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Abstract. Bruck loops with abelian inner mapping groups are centrally nilpo-
tent of class at most 2.

1. The theorem

A loop (Q, ·) is a set Q with a binary operation · such that (i) for each x ∈ Q,
the left translation L(x) : Q → Q; y 7→ xy and the right translation R(x) : Q →
Q; y 7→ yx are bijections, and (ii) there exists 1 ∈ Q satisfying 1 · x = x · 1 = x
for all x ∈ Q. The left and right translations generate the multiplication group
Mlt(Q) = 〈L(x), R(x) | x ∈ Q〉. The inner mapping group Inn(Q) = Mlt(Q)1 is the
stabilizer of 1 ∈ Q. Standard references for the theory of loops are [2, 4, 25].

The left nucleus of a loop Q is given by Nλ(Q) = {a : a · xy = ax · y, ∀x, y ∈ Q}.
The middle nucleus, Nµ(Q), and the right nucleus, Nρ(Q), are defined analogously.
The nucleus, then, is given by N(Q) = Nλ(Q) ∩ Nµ(Q) ∩ Nρ(Q). The commutant
of Q is given by C(Q) = {c : ∀x ∈ Q, cx = xc}. The center is the normal subloop
given by Z(Q) = N(Q)∩C(Q). Now, define Z0(Q) = {1}, and Zi+1(Q), i ≥ 0, as the
preimage of Z(Q/Zi(Q)) under the canonical projection. The loop Q is (centrally)
nilpotent of class n, written c`(Q) = n, if Zn−1(Q) < Zn(Q) = Q.

Recall that if Q is a group, then Q/Z(Q) is isomorphic to Inn(Q). Thus Inn(Q) is
nilpotent of class at most n if and only if Q is nilpotent of class at most n + 1. For
loops, however, the situation is much more complicated. In the positive direction,
Bruck [3] showed that if Q is nilpotent with c`(Q) ≤ 2, then Inn(Q) is abelian.
However, A. Vesanen found a nilpotent loop Q of order 18 with c`(Q) = 3 such that
Inn(Q) is not even nilpotent [17]. In the converse direction, Niemenmaa recently
showed that if Q is finite and Inn(Q) is nilpotent, then Q is nilpotent [23].

It was long believed that the converse of Bruck’s result was true; that is, it was
believed that if Q is a (finite) loop with abelian inner mapping loop, then c`(Q) ≤ 2.
Much work in loop theory was devoted to attempting to prove this [9, 16, 24].
However, in 2004, Csörgő [7] constructed a loop Q of order 128, with abelian inner
mapping group, and with c`(Q) = 3. Loops Q with abelian inner mapping group
and with c`(Q) > 2 have come to be called loops of Csörgő type. Additional
constructions of loops of Csörgő type followed in rapid succession [10, 11, 22].

In the positive direction, there are at least a few classes of loops for which it
has been shown that all loops in the class with abelian inner mapping groups must
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have nilpotency class no greater than 2, e.g. automorphic loops [20], left conjugacy
closed loops [8], and 2-divisible Moufang loops [19]. It is the purpose of this paper
to lengthen this list. Here is our main result:

Theorem 1. Let Q be a Bruck loop with abelian inner mapping group. Then Q is
nilpotent and c`(Q) ≤ 2.

We now give all pertinent definitions. A left Bol loop is a loop satisfying the
identity x(y · xz) = (x · yx)z; right Bol loops satisfy the mirror identity. A left Bol
loop that is also a right Bol loop is a Moufang loop. We refer to left Bol loops simply
as Bol loops for the balance of the paper. In Bol loops, each element has a unique
two-sided inverse element, denoted by x−1, satisfying x · x−1 = x−1 · x = 1. The
automorphic inverse property, denoted by AIP, is given by (xy)−1 = x−1y−1. The
antiautomorphic inverse property, denoted by AAIP, is given by: (xy)−1 = y−1x−1.
The left inverse property, denoted by LIP, is given by x−1 ·xy = y. The right inverse
property, denoted by RIP, is defined analogously. Moufang loops satisfy both the
LIP and the RIP. (Left) Bol loops satisfy the LIP, but need not satisfy the RIP
(a left Bol loop that satisfies the RIP is, in fact, a Moufang loop). Moufang loops
satisfy the AAIP. Moufang loops can be characterized as Bol loops that satisfy the
AAIP. Bol loops that satisfy the AIP are called Bruck loops. Bruck loops can thus
be thought of as dual to Moufang loops in the variety of Bol loops. Much is known
about both Moufang loops [6, 25] and Bruck loops [1, 12, 13, 14, 18]; they are two
of the most important and widely investigated classes of loops.

