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Abstract

State-of-the-art automated theorem provers (ATPs) argytatlle to solve relatively complicated
mathematical problems. But as ATPs become stronger anduseceby mathematicians, the length
and human unreadability of the automatically found proafedme a serious problem for the ATP
users. One remedy is automated proof compression by imreotinew definitions.

We propose a new algorithm for automated compression ofrarpisets of terms (like mathe-
matical proofs) by invention of new definitions, using a hstics based on substitution trees. The
algorithm has been implemented and tested on a number ahatitally found proofs. The results
of the tests are included.

1 Introduction, motivation, and related work

State-of-the-art automated theorem provers (ATPs) aggytatle to solve relatively complicated mathe-
matical problems [McC97][ [PS08], and are becoming a stahplart of interactive theorem provers and
verification tools [[MPO08],[[Urb08]. But as ATPs become sttenand more used by mathematicians,
understanding and refactoring the automatically founafsrbecomes more and more important.

There is a number of examples, and significant amount of mofess successful relevant work
in the field of formal proof refactoring. The most well-knovexample is the proof of the Robbins
conjecture found automatically by EQP. This proof has besmi-utomatically simplified by the ILF
system[[Dah98], and later also rewritten as a Mizar forna#ilin [GraO1]. Other examples include the
refactoring of the proof of the Four Color Theorem by Gontfi&on07], the hint strategy used regularly
to simplify the proofs found automatically by the Prover8teyn [Ver01], translation of resolution proofs
into assertion level natural deduction proofs [Hua96]iows utilities for formal proof refactoring in the
Mizar system, and visualization of proofs and their comifiaation based on various interestingness
criteria in the IDV and AGINT systems [TPS07], [PG$06]. bduction of definitions is a common part
of state-of-the-art first-order ATPs, used to compute effictlause normal forms [NWO1]. Introduction
of definitions is also an important part of unfold-definitifoid transformation in logic programmiﬂg
the main purpose there is usually speed-up of the logic progr(reducing number of computation
steps).

The work presented here tries to help understanding of flopmuefs by automated finding of re-
peated patterns in the proofs, suggesting new definiticaiscdpture the patterns and shorten the proofs,
and help to develop a structured theory. We believe thatajiiyisoach might not only help mathemati-
cians to better understand the long automatically foundfsrdout also that following the recent exper-
iments with meta-systems for automated reasoning in ldargetared theories [USPV08] this approach
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could provide another way to attack hard problems autoltiby enriching the theory first with new
concepts, and smart heuristic abstracting away (“forggtibout") some of the concepts’ properties irrel-
evant for the particular proof. The last mentioned is prdjpabt the only machine-oriented application
of proof compactification: compact proofs are likely to bermeasy to verify, and also to combine and
transform automatically in various ways.

The structure and content of this paper is as follows. Se@ifmrmally describes the approach used
for proof compression by invention of new definitions. In S@t[3 an efficient heuristic algorithm for
finding best definitions based on substitution trees is ssigdeand its first implementation is described.
In Sectior 4 the implementation is evaluated on ca. 8000fpifoom the TPTP library, and on several
algebraic proofs. In Sectidd 5 several examples demoimgjrtite work of the algorithm are shown and
discussed. Sectidn 6 discusses the possible extensigmevements, testing, and uses of this approach,
and concludes.

2 Problem statement

As mentioned above, the problem of proof improvement anactefing is quite wide, and it can be
attacked by different methods, and by employing differeiteda.

The motivation for the approach taken here is that given tiginal proof, it can contain a large
number of “similar’ complex terms (terms with a large weighlathematicians would typically quickly
simplify such proofs by introducing suitable new concepid aotation. While it is nontrivial to tell what
exactly makes a new definition mathematically plausiblevaacth introducing in a certain proof or the-
ory, there is at least one well-defined and easy-to-use mmas$the “plausibility” of a new definition,
namely the degree in which it reduces weight of the partrquieof. The problem then is to find the def-
initions that suitably generalize the largest number oflsinterms, or more precisely, to find definitions
that have the best value in terms of decreasing the overajhivef the proof after replacing terms with
the newly defined symbol.

