Using Automated Theorem Provers in Non-associative Algebra

JD Phillips and David Stanovský
Wabash College, Crawfordsville, IN
Charles University in Prague, Czech Republic
phillipj@wabash.edu
stanovsk@karlin.mff.cuni.cz
http://www.karlin.mff.cuni.cz/~stanovsk
LPAR 2008, Doha, Qatar

[The authors] demonstrate that (contrary to the view amongst some in $A R$), provided a sufficiently effective $A R$ tool is available, there are some mathematicians who will indeed use such a tool.

- anonymous referee at ESARM
[The authors] demonstrate that (contrary to the view amongst some in $A R$), provided a sufficiently effective $A R$ tool is available, there are some mathematicians who will indeed use such a tool.
- anonymous referee at ESARM

This talk

- is about solving open problems by (first order) automated theorem provers
- is not about formal verification or theory formation, no toy examples

Areas of algebra

- simple axiomatization projects (about 10 papers, since early 90 's)
- lattices with operators (about 10?)
- Robbins problem
- algebraic logic
- non-associative algebra
- quasigroups and loops (about 25, since 1996)
- etc. (about 5)

Areas of algebra

- simple axiomatization projects (about 10 papers, since early 90 's)
- lattices with operators (about 10?)
- Robbins problem
- algebraic logic
- non-associative algebra
- quasigroups and loops (about 25, since 1996)
- etc. (about 5)

Types of computation

- direct proofs of difficult open problems
- proving tedious technical steps
- quickly checking easy conjectures
- exhaustive search

Main problems
(1) formalization in FOL

- almost nothing formalizable directly
- sometimes a highly non-trivial task
- which formalization is optimal
(2) finding a proof
- which prover, setting up parameters
(3) reading and understanding the proof
- yes, we want to understand it! (usually)
- simplifying the proof
- improving readability (introducing concepts, lemmas, etc.)

For every distribuive groupoid G, there exists a congruence α of G such that G / α is symmetric and all blocks of α are medial.

```
cnf(sos,axiom,mult(A,mult(B,C)) = mult(mult(A,B),mult(A,C))).
cnf(sos,axiom,mult(mult(A,B),C) = mult(mult(A,C),mult(B,C))).
cnf(goals,negate_conjecture,mult(mult(mult(a,b),mult(c,d)),
mult(mult(a,c),mult(b,d))) != mult(mult(mult(a,c),mult(b,d)),
mult(mult (a,b),mult(c,d)))).
cnf(goals,negated_conjecture,mult(mult(mult (a,b),mult(c,d)),
mult(mult(mult (a,b),mult (c,d)),mult(mult (a, c),mult (b,d)))) !=
mult(mult(a,c),mult(b,d))).
```

Bruck loops with abelian inner mapping group are centrally nilpotent.

```
cnf(sos,axiom,mult(unit,A) = A).
cnf(sos,axiom,mult(A,unit) = A).
cnf(sos,axiom,mult(A,i(A)) = unit).
cnf(sos,axiom,mult(i(A),A) = unit).
cnf(sos,axiom,i(mult(A,B)) = mult(i(A),i(B))).
cnf(sos,axiom,mult(i(A),mult(A,B)) = B).
cnf(sos,axiom,rd(mult (A,B),B) = A).
cnf(sos,axiom,mult(rd(A,B),B) = A).
cnf(sos,axiom,mult(mult(A,mult(B,A)),C) =
mult(A,mult(B,mult(A,C)))).
cnf(sos,axiom,mult(mult(A,B),C) =
mult(mult(A mult(B,C)), asoc(A,B,C))).
cnf(sos,axiom,op_l (A,B,C) =
mult(i(mult(C,B)),mult(C,mult(B,A)))).
cnf(sos,axiom,op_r(A,B,C) = rd(mult(mult(A,B),C) ,mult(B,C))).
cnf(sos,axiom,op_t(A,B) = mult(i(B),mult(A,B))).
cnf(sos,axiom,op_r(op_r (A,B,C),D,E) = op_r(op_r(A,D,E),B,C)).
cnf(sos,axiom,op_l(op_r (A,B,C),D,E) = op_r(op_l(A,D,E),B,C)).
cnf(sos,axiom,op_l(op_l (A,B,C),D,E) = op_l(op_l(A,D,E),B,C)).
cnf(sos,axiom,op_t(op_r (A,B,C) ,D) = op_r (op_t(A,D) ,B,C)).
cnf(sos,axiom,op_t(op_l (A,B,C) ,D) = op_l(op_t(A,D),B,C)).
cnf(sos,axiom,op_t(op_t (A,B),C) = op_t(op_t (A,C),B)).
cnf(goals,negated_conjecture,asoc(asoc(a,b,c),d,e) != unit).
```

Our work, so far

- proving theorems
- QPTP library

QPTP $=$ Quasigroup problems for theorem provers
$=$ a collection of results in loop theory obtained with assistance of ATP

- all papers covered, about 100 problems selected (about 80% equational)
- both formal (TPTP) and informal (paper) description
- downloadable at www.karlin.mff.cuni.cz/~stanovsk/qptp
- a benchmark (selected provers from CASC):

Waldmeister \gg E, Gandalf, Prover9, Vampire \gg Spass

Summary

- (some) mathematicians use automated theorem provers
- ATPs can prove difficult theorems
- If you have a software that could solve our problems, let me know immediately!