2. The proof

Let Q be a loop. Then Inn(Q), is generated by the following three families of
mappings [4]:

T (x) = L(x)−1R(x)

R(x, y) = R(x)R(y)R(xy)−1

L(x, y) = L(x)L(y)L(yx)−1.

The condition “Inn(Q) is abelian” can thus be expressed equationally as:

R(w, x)R(y, z) = R(y, z)R(w, x)

L(w, x)L(y, z) = L(y, z)L(w, x)

R(w, x)L(y, z) = L(y, z)R(w, x)

R(x, y)T (z) = T (z)R(x, y)

L(x, y)T (z) = T (z)L(x, y)

T (y)T (z) = T (z)T (y)

We define the associator, (x, y, z) of x, y, and z, as follows: xy ·z = (x·yz)(x, y, z).
We define the commutator, [x, y] of x and y, as follows: xy = yx · [x, y]. With this
notation in place, it’s easy to state the definition of “centrally nilpotent of class 2”
in equational form.
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Lemma 2. A loop, Q, has c`(Q) ≤ 2 if the following ten terms vanish: [[x, y], z],
[x, [y, z]], [(w, x, y), z], [w, (x, y, z)], ([w, x], y, z), (w, [x, y], z), (w, x, [y, z]), ((v, w, x), y, z),
(v, (w, x, y), z), and (v, w, (x, y, z)).

If Q is a Bol loop, then Nλ(Q) = Nµ(Q). Using this fact, the next lemma is clear.

Lemma 3. A Bol loop, Q, has c`(Q) ≤ 2 if the following six terms vanish: [[x, y], z],
[(w, x, y), z], ([w, x], y, z), (w, x, [y, z]), ((v, w, x), y, z), and (v, w, (x, y, z)).

If Q is a Bruck loop, this can be strengthened considerably.

Lemma 4. A Bruck loop, Q, with abelian inner mapping group, has c`(Q) ≤ 2 if
((v, w, x), y, z) vanishes.

Proof. We will make use of the following fact, which is easy to check, and which
holds in any Bruck loop:

[y, x] = (x−1, y−1, yx) (∗)

By (∗) we have ([w, x], y, z) = ((x−1, w−1, wx), y, z), which vanishes, by as-
sumption. Next, we note that it is easy to check that in a Bruck loop in which
((v, w, x), y, z) vanishes, we have:

[x−1, y−1] = [y, x] (∗∗)

Now, using first (∗∗) and then (∗) we have [[x, y], z] = [z−1, [x, y]−1] = ([x, y], z, z−1[x, y]−1),
which vanishes, as established in the previous paragraph.

Next, combine (∗) and (∗∗) to obtain [x, y] = (x, y, y−1x−1). Thus, we have
[(w, x, y), z] = ((w, x, y), z, z−1(w, x, y)−1), which vanishes by assumption.

Next, since clearly [x, y]−1 = [x−1, y−1] in Bruck loops, by (∗∗) we have [x, y]−1 =
[y, x]. Thus, we also have [y, x] · [x, y]z = [x, y]−1 · [x, y]z = z = (z[x, y])/[x, y] =
([x, y]z)/[x, y]. Since z is arbitrary, we get [y, x]w = w/[x, y]. Now, use this,
the (left) Bol law, the LIP and the fact that [x, y] is in both the commutant
and left nucleus to get w · x[y, z] = w · [y, z]x = ([y, z] · [y, z]−1w) · [y, z]x =
[y, z]([y, z]−1w · [y, z]x) = [y, z]([z, y]w · [y, z]x) = [y, z]((w/[y, z]) · [y, z]x) = [y, z] ·
((w/[y, z])[y, z])x = [y, z]w · x = [y, z] ·wx = wx · [y, z]. In other words, (w, x, [y, z])
vanishes.

Next, using the LIP and the easy to establish fact that (xy)/(x[x, y]) = y, we
obtain w/(x, y, z) = (x, y, z)−1w. Finally, use this, the (left) Bol law, the LIP and
the fact that (x, y, z) is in both the commutant and left nucleus to get v ·w(x, y, z) =
v · (x, y, z)w = ((x, y, z) · (x, y, z)−1v) · (x, y, z)w = (x, y, z)((x, y, z)−1v · (x, y, z)w) =
(x, y, z)(v/(x, y, z) · (x, y, z)w) = (x, y, z) · ((v/(x, y, z))(x, y, z))w = (x, y, z)v · w =
(x, y, z) · vw = vw · (x, y, z). In other words, (v, w, (x, y, z)) vanishes.