The precise definition of the problem is as follows.

2.1 Problem of proof compression by new definitions
2.1.1 Proof:

A formal mathematicaproof is understood generally, as a sequence (list, or DAG, tteg,a formulae

(or sequents, or just arbitrary Prolog terms) connectedchfgrénce rules. The inference rules are not
relevant for the initial approach, only the formulae mattéor the purpose of this work, it suffices to
treat proofs as (a set of) arbitrary Prolog terms over soiialisignature of symbols (e.g., predicate and
function symbols used in the proof, and logical connecjivBarticular instance of this approach are the
first-order proofs written in the TPTP Ianguggwhich are just sequences of first-order TPTP formulae
and clauses (written as Prolog terms) annotated with thigrénce information. The input data for our
algorithm are then just the formulae and clauses (set obgiterms), without the inference déta.

’http://www.cs.miami.edu/~ tptp/TPTP/SyntaxBNF . html

3Note that the bound variables in TPTP first-order formulae rapresented by Prolog variables in the TPTP syntax,
however, these variables are not really "free" in the Pr@éogl also first-order) sense. A proper treatment for ourrdlgo
would be to e.g., rename such bound variables to de Bruijoésdhowever the first version of our algorithm does not d& th
This treatment is suboptimal, in the sense that a definitidh & redundant variable can be introduced, however thisnbas
impact on the correctness of the algorithm.


http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
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2.1.2 Weight:

A weight assignment ¥ a function from the proof signature to integers, togethigh an integer value
for variables. Theweightof a proof signature symbol or variable is equal to the valithe weight
assignment function on it. The weight of a term, formula, cogh is a sum of the weights of the
symbols and variables contained in it. The weights of sys\b@rms, formulae, and proofs under a
particular weight assignment are denotedv(s), w(t), w(F), w(P). Unless specified otherwise, the
simple “symbol-counting” weight assignment giving valuehll symbols and variables will be used as
default in what follows.

2.1.3 New definition:

Given a proof (Prolog termfp, anew definition D wrt Hs a binary Prolog clause of the form

S(X1, .oy Xn)i- T(X1, .0y Xn) (D)

wheresis a symbol not appearing Py, T (X, ..., X,) is a Prolog term over the signature®fand 0< n.
Note that this approach does not allow recursive definitiand does not allow new variables in the body
of the definition (otherwise thmost compressing definitiggroblem below becomes Turing-complete).
Unless specified otherwise, we will also require that withivaig weight assignment, the definitionD
satisfies the strict monotonicity condition

W(S(X1, ..., %n)) < W(T(Xq,...,%n))

2.1.4 Definition application at a position:

When S is a term matching the body of the definitidh (ie., there is a substitutiow such that
T(Xq,....,X)0 = 9), thenD(S) will denote the replacing oS by the appropriately instantiated head
of the definition (ie.,s(X1,...Xn)0, whereo is as above). SimilarlyD(P|,) will denote the (unique)
replacement of the subterm at positipin a termP.

2.1.5 Exhaustive definition application on the whole term:

Now consider the following definition
s(X) - £(f(X)) (D1)
and the term

f(f(f(a)) (Py)

ThenD; can be applied either at the topmost position, yieldifiga)), or at the first subterm, yielding
f(s(a)). However simultaneous application at both positions ispusssible. In both cases, the default
weight of the original term decreased from 4 to 3. Then cardide term

F(f(f(f(a)) (P2)

