined variety and K has EDPI#, then
K has EDPC#.

Therefore an ideal determined variety has the EDPI# if and only if it has
EDPC#.
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In case V is 0-regular (with witness terms d1, . . . , dn), then

pi(a, b, u1, u2, . . . ) = qi(a, b, u1, u2, . . . ) for 1 = 1, . . . , k

is equivalent to

dj(pi(a, b, u1, u2, . . . ), qi(a, b, u1, u2, . . . )) = 0 for 1 = 1, . . . , k, j = 1, . . . , n.

This suggests the following definitions. We say that K has a uniform im-
plicit term p for principal ideals (UIT) if for any A ∈ K a, b ∈ A

a ∈ (b)A if and only if ∃u1, u2, · · · ∈ A s.t. p(a, b, u1, u2, . . . ) = 0.

Next K has a uniform explicit term q(x1, . . . , xn, y) for principal ideals
(UET) if q is an ideal term in y and moreover, for any A ∈ K

a ∈ (b)A if and only if ∃u1, . . . , un ∈ A s.t. q(u1, . . . , un, b) = a.

A variety V has factorable principal ideals on direct products if,
whenever Ai ∈ V and b ∈

∏
i∈I Ai,∏

i∈I

(bi)Ai
⊆ (b)A.

Note that the inclusion (b)A ⊆
∏

i∈I(bi)Ai
holds in any case.

A variety V has a test algebra for principal ideals, if there exists an
A ∈ V and a, b ∈ A, such that

• a ∈ (b)A;

• for any B ∈ V and a′, b′ ∈ B, if a′ ∈ (b′)B then there is a homomorphism
φ of A into B such that φ(a) = a′ and φ(b) = b′.

We have:

Theorem 5.2.3. [5] For a subtractive variety V the following are equivalent:

1. V has a UET.

2. V has a UIT.

3. V has EDPI#.
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4. V has factorable principal ideals on direct products.

5. V has a test algebra for principal ideals.

Proof. Assume (1) and let q(x1, . . . , xk, y) be a UET for K. Define

p(x1, . . . , xk, x, y) = s(x, q(x1, . . . , xk, y)).

If a ∈ (b)A then there are u1, . . . , un ∈ A such that q(u1, . . . , un, b) = a. Thus

p(u1, . . . , uk, a, b) = s(a, q(u1, . . . , un, b)) = s(a, a) = 0.

On the other hand if for some u1, . . . , uk ∈ A, p(u1, . . . , uk, a, b) = 0, then

s(a, q(u1, . . . , uk, b)) = 0 ∈ (b)A.

Since q is an ideal term in y and q(u⃗, b) ∈ (b)A we conclude that a ∈ (b)A.
This shows that p is a UIT for K.

That (2) implies (3) and (3) implies (4) are immediate, so let’s assume
(4). We consider a subset F of V such that for every finitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with φ(a) = a′

and φ(b) = b′. Then it is easily seen that A =
∏
{A′ : A′ ∈ F} is a test

algebra for principal ideals.
Finally assume (5) and let A be a test algebra for principal ideals witness

a, b ∈ A. Since a ∈ (b)A there is an ideal term q(x1, . . . , xk, y) in y such that
a = q(u1, . . . , uk, b) for some u1, . . . , uk ∈ A. Then, if B ∈ V, a′, b′ ∈ B and
a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk, b)) = q(φ(u1), . . . , φ(uk), b′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b′), being q an ideal term in y we get
a′ ∈ (b′)B. So q is a UET for V and (1) holds.

5.3 Equationally definable principal ideals

If in the definition of EDPI# we dispose of the parameters, then we obtain
the property which will be the subject of our investigations from now on. A
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variety V has equationally definable principal ideals (EDPI) if there are
terms pi(x, y), qi(x, y), i = 1, . . . , n such that for any A ∈ K and a, b ∈ A

a ∈ (b)A if and only if pi(a, b) = qi(a, b), i = 1, . . . , n.

For subtractive varieties with EDPI we can get a strengthening of Theorem
5.2.3.

Theorem 5.3.1. [3] [5] For a subtractive variety V the following are equiv-
alent.

1. V has EDPI.

2. There are binary terms pi, i = 1, . . . , n such that

a ∈ (b)A if and only if pi(a, b) = 0 i = 1, . . . , n.

3. There is a binary term p(x, y) such that

a ∈ (b)A if and only if p(a, b) = 0 i = 1, . . . , n.

4. For any family (Ai : i ∈ I) of algebras in V and for any subalgebra B
of
∏

i∈I A for any a, b ∈ B,

a ∈ (b)B if and only if ai ∈ (bi)Ai
, i ∈ I.

5. There exists an A ∈ V generated by two elements a and b, such that

(i) a ∈ (b)A;

(ii) for any B ∈ V and a′, b′ ∈ B, if a′ ∈ (b′)B then there is a homo-
morphism φ of A into B such that φ(a) = a′ and φ(b) = b′.

6. There is a ternary term p(x, y, z) such that p(x, y, 0) ≈ 0 holds in V and
for any algebra A ∈ V, a, b ∈ A, a ∈ (b)A if and only if p(a, b, b) = a.

7. For any A ∈ V the semilattice CI(A) is a dual Brouwerian semilattice.

Proof. The proofs of equivalences (1)-(6) go along the lines of Theorem 5.2.3
and they are left to the reader. So we need only show that (7) fits well.
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For general results on Brouwerian semilattices we refer the reader to [22]
or [8]. Suppose V has EDPI with witness terms p1, . . . , pn. First we show
that for all A ∈ V, a, b ∈ A, I ∈ Id(A)

a ∈ (b)A ∨ I if and only if pi(a, b) ∈ I for i = 1, . . . , n.

