
Automated Theorem Proving in Loop Theory

JD Phillips and David Stanovský
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[The authors] demonstrate that (contrary to the view amongst some in
AR), provided a sufficiently effective AR tool is available, there are some
mathematicians who will indeed use such a tool.

— anonymous referee
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[The authors] demonstrate that (contrary to the view amongst some in
AR), provided a sufficiently effective AR tool is available, there are some
mathematicians who will indeed use such a tool.

— anonymous referee

This talk

is about solving open problems by first order automated theorem
provers

is not about formal verification or theory formation
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Automated theorem proving in mathematics

(Almost) useless!
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Automated theorem proving in mathematics

(Almost) useless!

undecidable, slow

first order problems within a given theory

Sometimes useful...

quickly checking easy conjectures
(typically, find a small counterexample, without its real understanding)

not really well understood equations

find complicated syntactic proofs

exhaustive search
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Automated theorem proving in algebra

Some examples:

short axioms for various theories (since early 90’s)

Robbins problem (1996)

loop theory (since 1996)

algebraic logic (last couple years)

My older results:

some properties of selfdistributive algebras

classification of free algebras in 4-linear theories
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Automated theorem proving in loop theory

Milestones:

1996, K. Kunen: first use (Moufang quasigroups are loops)

2001, Kinyon and Phillips learned to use Otter

tutorial at Loops’04, ATP becomes a standard tool

since 2008, more provers in use

Achievments:

several longstanding open problems

significant new results in various projects

21 papers, where results were obtained with assistance of ATP

Techniques:

Otter, Prover9 (until 2007), Waldmeister

parameter setting, hints strategy

proofs always translated
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Two paths from magmas to groups
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magmas

loopsmonoids

groups

Magma = (A, ∗, 1), where x ∗ 1 = 1 ∗ x = x
Monoid = magma & associative
Loop = magma & for every a, b there are unique solutions of

a ∗ x = b, y ∗ a = b

Group = magma with both properties

JD Phillips, David Stanovský () ATP in Loop Theory 6 / 19



Loops

Equational definition:

language: ·, /, \, 1

axioms:
x1 = 1x = x

x\(xy) = y , x(x\y) = y , (yx)/x = y , (y/x)x = y
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Loops

Equational definition:

language: ·, /, \, 1

axioms:
x1 = 1x = x

x\(xy) = y , x(x\y) = y , (yx)/x = y , (y/x)x = y

Look at loop theory as generalization of group theory!

Selected topics:

weak associativity

inverses

structural concepts

tools (translations, subloops)
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Weak associativity
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RIP + RAPLIP + LAP

rBollBol RCLC

CMoufang

extra

groups

x(y · xz) = (x · yx)z (left Bol)

x(y · xz) = (xy · x)z (Moufang)

x(y · yz) = (x · yy)z (LC)

x(y · zx) = (xy · z)x (extra)
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Inverse: x−1 such that x−1x = xx−1 = 1 — may not exist!

AAIP: (xy)−1 = y−1x−1 AIP: (xy)−1 = x−1y−1

u

u u

u u

u

@
@

@
@

@
@

@
@

@

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

∩ AIPBol

BruckMoufang

commutative Moufanggroups

abelian groups
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Inverse: x−1 such that x−1x = xx−1 = 1 — may not exist!

AAIP: (xy)−1 = y−1x−1 AIP: (xy)−1 = x−1y−1
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∩ AIPBol

BruckMoufang

commutative Moufanggroups

abelian groups

x−1 · xy = y (LIP)

x · xy = xx · y (LAP)
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Important subsets, subloops, ...

Commutant: C (Q) = {a ∈ Q : ax = xa,∀x ∈ Q}

Nucleus: N(Q) = Nλ(Q) ∩ Nµ(Q) ∩ Nρ(Q)

Nλ(Q) = {a ∈ Q : a · xy = ax · y ,∀x , y ∈ Q}

Nλ(Q) = {a ∈ Q : x · ay = xa · y ,∀x , y ∈ Q}

Nλ(Q) = {a ∈ Q : x · ya = xy · a,∀x , y ∈ Q}

Center: Z (Q) = N(Q) ∩ C (Q)

The bigger these subsets are, the closer the loop is to (abelian) group.
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Translations: L(a) : a 7→ ax , R(a) : a 7→ xa

Multiplication group: Mlt(Q) = 〈L(a), R(a) : a ∈ Q〉

Inner mapping group: Inn(Q) = {f ∈ Mlt(Q) : f (1) = 1}

Use:

define concepts, e.g.

normal subloop = invariant under the action of Inn(Q)

handle equational properties

new problems, e.g.

to what extent Mlt(Q) or Inn(Q) determine properties of Q ?
A-loop = inner mappings are automorphisms
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QPTP = Quasigroup problems for theorem provers

= a collection of results in loop theory obtained with assistance of ATP

all 21 papers covered (1996–2008)

selected 80 problems (68 equational)

Benchmarking (E, Prover9, Spass, Vampire, Waldmeister):

71 problems solved by at least one prover

38 problems solved by all provers

JD Phillips, David Stanovský () ATP in Loop Theory 12 / 19



QPTP language

#assumptions:
<<loop
<<associative
x*x=1.
#goals:
<<commutative
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QPTP language

#assumptions:
<<loop
<<associative
x*x=1.
#goals:
<<commutative

−→ qptp2tptp −→

cnf(sos,axiom,mult(A,e) = A).
cnf(sos,axiom,mult(e,A) = A).
cnf(sos,axiom,mult(A,ld(A,B)) = B).
cnf(sos,axiom,ld(A,mult(A,B)) = B).
cnf(sos,axiom,mult(rd(A,B),B) = A).
cnf(sos,axiom,rd(mult(A,B),B) = A).
cnf(sos,axiom,mult(A,mult(B,C)) = mult(mult(A,B),C)).
cnf(sos,axiom,mult(A,A) = e).

cnf(goals,negated conjecture,mult(op a,op b) != mult(op b,op a)).
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(1996 K. Kunen) Every Moufang quasigroup a loop.