The first application ob; can now be done at three different positions, yielditiy f (a))), f(s(f(a))),
andf(f(s(a))). For the first and third resulD; can be applied again, yieldirsjs(a)) with weight 3 in
both cases, while the second result with weight 4 cannot litedureduced usin®;. Hence the order
of application of the definitions matters. The notatldi(P) will therefore denote any of the (possibly
many and different) exhaustive applications of definitidto termP, i.e.,D*(P) is a term wherd® can
no longer be applied at any positioDy,, (P) (or justDy;,(P) when the weight assignment is fixed) will

3
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denote those exhaustive applications (again, generaltyysuich that the weight of the resulting term
is minimal. Note (on term®, andP, and definitionD,) thatD*(P) andD},;,(P) are not unique, and can

be obtained by different application paths, however in vibliaws we will be interested mostly only in

the minimal weight and irreducibility bip.

2.1.6 The proof compression problems:

There are several well-defined problems in this setting. fflbet compressing definitigproblem is,
for a given proofP to find the new definitiorD wrt to P that compresses the proof most, ive(D) +
w(Dj,i(P)) is minimal across all possible definitiols SinceD},;,(P) is non-deterministic, in practice
this problem also includes finding the particular sequerfcapplications ofD to P that result in a
particularD;,,(P).

Thegreatest proof compressigroblem is, to find a set of definitiori3y,...,D, and a sequence of
their combined application®; | (P) such thatw(D1) + --- +w(Dn) +w(Dj (P)) is minimal wrt to a
given proofP and weight assignment. Let us again denote b7 , (P) the sequences of definition
applications for which this final measure is minimal. In thitting, the definitions can have in their
bodies the symbols newly introduced by earlier definitidmsyever mutual recursivity is not possible,
because the definitions applied first cannot refer to the sjgribtroduced later.

There are two (“greedy”) ways to make the general greatestf mompression problem simpler and
efficiently implementable. The first simplification consigt restricting the search space to only those
sequences of definition applications where each new definii applied exhaustively, before another
new definition is considered. So the sequence of definitigtiagions is then determined by an initial
linear ordering of the set of definitions. This restrictianmbviously result in worse proof compression
than is possible in the general case that allows mixed agifwit of the definitions.

The second simplification applies greediness once moreictasy the initial linear ordering of the
set of definition to be done according to the compression poivihe definitions. This means that first
the most compressing definitiddy is exhaustively applied to the proof, yielding a new pr&gf (P)
together with the added claufy. Let us denote this new pro®i. Then again, the most compressing
definitionD; is found forPy (containing alsd1), and added and applied exhaustively, yielding pieof
This greedy process generates (provided all weights artvecsnd definitions monotone wat) a finite
sequence of definitions and proofs. The final prigp€an then no longer be compressed by introducing
any new definition. This greedy algorithm, based on effityempproximated algorithm for finding the
most compressing definition is the basis for our implem@nand experiments.

2.1.7 Is compressed proof really a proof?

One could argue that, after performing compression on & ptio® result is not a proof anymore. Con-
sider, for example, the following fragment of a resolutiongd:

...,alb, —a b, ...
Using the definitiord = a | b, we obtain
..,d, —a b, ...

Strictly speaking, this is not a resolution proof anymohe, inference is broken. The way we understand
a compressed sequence as a proof is, using “macro-infeervageich means inference rules that, first,
expand all occurences of definitions, then perform the maighference, and finally fold the result using
the definitions.This is a common phenomenon when dealinyfaitmal proofs and their presentation in
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e.g. formal proof assistants: Some knowledge (typicakyrdwriting and the definitional knowledge) is
applied implicitly, without explicit reference to it andiexplicit application.

2.2 Motivating example

Let's work out an example of the most compressing definitiom ivery simple setting: let the input
consist of a single term

FCEC-- (F(@),

or shortly f"(a), for a single unary symboal, constanta and somen. The weight of the term ia+ 1.
Any compressing definitioD has to be

for somem, and the shortest compressibg,,(f"(a)) is, up to the order of function symbols,
dnmodmfndivm(a).