In fact let I = 0/θ for some θ ∈ Con(A); then

a ∈ (b)A ∨ I if and only if a ∈ (b)A ∨ 0/θ

if and only if a/θ ∈ (b/θ)A/θ

if and only if pi(a/θ, b/θ) = 0/θ for i = 1, . . . , n

if and only if pi(a, b) ∈ I for i = 1, . . . , n.

It follows that the operation (a) ∗ (b) = (p1(a, b), . . . , pn(a, b))A is a dual
relative pseudocomplementation in CI(A) for any two principal ideals of A.
But it is a general fact (see [23], Lemma 4) that, if any two elements of a
generating set of a join semilattice have a dual pseudocomplement, then the
semilattice is dually Brouwerian.

For the converse assume that CI(A) is dually Brouwerian for any A ∈ V.
Let F be the algebra freely generated in V by {x, y, vj}j∈ω. By hypothesis
(x)F ∗ (y)F exists in CI(F), hence there are terms ri(x, y, v1, v2, . . . ), i =
1, . . . , n such that

(x)F ∗ (y)F =
n∨

i=1

(ri(x, y, v1, v2, . . . ))F.

Let pi(x, y) = ri(x, y, x, x, . . . ) and assume a ∈ (b)A. Then there is a finitely
generated subalgebra B of A such that a ∈ (b)B. Let φ be a homomorphism
from F onto B such that φ(x) = φ(vj) = a and φ(y) = b. Then J = φ−1(0) ∈
Id(B) and we have

a ∈ (b)B if and only if φ(x) ∈ (φ(y))B

if and only if for some t ∈ (y)F, (x, t) ∈ kerφ

if and only if x ∈ (y)F ∨ J
if and only if ri(x, y, v1, v2, . . . ) ∈ J for i = 1, . . . , n

if and only if φ(ri(x, y, v1, v2, . . . ) = 0 for i = 1, . . . , n

if and only if ri(a, b, a, a, . . . ) = 0 for i = 1, . . . , n

if and only if pi(a, b) = 0 for i = 1, . . . , n.
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Corollary 5.3.2. Every subtractive variety V with EDPI is ideal distributive.

Proof. By Proposition 2.3.1 if A ∈ V then Id(A) is isomorphic with the
ideal lattice of CI(A). By Theorem 5.3.1 the latter is a dual Brouwerian
semilattice and it is well known that the ideal lattice of a dual Brouwerian
semilattice is distributive.

Example 5.3.3. [5] The hypothesis of subtractivity in Theorem 5.3.1 cannot
be weakened to having normal ideals. In fact consider the variety S0 of lower
bounded meet semilattices and let us denote the constant again by 0. Then
any semilattice term is an ideal term and one sees easily that ideals coincide
with order ideals in the usual sense. The variety S0 has then normal ideals.
If I is an order ideal, then the equivalence induced by the partition in which
I is the unique nontrivial block is a semilattice congruence. If S ∈ S0 and
a, b ∈ S, then a ∈ (b)S if and only if a ≤ b, if and only if a ∧ b = a, so S0

has EDPI. However it is obvious that there is no binary term satisfying (3)
of 5.3.1. In fact one can check that S0 is an variety with EDPI and normal
ideals that fails any other equivalence in Theorem 5.3.1. Note also that S0

is not even congruence modular; it is very easy to construct a finite (hence
lower bounded) meet semilattice whose congruence lattice is isomorphic with
N5, So it cannot have EDPC.

Theorem 5.3.1 implies that any subtractive variety with EDPC has EDPI
and that the converse holds if the variety is ideal determined. It follows that
Boolean Algebras (with dual normal operators), Heyting Algebras, Brouwe-
rian semilattices and Hilbert and Tarski algebras EDPI. Let us remark that
if A is a Hilbert algebra (or a Brouwerian semilattice) a, b ∈ A and ∗ is the
dual relative pseudocomplementation, then

a ∈ (b)A if and only if a ∗ b = 0.

This means that the binary term giving relative pseudocomplementation wit-
nesses both subtractivity and EDPI. In other words in a Brouwerian semilat-
tice A

(a)A ∗ (b)A = (p(b, a))A.

Hence the set PI(A) of principal ideals of A is closed under ∗ and ⟨PI(A), ∗, (0)A⟩
is a dual Hilbert algebra. The following theorems show that we can go even
further, in that any algebra in a subtractive variety with EDPI has a “weak
structure” closely resembling a dual Hilbert algebra.
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Theorem 5.3.4. [5] Let V be subtractive and EDPI. Then there exists a
binary term x ∗ y with the following properties.

1. For all A ∈ V and a ∈ A

a ∗ a = 0
a ∗ 0 = 0
0 ∗ a = a
b ∈ (a)A if and only if a ∗ b = 0.

2. The relation ≤ defined by a ≤ b if and only if b ∗ a = 0 is reflexive and
transitive. The associated equivalence relation ≈A is a congruence of
A∗ = ⟨A, ∗, 0⟩ and A∗/ ≈A is a dual Hilbert algebra isomorphic with
⟨PI(A), ∗, (0)A⟩.

3. Any principal ideal of A is the union of a principal ideal of A∗/ ≈A

and viceversa. In fact (a)A =
⋃

(a/ ≈A)A∗/≈A
.

Proof. Suppose that s(x, y) is the witness of subtractivity. Then, since V has
EDPI, from Theorem 5.3.1(6) we get the existence of a ternary term p(x, y, z)
such that, for any A ∈ V and a, b ∈ A

p(b, a, 0) = 0 p(b, a, a) = b if and only if b ∈ (a)A.

