A Baer-Kaplansky theorem for principal ideal domains

Simion Breaz

 ${\bf Contact:} \ {\tt bodo@math.ubbcluj.ro}, Babeş-Bolyai \ {\tt University}, \ {\tt Cluj-Napoca}, \ {\tt Romania}$

Abstract: We will show that if M and N are modules over a PID R such that $R \oplus M$ and $R \oplus N$ have isomorphic endomorphism rings then M and N are isomorphic. Moreover, every Dedekind domain with this property is a PID.