The weight of the definition isn+ 4, the weight of the resulting term edivm+ nmodm+ 1. Hence,
finding the most compressing definition is equivalent to figah minimizing the expression

m+ ndivm-+ nmodm.

This problem has obviously polynomial complexity with respto the input size, but it suggests that
arithmetic can be involved.

3 Implementation

3.1 The most compressing definition and the least general geralization

First it is necessary to describe all the possible candsdatea new definition, and count their number
(note that we are searching only for the bodies of the dedimdti clauses, because the heads are formed
by a new symbol and a list of free variables occurring in théydoSearching for the most compressing
definition for a set of term®1 (representing a given proof) corresponds to searchingdoresleast
general generalizationdg - see[[Plo69] for exact definition) over a subset of all subteofM. Not all
compressing definitions atgg's, and not even the most compressing one has to bggahmowever, the
latter case is very rare. Our heuristics for compressin@fprwill be based on searching for the most
compressindgg.

Let us look at an example which shows limits of our approaatML. consist of a single term

wheref is ann-ary symbol,g is anmrary symbol, and the total weight {sn+ 1) -n+ 1. Thelgg set
consists of the following terms:

{f(g(X,....,X),....0(X,....X)),9(X,...,X),X}
Now, there are two reasonable candidates for the most casipgedefinition:
e d(X) = f(X,...,X). ThenD},;,(M) =d(g(X,...,X)) and the total weight imm+ n+ 6.

min

5



Automated Proof Compression by Invention of New Definitiond. Vyskdil, D. Stanovsky, J. Urban

e d(X)=g(X,...,X). ThenD},,(M) = f(d(X),...,d(X)) and the total weight i+ 2n+ 5.

So, ifn=1, both definitions are the most compressing, whileiforl the first definition wins. However,
Igg always gives the second one.

3.2 Finding the most compressing definition using substitubn trees

In this subsection, we describe our heuristics for the gmbdf finding the most compressing definition
for a set of termdvl. Our approach is based on a data structure calldxktitution tregsee [Gra96]),
which has several useful properties:

1. Substitution trees are standard way to effectively sévaibterms fromM.

2. All nodes of the tree then always represent the usggdn a subset of all subterms bf. More-
over, there is always a tree containing a node that represgeatbody of the most compressing
definition.

3. From the tree it is possible to quickly compute the uppémede of the efficiency of the proof
compression in the case of using a particular node as thedfdatig definition.

Now we will describe AlgorithmiIl. The input is a set of termattitorrespond to some proof. The
output is a term, an approximation of the most compressifigilen. When such a definition does not
exist, the algorithm returns “fail”. At line 7 the varialleis used to denote all subterms from the input.
Then a substitution tre€ is created fromJ. T additionally remembers in its leaves the frequency of the
occurrences of terms frofd. At line 9, procedure propagate_freq_into_tree is call@tl W, described

in Algorithm[2. This procedure recursively adds to each noid€ the frequency corresponding to the
sum of its children. From this information it is possible tintpute the upper estimate for the number of
application of the definitions that correspond to the nod€ of

The function at line 10 described at Algoritih 3 counts reimaly the gain from the variable in all
nodes of T that appear in the substitutions at the left-hidel $n the leaves the gain is computed from
each variable at the left-hand side of the substitution adréquency of the leaf times the weight of
the term on the right hand side of each substitution wherevikight of the term is computed using the
functionw. In the nodes that are not leaves the gain from each varialtieedeft-hand side is computed
as the weight of the term on the right-hand side, where thghtaf the term is determined using the
functionh (see line 11 in AlgorithniI3). The gains for functitrare computed by merging the gains of
the node’s children by summing the values at the same vasdbhes 5, 6 in Algorithni]3). The gains
obtained in this way will be used for fast computing of thereate of the efficiency of the searched-for
definition (lines 11 to 20 in Algorithral1).