Define x ∗ y = s(y, p(y, x, x)). Then

a ∗ a = s(a, p(a, a, a)) = s(a, a) = 0;
a ∗ 0 = s(0, p(0, a, a)) = s(0, 0) = 0;
0 ∗ a = s(a, p(a, 0, 0)) = s(a, 0) = a.

Next, if b ∈ (a)A, then

a ∗ b = s(b, p(b, a, a)) = s(b, b) = 0.

Conversely, if a∗b = 0, then s(b, p(b, a, a)) = 0. Since 0 ∈ (a)A and p(b, a, a) ∈
(a)A (p(x, y, z) is an ideal term in z), subtractivity yields b ∈ (a)A as well.
This takes care of 1.

The fact that ≤ is a quasi order is obvious from the fact that ∗ witness
EDPI. Consider the mapping

a 7−→ (a)A
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from A to PI(A). Then (a)A ∗ (b)A = (a ∗ b)A, therefore the mapping is
a homomorphism from A∗ to ⟨PI(A), ∗, (0)A⟩, whose kernel coincides with
≈A. Hence 2. follows.

Finally if b ∈ (a)A then a ∗ b = 0. This implies (a ∗ b)/ ≈A= 0/ ≈A and
so a/ ≈A ∗b/ ≈A= 0/ ≈A. But A∗/ ≈A is a dual Hilbert algebra, thus it
has EDPI with witness term ∗. This implies b/ ≈A ∈ (a/ ≈A)A∗/≈A

and so
b ∈

⋃
(a/ ≈A)A∗/≈A

.
Next if b ∈

⋃
(a/ ≈A)A∗/≈A

, then b ∈ c/ ≈A∈ (a/ ≈A)A∗/≈A
, therefore

b ≈A c and a/ ≈A ∗c/ ≈A= 0/ ≈A. But this implies (a ∗ c)/ ≈A= 0/ ≈A

and so a ∗ c = 0 (since 0/ ≈A= {0}, via 1.). From a ∗ c = 0 and c ∗ b = 0 we
get (via 2.) a ∗ b = 0 and therefore b ∈ (a)A.

We can also prove a converse of Theorem 5.3.4.

Theorem 5.3.5. [5] Let V be a variety with a constant 0 and such that the
following hold.

1. There exists a binary term x ∗ y such that for any A ∈ V and a ∈ A

a ∗ a = 0
a ∗ 0 = 0
0 ∗ a = 0 ⇒ a = 0.

2. The relation ≈A defined by a ≈ b if and only if a ∗ b = b ∗ a = 0
is a congruence of A∗ = ⟨A, ∗, 0⟩ and A∗/ ≈A has EDPI defined by
u/ ≈A∈ (v/ ≈A)A∗/≈A

if and only if u/ ≈A ∗v/ ≈A= 0/ ≈A.

3. For any a ∈ A

(a)A =
⋃

(a/ ≈A)A∗/≈A
.

Then V is subtractive and has EDPI: for any A ∈ V and a, b ∈ A

a ∈ (b)A if and only if a ∗ b = 0.

Proof. First let us show that V has EDPI. If b ∈ (a)A, then b ∈
⋃

(a/ ≈A

)A∗/≈A
by 3. Hence there is a c ∈ A with b ≈A c and c/ ≈A∈ (a/ ≈A)A∗/≈A

,
which implies b/ ≈A∈ (a/ ≈A)A∗/≈A

. By 2. we have a/ ≈A ∗b/ ≈A= 0/ ≈A

and, since ≈A is a congruence, (a ∗ b)/ ≈A= 0/ ≈A. But by 1. 0/ ≈A= {0},
so a ∗ b = 0. Conversely if a ∗ b = 0, then a/ ≈A ∗b/ ≈a lgA = 0/ ≈A and
hence by 2. a/ ≈A∈ (b/ ≈A)A∗/≈A

; by 3. one gets at once that a ∈ (b)A.
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Next observe that, by 3.,

(0 ∗ a)A =
⋃

((0 ∗ a)/ ≈A)A∗/≈A
=
⋃

(0/ ≈A ∗a/ ≈A)A∗/≈A

=
⋃

(a/ ≈A)A∗/≈A
= (a)A

where we have used again 2. Hence if one puts t(x, y) = y ∗ x, we have
t(a, a) = 0 and (t(a, 0))A = (a)A. By Proposition 2.4.2 V is subtractive.

From the previous two theorem one gets an ideal theoretic characteriza-
tion of dual Hilbert algebras.

Corollary 5.3.6. For variety V of type {∗, 0} the following are equivalent.

1. For all A ∈ V a, b ∈ A

b ∈ (a)A if and only if a ∗ b = 0

a ∗ b = b ∗ a = 0 implies a = b.

2. V is a variety of dual Hilbert algebras.

5.4 MINI algebras

This section contains an example (appearing in [5]) of a subtractive variety
with EDPI that does not have EDPC.

Let M be the variety of pointed binars ⟨A, ∗, 0⟩ axiomatized by

M1 x ∗ 0 ≈ 0

M2 0 ∗ x ≈ x

M3 (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) ≈ 0

M4 x ∗ (y ∗ x) ≈ 0.

First note that M is subtractive witness s(x, y) = y ∗ x. In fact 0 ∗ x ≈ x is
an axiom and moreover

0 ≈ (x ∗ (0 ∗ x)) ∗ ((a ∗ 0) ∗ (a ∗ a)) (by M3.)