We were assisted in this proof by the automated reasoning tool Prover9 [21]. �

Thus, to prove Theorem 1 it suffices to show that if Q is a Bruck loop with abelian
inner mapping group, then ((v, w, x), y, z) vanishes. This statement is expressible
equationally, as we have seen, and is thus amenable to attack by automated reason-
ing. It is, though, an extremely difficult problem for automated theorem provers,
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as we discovered. Eventually, though, we succeeded with Waldmeister [15], with
the following input file:

NAME Bruck

MODE PROOF

SORTS ANY

SIGNATURE a: -> ANY

asoc: ANY ANY ANY -> ANY

b: -> ANY

c: -> ANY

d: -> ANY

e: -> ANY

i: ANY -> ANY

mult: ANY ANY -> ANY

op_l: ANY ANY ANY -> ANY

op_r: ANY ANY ANY -> ANY

op_t: ANY ANY -> ANY

rd: ANY ANY -> ANY

unit: -> ANY

ORDERING KBO

i=1, mult=1, op_t=1, rd=1, asoc=1, op_l=1, op_r=1, unit=1, e=1, d=1, c=1, b=1, a=1

i > rd > mult > op_t > asoc > op_l > op_r > unit > e > d > c > b > a

VARIABLES E,D,C,B,A: ANY

EQUATIONS mult(unit, A) = A

mult(A, unit) = A

mult(A, i(A)) = unit

mult(i(A), A) = unit

i(mult(A, B)) = mult(i(A), i(B))

mult(i(A), mult(A, B)) = B

rd(mult(A, B), B) = A

mult(rd(A, B), B) = A

mult(mult(A, mult(B, A)), C) = mult(A, mult(B, mult(A, C)))

mult(mult(A, B), C) = mult(mult(A, mult(B, C)), asoc(A, B, C))

op_l(A, B, C) = mult(i(mult(C, B)), mult(C, mult(B, A)))

op_r(A, B, C) = rd(mult(mult(A, B), C), mult(B, C))

op_t(A, B) = mult(i(B), mult(A, B))

op_r(op_r(A, B, C), D, E) = op_r(op_r(A, D, E), B, C)

op_l(op_r(A, B, C), D, E) = op_r(op_l(A, D, E), B, C)

op_l(op_l(A, B, C), D, E) = op_l(op_l(A, D, E), B, C)

op_t(op_r(A, B, C), D) = op_r(op_t(A, D), B, C)

op_t(op_l(A, B, C), D) = op_l(op_t(A, D), B, C)

op_t(op_t(A, B), C) = op_t(op_t(A, C), B)

CONCLUSION asoc(asoc(a, b, c), d, e) = unit

The Waldmeister output file, i.e., the proof of Theorem 1, is titanic, over 16,000
lines of raw ouput, or over 1000 pages of structured equational reasoning (the run-
ning time was about 15 hours). The output file and its automatic transformation
into a “readable” equational proof may be found at either of the following sites:
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http://www.karlin.mff.cuni.cz/∼stanovsk/math/bruck.htm

http://euclid.nmu.edu/∼jophilli/paper-supplements.html

The proof is far too long to translate into a “human friendly” form.

Problem 5. Find a “human friendly” proof of Theorem 1.

Remark 6. In [22] Nagy and Vojtěchovský constructed a Moufang loop of order 214,
of nilpotency class 3, and with abelian inner mapping group. Thus, since Moufang
loops are also Bol loops, our Theorem 1 does not generalize to Bol loops. Moufang
loops with abelian inner mapping group are nilpotent of class at most 3 [19], and
2-divisible Moufang loops with abelian inner mapping group are nilpotent of class
at most 2 [19]. It is unknown whether either of these two results can be generalized
to Bol loops.

Remark 7. This is the first problem in loop theory that was solved with the assis-
tance of the automated theorem prover Waldmeister. We made several attempts
with different provers (Gandalf, E, Prover9, Vampire) and formalizations of the
problem; they all failed. Also, as far as we know, to date this is the most compli-
cated proof in algebra obtained by an automated theorem prover. Its simplification
seems to be a challenge. For a detailed account of using automated reasoning in
algebra, see [26].
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[7] P. Csörgő, Abelian inner mappings and nilpotency class greater than two, European J. Com-

bin. 28 (2007), 858–867.
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