Now we will describe the upper estimate of the efficiency & tlefinition given by nod#& in the
tree T. First we create the definitio® corresponding to the node. This is done by composing all
substitutions from the root tN. The resulting substitution will define the body of the defomi, and all
its substitutional variables, and variables that appesr#tk terms inserted into the tree (these variables
have to be distinguished, sée [Gra96]) will be defined asrinenaents in the head of the definition

The upper estimate of the definition’s efficiency - the dabnis gain (i.e. the upper estimate of
w(proof before application of the definitionproof after application of the definition) is described at
lines 15 to 19.

Upper estimates are computed, because an exact computmgdefinition’s gain is quite inefficient
(we have to go through the whole proof, and apply the defmjti®©n the other hand, the computation
of the upper estimate of all nodes fromin the way described above has the same complexity as just
building the substitution tre€.



Automated Proof Compression by Invention of New Definitiond. Vyskdil, D. Stanovsky, J. Urban

Algorithm 1 the most compressing definition

1. function most_compressing_definition (proof : set of terms) : term;
% this function returns the most compressing definition am t& the form
% def(xq,...,%n):- T (X1, ...,Xn) Of inputproofwhere X, ...x, are variables,
% T is some term with at least one occurrence of every varighlex,and
% def is a new function symbol. If there is no compressingitiefirof proof
% then the function returns fail.

var

C

: multiset of terms;

: substitution tree;

o~ D
- -

. list of tuples of the form:
(gain : integer, tag: (upper_bound, exact), definition : term

U :=union of all subterms of every element of proof;

© © N o

propagate_freqs_into_trde(
10. (rootT).substitution_gain := propagate_gains_of substitgtiinto_tree€r);

11. L := empty;

T := construct a substitution tree frathwith frequencies of all terms frotd in leaves;

12. for each nodeN of treeT do {

13. L :=L + (G,upper_boun®dD) where % concatenates tuple to list
14. D := create_definition_form_nods},

15. G := (N.freq—21)xk(D) + (j(D,N) - p(D) where

16. k(d:-b) :=w(b) —w(d), % definition gain
17. j(d:-b,v) :=H(b) — W (d) where % definition gain of subst.
18. b (x) {\r/]v(x) gté‘émgev .substitution galn

19. p(d:-b) :=w(d:-b)+1, % penalization of def. declaration
20. }

21. sortL with decreasing order by gain, tag where tag exact > tag ujnoend;

22. while (L[1].tag = upper_boundjnd (L[1].gain>0)do {

23. L[1].gain := calculate the exadt[1].definition gain as: w(proof) - w(greedy application of
L[1].definition on proof) -p(L[1].definition) where

24. p(d:-b) :=w(d:-b)+1; % penalization of def. declaration

25. L[1].tag := exact; % changesagof the first element of list L

26. L := merge L[1] with L[2..];

% merges the first element of list with its tail by the samesaleat 21.

27. }

28. if L[1].gain>0 then return L[l].definition else return fail;

29. %
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Algorithm 2 propagate frequencies into tree

1. procedure propagate_freqs_into_tre& ( substitution_tree) ;

2. {

3. if T is leafthen exit; % Frequency of leaf is already calculated.
4, (rootT).substitution_gain := empty;

5. for each sonSof rootT do {

6. < propagate_freqs_into_tree(subtred atthereSis root); % Calculates fregs in subtree
7. (rootT).freq := (rootT).freq +Sfreq;

8. }

9.}

The resulting estimate is inserted into the lishs a tuple{upper estimate, tag: upper_bound, defi-
nition D) (see line 13). After inserting all the upper estimates oftedl nodes off, the listL is sorted
decreasingly by the size of the upper estimate. If the upgi@nates are equal, the tuple with tag “exact”
is preferred to the tuple with tag “upper_bound”.

Now we always test if the first member of the lists already an exact efficiency value denoted with
the tag “exact”. If so, the valuB in this member is the searched-for most compressing defnifi his
definition is the best among all the nodes of the {fedbut it does not have to be the best definition
absolutely, because we are selecting only from the nodeleofréeT. If the value is not exact, we
compute the exact value &f for the proof (by replacing). The result is saved as the fissnhent of the
list, and is tagged “exact”. Then we sort the list, and repseg lines 22 to 27.