≈ 0 ∗ (0 ∗ (x ∗ x)) ≈ a ∗ a (by M4. and M2.)
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An algebra A ∈ M is called a MINI algebra1.
The variety of MINI algebras has other properties. First observe that

if x ∗ y ≈ 0 and y ∗ z ≈ 0, then x ∗ z ≈ 0. (A)

In fact then x ∗ (y ∗ z) ≈ 0 and so M2 and M3 yield

x ∗ z ≈ 0 ∗ (0 ∗ (x ∗ z)) ≈ (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 0.

Next observe that
(y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) ≈ 0. (B)

In fact by M4. (y ∗ z) ∗ (x ∗ (y ∗ z)) ≈ 0 and an application of M3. and (A)
gives (B). Finally note that

if x ∗ y ≈ 0, then (y ∗ z) ∗ (x ∗ z) ≈ 0. (C)

which is simply a consequence of (B) and M2.
We shall prove that M has EDPI by showing that M satisfies (1), (2) and

(3) of Theorem 5.3.4. (1) follows directly from M1 and M*2. Let A ∈ M
and let ≈A be the relation on A defined by a ≈A b iff a ∗ b = b ∗ a = 0. The
relation is reflexive, symmetric by definition, and transitive by (A) and (B).
Moreover note that, by M2, 0/ ≈A= {0}. Suppose that a ≈A b and a′ ≈A b′.
Since a′ ∗ b′ = 0 by (B) and M2

(a ∗ a′) ∗ (a ∗ b′) = 0.

Similarly, since b ∗ a = 0, by (C) and M2

(a ∗ b′) ∗ (b ∗ b′) = 0,

and (A) implies
(a ∗ a′) ∗ (b ∗ b′) = 0.

The proof that (b ∗ b′) ∗ (a ∗ a′) = 0 is similar and thus we conclude that ≈A

is a congruence of A.
Next ⟨A, ∗, 0⟩/ ≈A is a dual Hilbert algebra just because of the axioms

M1-M4, and the fact that, if a/ ≈A ∗b/ ≈A= b/ ≈A ∗a/ ≈A= 0, then
a/ ≈A= b/ ≈A. Therefore (2) of Theorem 5.3.4 holds as well.

1Later it will be clear that a more proper name might have been dual minimal natural
implicative algebras, but we are not masochistic enough.
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Let now b ∈ (a)A; then there is an ideal term t(x1, . . . , xn, y) in y and
a1, . . . , an ∈ A with b = t(a1, . . . , an, a). Since ≈A∈ Con(A),

b/ ≈A= t(a1, . . . , an, a)/ ≈A= t(a1/ ≈A, . . . , an/ ≈A, a/ ≈A) ∈ (a/ ≈A)

implying b ∈
⋃

(a/ ≈A). On the other hand if b ∈
⋃

(a/ ≈A), then there
is a c ∈ A with c/ ≈A∈ (a/ ≈A) and b/ ≈A= c/ ≈A. This implies a/ ≈A

∗c/ ≈A= 0/ ≈A, and so a ∗ c = 0, and c ∗ b = 0. An application of (A) yields
a ∗ b = 0. Since the term (y ∗ x) ∗ x is clearly an ideal term in y

b = 0 ∗ b = (a ∗ b) ∗ b ∈ (a)A.

Therefore (a)A =
⋃

(a/ ≈A)A/≈A
.

Thus the variety of MINI algebras has EDPI. It does not have equation-
ally definable principal congruences though, since it is not congruence dis-
tributive. In fact consider the 6-element algebra A = ⟨{0, a, b, c, d, e}, ∗, 0⟩
where

b ∗ a =

{
a if b = 0

0 otherwise.

One checks that A ∈ M and that a congruence of A is simply any partition
to which {0} belongs. With this in mind one easily sees that Con(A) is not
even modular.

Theorems 5.3.4 and 5.3.5 have a very interesting corollary. If V is sub-
tractive and has EDPI, then there must be a binary term x ∗ y witnessing
both subtractivity and EDPI. Moreover if A ∈ V, then ⟨A, ∗, 0⟩/ ≈A is a
dual Hilbert algebra. This and the obvious fact that 0/ ≈A= {0} imply the
following. If t ≈ 0 is an equation satisfied by any dual Hilbert algebra, then
such equation must also hold in V. For instance

(x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) ≈ 0

holds in V and this does not appear immediately derivable from subtractivity
or EDPI. Moreover any ideal term t(x⃗, y) in y is compatible with the MINI

algebra structure, in the sense that for any A ∈ V and any a, b⃗ ∈ A

a ∗ t(⃗b, a) = 0.

This observation allows us to propose MINI algebras as a paradigm for sub-
tractive EDPI varieties.

74



Corollary 5.4.1. For a pointed variety V the following are equivalent.

1. V is subtractive and has EDPI.

2. V has a binary term x ∗ y such that for any A ∈ V, A∗ = ⟨A, ∗, 0⟩ is a
MINI algebra and any ideal term of V is compatible in the above sense.

3. V has a binary term x ∗ y such that for any A ∈ V, A∗ = ⟨A, ∗, 0⟩ is a
MINI algebra and for any a ∈ A

(a)A = (a)A∗ .

Proof. (1) implies (2) follows from the observation above and Theorem 5.3.4.
If we assume (2), then the right-to-left inclusion in (3) is trivial, while

the other follows directly from the fact that any ideal term is compatible.
Finally (3) implies (1) is again obvious, since MINI algebras are subtractive
and have EDPI.