#assumptions:
<<quasigroup
<<Moufang1
#goals:

<<q unit
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(1996 K. Kunen) Every Moufang quasigroup a loop.

#assumptions:
<<quasigroup
<<Moufang1
#goals:

<<q unit

What is existence of a unit?

∃x∀y xy = yx = y

y(x/x) = y & (x/x)y = y

y(x\x) = y & (x\x)y = y

E Prover9 Spass Vampire Wm

Kun96a 1 56 75 258 x
Kun96a 1alt1 128 112 218 3
Kun96a 1alt2 9 68 238 3
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(2001 Kinyon, Kunen, Phillips) Diassociative A-loops are Moufang.

Diassociative = satisfies all instances of associativity in 2 vars

non-finitely based property

in A-loops equivalent to IP property! (manually)

#assumptions:
<<loop
<<A
<<IP
<<Moufang234 imply Moufang1
#goals:

<<Moufang1
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(2001 Kinyon, Kunen, Phillips) Diassociative A-loops are Moufang.

Diassociative = satisfies all instances of associativity in 2 vars

non-finitely based property

in A-loops equivalent to IP property! (manually)

#assumptions:
<<loop
<<A
<<IP
<<Moufang234 imply Moufang1
#goals:

<<Moufang1

E Prover9 Spass Vampire Wm

KKP02a 1 3023 26735 x
KKP02a 1alt1 848 36852 553 205
KKP02a 1alt2 848 35016 500 208
KKP02a 1alt3 1001 24832 550 213
KKP02a 1alt4 1018 24242 584 202
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(2006 Aschbacher, Kinyon, Phillips)
In Bruck loops, elements of order 2k commute with elements of odd order.

can’t prove for all integers

can prove for some integers, then construct a general proof (manually)

Application: a decomposition theorem for Bruck loops (manually)

#assumptions:
<<loop
<<Bruck
C*(C*(C*C))=1.
D*(D*D)=1.
#goals:

C*D=D*C.
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(2006 Aschbacher, Kinyon, Phillips)
In Bruck loops, elements of order 2k commute with elements of odd order.

can’t prove for all integers

can prove for some integers, then construct a general proof (manually)

Application: a decomposition theorem for Bruck loops (manually)

#assumptions:
<<loop
<<Bruck
C*(C*(C*C))=1.
D*(D*D)=1.
#goals:

C*D=D*C.

E Prover9 Spass Vampire Wm

22, 3 0 11 459 6 0
22, 32 16 1110 74
24, 32
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QPTP: overall performance

E Prover9 Spass Vampire Wm

proofs in 360s 53 46 31 44 46
proofs in 3600s 59 53 35 57 56
proofs in 86400s 62 61 39 60 59

timeouts 18 19 41 20 9

Main limitation of the benchmark: no parameter setting

CASC strategy may not be the best for QPTP problems
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QPTP: overall performance

E Prover9 Spass Vampire Wm

proofs in 360s 53 46 31 44 46
proofs in 3600s 59 53 35 57 56
proofs in 86400s 62 61 39 60 59

timeouts 18 19 41 20 9

Main limitation of the benchmark: no parameter setting

CASC strategy may not be the best for QPTP problems

Future:

play with settings

merge with TPTP (→ developers will do)

more provers

more domains
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“Applications”

New theorems proved by Waldmeister!

Bruck loops with abelian Inn(L) are nilpotent of class 2.

Loops with abelian Inn(L) of exponent 2 are abelian groups.
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Conclusions

yes, we, mathematicians, want to use ATP

ATPs can prove difficult theorems, just give them enough time

a bit surprizingly, performance of ATPs on QPTP and UEQ TPTP is
similar
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Conclusions

yes, we, mathematicians, want to use ATP

ATPs can prove difficult theorems, just give them enough time

a bit surprizingly, performance of ATPs on QPTP and UEQ TPTP is
similar

Do you want your prover be used by mathematicians?

Make it user friendly!

like CAS for calculus
or at least like Bill with Prover9/Mace4 GUI
care about output (we want to understand the proof!)

Provide verifier

Implement hints
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Conclusions

yes, we, mathematicians, want to use ATP

ATPs can prove difficult theorems, just give them enough time

a bit surprizingly, performance of ATPs on QPTP and UEQ TPTP is
similar

Do you want your prover be used by mathematicians?

Make it user friendly!

like CAS for calculus
or at least like Bill with Prover9/Mace4 GUI
care about output (we want to understand the proof!)

Provide verifier

Implement hints

Implement hints without human interaction

Make it work within ZFC, or in HOL :-)
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