If the resulting gain is more than 0, it means that the apgliefihition shortens the proof and this
definition is returned at the output. If not, we return “faibecause no compressing definition appears
among the nodes df.

Algorithm[4 describes the greedy approach (see Subsdciio)Zor finding an approximation of
the greatest proof compression.

4 Testing

The initial implementation described above has been testethe whole TPTP library [Sut09], and
on two families of proofs coming from recent research in lalge In both cases the simplest symbol-
counting weight function was used for measuring the progfrowement.

4.1 Testing on the TPTP Library

The TPTP library contains a large number of ATP problems franbus areas of ATP use, which makes
it suitable for large-scale evaluation of the proof comgi@s algorithm. For the testing described here,
TPTP version 4.0.1 was used, containing 16512 problemsawallable TPTP proofs found by the EP
version 1.1 theorem prover [Sch02] were obtained from th&€ A Beveloper Geoff Sutcliffe. This is a

testing set of 7807 ATP proofs in the TPTP syntax, which istesstiof the Prolog syntax. These proofs
were postprocessed by a simple Perl script into a list of tdaen (i.e., forgetting about the inference
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Algorithm 3 propagate gains of substitutions into tree

1. function propagate _gains_of substitutions_into_tfEe gubstitution_tree)
: set of couples of the form(var : subst. variable, gain : integer

2. var R: set of couples of the form(var : substitution variable, gain : integer
3. {

4. (rootT).substitution_gain := empty; % there are no subst. variables in leaves.
5. for each sonSof rootT do {
6. (root T).substitution_gain := merge (rootT).substitution_gain with propa-

gate_gains_of substitutions_into_tree(subtreeTofvhere S is root) so that, couples with
the same variable is merged into one couple and its gain isnao$gains of all original couples
with the same variable;

7. }
8. R := empty;

9. for each substitutionB=T of substitution set in root do {
10. R:=RU(6,h(T)) where
11. h(x) { \?v . gt h<()a(’r\?v>is€e (root T).substitution_gair?
12. }
13. if T is leafthen
14. for each couple(x,n) of Rdo {
15. R:= (R\ (x,n))U(x, n*(root T).freq);
16. }
17. return R;
18. }

structure). This again can be considered to be just a listabg terms, and hence it is already an input
to the proof compression algorithm explained above.

The testing was done on an eight-core 64bit Intel Xeon E5520 &Hz Linux machine with 8GB
of RAM. SWI Prolog was used to run the proof compression algor. SWI Prolog has some internal
memory limits that do not allow it to get past 2GB boundaryfamorery large proofs the implementation
can now fail for lack of memory. Because the implementatian also take quite a long time for large
proofs (the longest example we are aware of was about ong, heaerhave given each of the TPTP
proofs a time limit of 60 seconds to be able to finish the lagale testing in reasonable time. 4890
of the 7807 proofs (63%) were completely compressed withantime limit, i.e., the algorithm has
successfully finished in 60 seconds. For the remaining 294@fp the algorithm typically has found
the initial most compressing definitions, but has not cameeérto the point where no more compressing
definitions exist. The final compression ratios for the 48@€cessful runs can be viewed online at our
webpag, and all the TPTP proofs together with the algorithm inputd autputs can also be viewed

4http://mws.cs.ru.nl/~urban/compression/00tstp_final_ratios
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Algorithm 4 the greatest proof compressing

1. function greatest proof_compressing (proof : set of terms) : sedrafig;

2. var
3. R: set of terms;

T : definition;

T := most_compressing_definitidr)

4

5

6. R := proof;
7

8 while T #fail do {
9

R:=TU(application of definitionl on R);

10. T := most_compressing_definitidr)

11. }

12. return R;

13. }
TPTP problems proved by EP| compressed in 605 timeout in 60s
16512 7807 4890 2917
greatest comp. rati¢ least comp. ratig median ratio| comp. below 50%
0.1844 0.9969 0.8100 135

Table 1: Results of testing the proof compression algoritmthe TPTP library

theré. The interesting data extracted from the testing are sumethin Table 1L, and Figuifd 1 shows
the graph of the compression performance on the 4890 finjstoeds.