Remark 5.4.2. (1) If ≈A happens to be a congruence on any algebra in
V, then any algebra in V is term-equivalent to a variety of MINI algebras
with operations, where the operations are compatible in the usual way (i.e.
preserve any MINI algebra congruence).
(2) If ≈A= 0A for any A ∈ V, then the variety is congruence orderable in
the sense of [19]. In this case V is also ideal-determined and hence Fregean
in the sense of [19]. It follows that V is termwise equivalent to a variety of
dual Hilbert algebras with compatible operations [1].

5.5 Meet and join generator terms

A class K has an n-system of principal ideal intersection terms if there
are binary terms q1, . . . , qn such that for any A ∈ K and a, b ∈ A,

(a)A ∩ (b)A =
n∨

i=1

(qi(a, b))A.

Theorem 5.5.1. [5] For a subtractive variety V the following are equivalent.

1. V has an n-system of principal ideal intersection terms.
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2. V is ideal distributive and the compact ideals of any algebra in V are
closed under intersections.

Proof. Assume (1) and let q1, . . . , qn be an n-system of principal ideal in-
tersection terms for V. Note that qi(x, y) is a commutator term in x, y by
definition, so for any A ∈ V and a, b ∈ A [a, b]A = (a)A ∩ (b)A. Therefore,
by Theorem 4.4.4, V is ideal distributive. This fact and the principal ideal
intersection terms yield

m∨
j=1

(aj)A ∩
k∨

l=1

(bl)A =
m∨
j=1

k∨
l=1

n∨
i=1

(qi(aj, bl))A,

so (2) holds.
Assume now (2) and let F be the algebra in V freely generated by x, y, v1, v2, . . . .

Since the compact ideal are closed under intersections we have that

(x)F ∩ (y)F =
n∨

i=1

(ti(x, y, vi1 , . . . , vik))F.

Define qi(x, y) = ti(x, y, x, . . . , x) for i = 1, . . . , n. Suppose that A ∈ V is
finitely generated and let a, b ∈ A. Then there is a homomorphism f of F
onto A such that f(x) = f(vij) = a and f(y) = b. Now

c ∈ (a)A ∩ (b)A if and only if c ∈ (f(x))A ∩ (f(y))A

if and only if c ∈ [f(x), f(y)]F if and only if c ∈ f([x, y]F)

if and only if c ∈ f((x)F ∩ (y)F) if and only if c ∈ f(
n∨

i=1

(ti(x, y, vi1 , . . . , vik))F)

if and only if there is an ideal term t such that

c = f(t(u1, . . . , un, t1(x, y, v11 , . . . , v1k), . . . , tn(x, y, vn1 , . . . , vnk
)))

if and only if c = t(f(u1), . . . , f(un), t1(a, b, a, . . . , a), . . . , tn(a, b, a, . . . , a))

if and only if c = t(f(u1), . . . , f(un), q1(a, b), . . . , qn(a, b))

if and only if c ∈
n∨

i=1

(qi(a, b))A.

So the conclusion holds if A is finitely generated. However, if c ∈ (a)A∩ (b)A
then there is a finitely generated subalgebra B of A such that c ∈ (a)B∩(b)B.
Therefore the conclusion holds in general and q1, . . . , qn is an n-system of
principal ideal intersection terms for V.
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The case n = 1 in the definition of n-system of principal ideal intersection
terms deserves a special name: the binary term witnessing that is called a
meet generator for V and is denoted by ⊓. Then, for any A ∈ V and
a, b ∈ A

(a)A ∩ (b)A = (a ⊓ b)A.

Just looking at the proof of Theorem 5.5.1 one sees that a subtractive variety
has a meet generator term if and only if it is ideal distributive and the meet
of two principal ideals is principal.

If a subtractive EDPI variety V has a meet generator term ⊓, then the
principal ideals are closed under both intersection and dual relative pseu-
docomplementation. It follows that, for any A ∈ V, ⟨PI(A), ∗,∩, (0)A⟩ is
a ∗,∩-subreduct of a dual Brouwerian semilattice. Moreover, via the meet
generator term and distributivity of ideals, the compact ideals themselves
are closed under intersection, hence ⟨CI(A), ∗,∨,∩, (0)A⟩ is a dual relatively
pseudocomplemented lattice. It is of some interest to note that a partial
converse holds as well, but we need some facts first.

Since the join of two compact ideals is always compact we investigate
only joins of principal ideals. A join generator for a pointed variety V is a
binary term x ⊔ y such that for any A ∈ V and a, b ∈ A

(a)A ∨ (b)A = (a ⊔ b)A.

We do not need subtractivity to obtain a characterization in this case.

Proposition 5.5.2. [5] Let V be a pointed variety; then the following are
equivalent.

1. The join of two principal ideals is principal.

2. Every compact ideal is principal.

3. There are a binary term ⊔ and two ternary terms r and t such that

0 ⊔ 0 ≈ 0

r(x, y, 0) ≈ t(x, y, 0) ≈ 0

r(x, y, x ⊔ y) ≈ x

t(x, y, x ⊔ y) ≈ y.

4. V has a join generator term.
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Proof. (1) implies (2) trivially. We can show that (2) implies (3) with a
standard Mal’cev-type argument. Let F be the algebra freely generated in V
by x and y. Since (x)F ∨ (y)F is compact, by hypothesis

(x)F ∨ (y)F = (x ⊔ y)F.

Since (0)F = {0}, this implies 0 ⊔ 0 = 0. Moreover since x, y ∈ (x ⊔ y)F we
get the terms r and t simply by ideal generation.

Assume now (3), let A ∈ V and a, b ∈ A; from

a = r(a, b, a ⊔ b) b = t(a, b, a ⊔ b)

we obtain a, b ∈ (a ⊔ b)A. Conversely, from 0 ⊔ 0 = 0 we have that a ⊔ b ∈
(a)A ∨ (b)A, hence (4) holds. Finally (4) obviously implies (1)

If a subtractive variety has EDPI and a join generator term we can obtain
a stronger characterization theorem.