4.2 Testing on algebraic problems

One of the aspects of the present work is, to address theegpnobf human understanding of machine
generated proofs. For this reason, we tested our impletimmian two families of proofs, coming from
different areas of current research in algebra.

4.2.1 Loops with abelian inner mappings

We investigated a proof, obtained by Waldmeister, thatyeuwmiquely 2-divisible loop with abelian
inner mapping group of exponent 2, is commutative and ax&mi[PSO:ﬁ. In both cases, the very first
definition the implementation found, was the right inverperation (that is, the term/%), and the left
inverse followed soon. Other interesting definitions wérartcuts for various compositions of the inner
mappings. Both proofs had final ratio about 0.75.

Shttp://mws.cs.ru.nl/~urban/compression/Solutions_tstp/
bhttp://mus.cs.ru.nl/ urban/compression/aim_2div/
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Figure 1: Proof compression ratios on the TPTP library,esbftom the best to the worst

1 T T T T T
"First_definition_ shortepingsse="

09

0.8 |

0.7

0.6

e

0.5

04+

03 L L L L L L
0 1000 2000 3000 4000 5000 6000 7000

Figure 2: Proof shortening ratios by the most compressiffigitten on the TPTP library, sorted from
the best to the worst

4.2.2 Symmetric-by-medial groupoids

We investigated three related proofs, obtained_in [Sta(8] wroverdl. The importance of the term
Xy-zuin the theory of distributive groupoids was recognized irdiately in each case. In the latter two
cases, it cuts the proof weight by more than 10%. Sadly, @énitions found by the implementation
seem to have little mathematical meaning. The final ratiagWwes5, 0.72, and 0.75, respectively.

4.2.3 Algebraic problems in TPTP

Many algebraic problems were recently submitted to TRTR8P,Sor instance, problems in the interval
GRP654 to GRP763. Our notes in Secfion 5.2 are also basedonsihection of the results on these
problems.

"http://mus.cs.ru.nl/ urban/compression/symbymed/
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5 Examples and discussion

5.1 Agood and a bad example

To get a taste of the results, we shall look closer at one ofithst successful, and one of the most
unsuccessful compressions produced by our implementatighe TPTP problems.

The champion is SWV158, with final compression ratio 0.184dnf 2277 to 42@. The first def-
inition is of enormous weight, 86, and its application saaksost half of the proof weight. This is an
equality, with a variable on one side, and a very nested terth@other side, with many constant leaves
and just one free variable with 6 occurrences. Three moreyhaefinitions of a similar kind, and 10
lighter ones, finish the compression.

To the other extreme, let's mention GRP754, with final corsgien ratio 0.9710 (from 726 to 7&)
There is a single compressing definition, settirg1 (A, B, C)= (A=mult (B, C)), which is applied
on roughly two thirds of the proof lines.

Generally speaking, heavy definitions are rare. Most defimstsave just very few symbols, but are
applied many times in the proof.

5.2 Understanding machine generated proofs

Our experiments show that introducing a new definition tbanilly reduces weight of the proof, rarely
gives a notion interesting from mathematician’s point awi Interesting exceptions exist: the imple-
mentation discovered notions like left and right inversa] an some cases isolated important concepts
that occur frequently in the proof.

Yet, reading the result of the overall greedy algorithmsitaimess. The problem seems to have
several layers. First of all, only few definitions have a gooathematical meaning. It is desirable, to
introduce other measures, to judge which definitions ar@df@nd which are “bad”, perhaps in the
spirit of AGINnT [PGS06]. The most compressing criterion igasonable heuristic, but far from perfect.