Theorem 5.5.3. [5] Let V a subtractive EDPI variety in which the join of
two principal ideals is principal. Then there are binary terms ∗ and ⊔ such
that the following hold.

1. For all A ∈ V and a, b, c ∈ A

a ∗ a = 0 (c ∗ a) ∗ ((c ∗ b) ∗ (c ∗ (a ⊔ b))) = 0

a ∗ 0 = 0 (a ⊔ b) ∗ b = (a ⊔ b) ∗ a = 0

0 ∗ a = a

b ∈ (a)A if and only if a ∗ b = 0

2. The relation ≤ defined by a ≤ b if and only if b ∗ a = 0 is reflexive
and transitive. The associated equivalence relation ≈A is a congruence
of A⊔ = ⟨A, ∗,⊔, 0⟩ and A⊔/ ≈A is a dual Brouwerian semilattice
isomorphic with ⟨PI(A), ∗,∨, (0)A⟩.

3. Any principal ideal of A is the union of a principal ideal of A⊔/ ≈A

and viceversa. In fact (a)A =
⋃

(a/ ≈A)A⊔/≈A
.
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Proof. By hypothesis V has a binary term ∗ witnessing subtractivity and
EDPI and a join generator term ⊔. Then (1) follows from Theorem 5.3.4
and the fact that any compact ideal is principal. Therefore the principal
ideals of A form a dual Brouwerian semilattice. Next (2) follows from the
fact that the term witnessing EDPI in a dual Brouwerian semilattice is the
same as the one for its dual Hilbert algebra reduct. Finally (3) holds since
ideals of a dual Brouwerian semilattice coincide with ideals of its dual Hilbert
algebra reduct.

The previous theorem has a converse, whose proof is similar to the one
of Theorem 5.3.5.

By a well known result of Blok and Pigozzi ([7], Theorem 3.5) any con-
gruence permutable variety with equationally definable principal congruences
satisfies the hypotheses of Theorem 5.5.3 . In the same paper (Section 4)
they also gave a method for constructing varieties of this kind. Later we
shall see a non congruence permutable variety satisfying the hypotheses of
Theorem 5.5.3.

The paradigm of a subtractive variety with EDPI and a join generator
term is the variety B of algebras A = ⟨A, ∗,⊔, 0⟩ such that

1. ⟨A, ∗, 0⟩ is a MINI algebra ;

2. ⊔ is a binary operation satisfying

0 ⊔ 0 = 0

(a ⊔ b) ∗ b = (a ⊔ b) ∗ a = 0.

An ideal term of B is compatible if it is compatible with the underlying
MINI algebra structure. We have the following corollary, whose proof is left
to the reader.

Corollary 5.5.4. For a pointed variety V the following are equivalent.

1. V is subtractive, has EDPI and a join generator term.

2. V has binary terms ∗ and ⊔ such that for any A ∈ V, A⊔ = ⟨A, ∗,⊔, 0⟩ ∈
B and any ideal term of V is compatible in the above sense.
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3. V has binary terms ∗ and ⊔ such that for any A ∈ V, A⊔ = ⟨A, ∗,⊔, 0⟩ ∈
B and for any a ∈ A

(a)A = (a)A⊔ .

There is also another connection with [7]. A weak Brouwerian semilattice
with filter preserving operations (WBSO) is a pointed algebra A such that
the principal congruences form a dual Brouwerian semilattice and moreover
there are three binary terms ∗, ⊔ and d(x, y) such that for any a, b ∈ A

ϑA(0, a ∗ b) = ϑA(0, a) ∗ ϑA(0, b)
ϑA(0, a ⊔ b) = ϑA(0, a) ∨ ϑA(0, b)
ϑA(a, b) = ϑA(0, d(a, b)).

WBSO varieties have been investigated at length in [7]. It is clear that any
WBSO variety has equationally definable principal congruences. A WBSO#

variety is a subtractive WBSO variety. It is shown in [1] that in this case
the term ∗ can be chosen to witness subtractivity as well and therefore also
EDPI. It follows then that the term ⊔ is a join generator term for the WBSO#

and hence any WBSO# variety satisfies the hypotheses of Theorem 5.5.3. In
fact WBSO# varieties turn out to be the ideal determined varieties satisfying
Corollary 5.5.4 above (see also [1]).

Theorem 5.5.5. [5] For a pointed variety V the following are equivalent.

1. V is ideal determined, has EDPI and a join generator term.

2. V is WBSO# variety.

Proof. Any WBSO# variety is ideal determined, has EDPI and a join genera-
tor term by definition. Conversely assume that V satisfies 1. Then Corollary
5.5.4 and ideal-determinacy give the binary terms ∗ and ⊔ satisfying the first
two equations above. Thus we have only to prove the existence of the term
d(x, y).

Since V is ideal-determined, it is 0-regular with witness terms, say, d1, . . . , dn.
Let F be the free algebra over two generators; then ideal determinacy implies
that

ϑF(x, y) = ϑF(0, d1(x, y)) ∨ . . . ∨ ϑF(0, dn(x, y))

and of course
0/ϑF(x, y) = ⟨d1(x, y), . . . , dn(x, y)⟩F.
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Let ⊔ be the join generator for V and let

d(x, y) = d1(x, y) ⊔ · · · ⊔ dn(x, y)

(where we associate from left to right). One checks at once that

0/ϑF(x, y) = (d(x, y))F = 0/ϑF(0, d(x, y))

and 0-regularity gives again

ϑF(x, y) = ϑF(0, d(x, y)).

Now V is ideal determined and has EDPI, so it has equationally definable
principal congruences. Hence V has the congruence extension property and
therefore the condition

ϑA(a, b) = ϑA(0, d(a, b))

holds for any A ∈ V and a, b ∈ A.

Let’s observe the following:

Proposition 5.5.6. [5] Suppose V is a subtractive variety with a join gen-
erator term in which the compact ideals of any algebra in V form a dual
relatively pseudocomplemented lattice. Then V has EDPI and also a meet
generator term.

Proof. First V has EDPI by Theorem 5.3.1. Next we observe that the equa-
tion

(x ∗ (x ∗ y)) ∨ (y ∗ (y ∗ x)) ≈ x ∧ y
holds in any dual relatively pseudocomplemented lattice (see for instance
[26]). Let then ⊔ be the join generator for V and define

x ⊓ y = (x ∗ (x ∗ y)) ⊔ (y ∗ (y ∗ x)).

Now let A ∈ V and a, b ∈ A. Since V has EDPI and a join generator term
then Theorem 5.5.3 applies, thus

(a ⊓ b)A = [(a)A ∗ ((a)A ∗ (b)A)] ∨ [(a)A ∗ ((a)A ∗ (b)A)] = (a)A ∩ (b)A,

where we have used the fact that the compact ideals form a dual relatively
pseudocomplemented lattice. Hence x ⊓ y is a meet generator for V.
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If a subtractive variety with EDPI has both a join generator and a meet
generator, then we can get a further refinement of our results. The reader
will be able at this point to prove the following theorems.

Theorem 5.5.7. [5] Let V a subtractive variety with EDPI in which the join
and the meet of two principal ideals is principal. Then there are binary terms
∗, ⊔ and ⊓ such that the following hold.

1. For all A ∈ V and a, b, c ∈ A

a ∗ a = 0 (c ∗ a) ∗ ((c ∗ b) ∗ (c ∗ (a ⊔ b))) = 0

a ∗ 0 = 0 (a ⊔ b) ∗ b = (a ⊔ b) ∗ a = 0

0 ∗ a = a (a ∗ c) ∗ ((b ∗ c) ∗ ((a ⊓ b) ∗ c)) = 0

b ∈ (a)A iff a ∗ b = 0 a ∗ (a ⊓ b) = b ∗ (a ⊓ b) = 0.

2. The relation ≤ defined by a ≤ b iff b ∗ a = 0 is reflexive and transi-
tive. The associated equivalence relation ≈A is a congruence of A⊓ =
⟨A, ∗,⊔,⊓, 0⟩ and A⊓/ ≈A is a relatively pseudocomplemented lattice
isomorphic with ⟨PI(A), ∗,∨,∩, (0)A⟩.

3. Any principal ideal of A is the union of a principal ideal of A⊓/ ≈A

and viceversa. In fact (a)A =
⋃

(a/ ≈A)A⊓/≈A
.

Theorem 5.5.8. [5] Let V be a variety with a constant 0 and such that the
following hold.

1. there exist binary terms ∗, ⊔ and ⊓ such that for any A ∈ V and a ∈ A

a ∗ a = 0
a ∗ 0 = 0
0 ∗ a = 0 implies a = 0

(c ∗ a) ∗ ((c ∗ b) ∗ (c ∗ (a ⊔ b))) = 0
(a ⊔ b) ∗ b = (a ⊔ b) ∗ a = 0.
(a ∗ c) ∗ ((b ∗ c) ∗ ((a ⊓ b) ∗ c)) = 0
a ∗ (a ⊓ b) = b ∗ (a ⊓ b) = 0.

2. The relation ≈A defined by a ≈ b iff a ∗ b = b ∗ a = 0 is a congruence
of A⊓ = ⟨A, ∗,⊔,⊓, 0⟩ and A⊓/ ≈A has EDPI with witness term x ∗ y.

3. For any a ∈ A

(a)A =
⋃

(a/ ≈A)A⊓/≈A
.
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Then V is a subtractive variety with EDPI, witness term x ∗ y, having ⊔ as
a join generator term and ⊓ as a meet generator term.

According to [7] (Section 4) any pointed congruence permutable relative
Stone variety (such as Boolean algebras) satisfies the hypotheses of Theorem
5.5.7. As we will see later there are subtractive non congruence permutable
varieties satisfying the same hypotheses.

The paradigm of a subtractive variety with EDPI with a join generator
and a meet generator term is the variety of L of algebras ⟨A, ∗,⊔,⊓, 0⟩ where

1. ⟨A, ∗, 0⟩ is a MINI algebra;

2. ⊔ is binary and satisfies

0 ⊔ 0 = 0

(a ⊔ b) ∗ b = (a ⊔ b) ∗ a = 0;

3. ⊓ is binary and satisfies

(a ∗ c) ∗ ((b ∗ c) ∗ ((a ⊓ b) ∗ c)) = 0

a ∗ (a ⊓ b) = b ∗ (a ⊓ b) = 0.

The proof of the following corollary is left to the reader.

Corollary 5.5.9. For a pointed variety V the following are equivalent.

1. V is subtractive, has EDPI, a join generator term and a meet generator
term.

2. V has binary terms ∗, ⊔ and ⊓ such that for any A ∈ V, A⊓ =
⟨A, ∗,⊔,⊓, 0⟩ ∈ L and any ideal term of V is compatible with the un-
derlying MINI algebra structure.