Another aspect is that, for human readers, learning newitlefis is costly. In fact, looking at the
examples, we realized that many definitions save just oneactes, even the top ones (their choice by
the algorithm comes from the fact that they can be used mamgs)i. Perhaps we shall add a penalty
to each new definition, based on how difficult is it to graspetatively to how useful it is. Too short
definitions, or those that are used only few times, shall beadlded.

One patrticular example of “bad” definition is the followingor the sake of simplicity, assume the
signature consists of a single binary function symbol Then, (almost) any proof can be simplified
introducing the predicat®(x,y,z), defined byf(x,y) = z saving one symbol per (almost every) line.
Further in this direction, the formulae in the proof are atifuvery likely to be in the formf(_,_) =
f(_,_), and the corresponding 4-ary predicate symbol shorterngrtitd by 5/7. Indeed, such definitions
don't bring any better understanding. The weight functmrthe “beauty criterion”, shall avoid this sort
of definitions.

6 Future work and conclusions

The presented system provides a useful means for expeigenith introducing new definitions based
on the frequency and weight of subterms in a proof. The gépevalem of greatest proof compression
seems to be quite hard, however our heuristic greedy impitatien seems to perform reasonably well

8http://mws.cs.ru.nl/urban/compression/Solutionststp/SWV/SWV158+1/
%http://mws.cs.ru.nl/ urban/compression/Solutionststp/GRP/GRP754-1/
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already in its first version. It seems to be an interestinqigpeblem, to determine the complexity class
of finding the greatest proof compression.

The initial evaluation using the most straightforward vitigssignment has allowed us to immedi-
ately see some deficiencies in overly greedy introductiones¥ definitions. The system is sometimes
capable of identifying mathematically interesting corisepat significantly compress the proofs, how-
ever many times the introduced definitions seem to be df litththematical value, and only complicate
the proof understanding. As already mentioned above, tiiisikely lead to further research about the
proper offset between the benefits of the proof compressioth the benefits of not having to deal with
too many similar concepts in one’s head. It is obvious thatts proofs don't always have to be “nicer”
(whatever it means), but it is obviously also good to havésttitat can produce the best result according
to a precisely defined criterion.

The advantage of our system is that a lot of experimentingoeadone using the weight assignments.
For example, we could try:

e to weight equality symbol with zero (this is sufficient to aldefinitions of the formf (x,y) = 2),

e to add learning penalties, for instance, by setting the tei a new symbol by the maximal
weight of symbols in its defining term, plus one,

e try to learn weight assignment patterns by data-miningnigghes on a large body of available
structured mathematics, e.g., the formal Mizar library.

The last option even suggests some more interesting exgetsrm the context of a large formal body of
human-written mathematics. For example, it is feasiblenfuthe MPTP system) to expand the whole
Mizar library (or a suitable part of it) into a basic set-thetacal notation, i.e., using just the membership
and equality predicates, and eliminating all definitiortsaduced by humans. This will likely result in
a very large, but manageable (e.g. with complete term dhamithe implementation) blow-up of the
library. Then the system can be used to search for integedtfinitions automatically, and the results
can be compared with the definitions introduced by humanoasith

Another potential use that we are very interested in, is #eeaf the subsystem as a “concept devel-
oping” component in larger meta-systems (like MaLARea [W88]) for theorem proving in structured
and large theories. The experience with ATP in large thems@far shows that blind recursive inclu-
sion of all available definitions and all the theorems knowaowd them significantly decreases the ATP
performance in the large theories. Introducing new corseptid only selecting some of their important
properties (like commutativity) is also a very common feataf abstract mathematical developments
done by human mathematicians. Both the human evidence hanelvidence from doing ATP in large
theories therefore points to the importance of includingdyooncept creation into the overall process of
mathematical theorem proving and theory development.
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