3. V has binary terms ∗, ⊔ and ⊓ such that for any A ∈ V, A⊓ =
⟨A, ∗,⊔,⊓, 0⟩ ∈ L and for any a ∈ A

(a)A = (a)A⊓ .
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5.6 Pseudocomplemented semilattices

This example appears in [5]. The variety PS of type ⟨∧, ∗, 0⟩ is defined by
the following identities

1. a set of identities defining meet semilattices;

2. x ∧ (x ∧ y)∗ = x ∧ y∗;

3. x ∧ 0∗ = x;

4. 0∗∗ = 0.

Note that by 3. 1 = 0∗ is the top element in the semilattice ordering. It
is easy to see that the variety PS is a subtractive variety with witness term
x ∧ y∗. Moreover if L ∈ PS and a ∈ L, then a∗ is the pseudocomplement of
a, i.e. for any b ∈ L

b ≤ a∗ if and only if a ∧ b = 0.

An algebra L ∈ PS is called a pseudocomplemented semilattice. Pseu-
docomplemented semilattices are well known structures. For the properties
below and for any other claim we will make we refer the reader to [16], Chap-
ter I.6 and to the extensive bibliography therein. For any L ∈ PS one can
define a binary operation a⊕ b by

a⊕ b = (a∗ ∧ b∗)∗.

The skeleton of L is the set S(L) = {a∗ : a ∈ L}. It is well known that a ∈
S(L) if and only if a∗∗ = a and that S(L) = ⟨S(L),⊕,∧, ∗, 0, 1⟩ is a Boolean
algebra. The following properties of pseudocomplemented semilattices are
either obvious or have been proved in [4] 4.2. If a, b, c ∈ L, then

1. a ≤ a∗∗;

2. a∗ = a∗∗∗;

3. a ≤ b implies b∗ ≤ a∗;

4. (a ∧ b)∗∗ = a∗∗ ∧ b∗∗;

5. (a⊕ b)∗∗ = a⊕ b;
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6. a∗∗ ∧ (b⊕ c) = (a ∧ b) ⊕ (a ∧ c).

Let ≈A be the relation on L defined by

a ≈A b if and only if a ∧ b∗ = a∗ ∧ b = 0.

The relation is clearly symmetric an reflexive. Moreover if a ≈A b and b ≈A c,
then a∗ ∧ b = b∧ c∗ = 0. Since 0∗∗ = 0 we have that (a⊕ b)∗ = (a∗ ∧ b)∗∗ = 0
and similarly (b⊕ c∗)∗ = 0. Hence

0 = ((a⊕ b∗) ⊕ (b⊕ c)∗)∗∗

= ((a⊕ b∗) ∧ (b⊕ c∗))∗ (by 2. and 3.)

= ((a⊕ b∗) ∧ b) ⊕ ((a⊕ b∗) ∧ c∗)∗ (by 4. and 5.)

= (((a⊕ b∗) ∧ b) ⊕ (a ∧ c∗) ⊕ (b∗ ∧ c∗))∗.

Now

(a⊕ b∗) ∧ b ≤ (a⊕ b∗) ∧ b∗∗ = (a ∧ b∗∗) ⊕ (b∗ ∧ b∗∗)
= (a ∧ b∗∗) ⊕ 0 = a∗∗ ∧ b∗∗ ≤ a∗∗ ≤ a⊕ c∗

and of course a ∧ c∗, b∗ ∧ c∗ ≤ a⊕ c∗. Hence

((a⊕ b∗) ∧ b) ⊕ (a ∧ c∗) ⊕ (b∗ ∧ c∗) ≤ a⊕ c∗

and so

0 = (((a⊕ b∗) ∧ b) ⊕ (a ∧ c∗) ⊕ (b∗ ∧ c∗))∗

≥ (a⊕ c∗)∗ ≥ a∗ ∧ c∗∗ ≥ a∗ ∧ c.

We conclude that a∗ ∧ c = 0 and by a symmetrical argument a ∧ c∗ = 0 as
well. Hence a ≈A c and ≈A is transitive.

Suppose now that a ≈A b and a ≈A d. Then

(a ∧ c∗) ∧ (b ∧ d∗)∗ ≤ (a ∧ b∗)∗∗ ∧ (b∗ ⊕ d)

= (a ∧ c∗ ∧ b∗) ⊕ (a ∧ c∗ ∧ d) = 0.

By symmetry (a∧c∗)∗∧(b∧d∗) = 0 and so ≈A is a congruence on ⟨L, x∧y∗, 0⟩.
The proof that ⟨L, x ∧ y∗, 0⟩/ ≈A is a dual Hilbert algebra and that 3. of
Theorem 5.3.5 holds is just routine calculation, using arguments similar to
the ones above, so we conclude that PS is a subtractive variety with EDPI.
Moreover for any L ∈ PS and a ∈ L:
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1. (a)L = {b : b ≤ a∗∗}.

2. The meet of two principal ideals is principal

(a)L ∧ (b)L = (a∗∗ ∧ b∗∗).

3. The join of two principal ideals is principal

(a)L ∨ (b)L = (a⊕ b)L

and thus any compact ideal is principal.

4. The Brouwerian semilattice CI(L) of compact (i.e. principal) ideals is
a Boolean algebra isomorphic with S(L) via (a)L 7−→ a∗∗.

Hence the variety of pseudocomplemented semilattices is a subtractive variety
with EDPI with both a meet generator term (x∗∗ ∧ y∗∗) and a join generator
term (x⊕ y). The variety PS it is not congruence permutable since it is not
congruence modular. It is left as an exercise to show that for any S ∈ S0

(cf. Example 5.3.3) there is an L ∈ PS with Con(L) ∼= Con(S). Likewise,
PS cannot have equationally definable principal congruences, since it is not
congruence distributive.
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