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[The authors] demonstrate that (contrary to the view amongst some in
AR), provided a sufficiently effective AR tool is available, there are some
mathematicians who will indeed use such a tool.

— anonymous referee at ESARM
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[The authors] demonstrate that (contrary to the view amongst some in
AR), provided a sufficiently effective AR tool is available, there are some
mathematicians who will indeed use such a tool.

— anonymous referee at ESARM

This talk

is about solving open problems by (first order) automated theorem
provers

is not about formal verification or theory formation, no toy examples
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Areas of algebra

simple axiomatization projects (about 10 papers, since early 90’s)

lattices with operators (about 10?)

Robbins problem
algebraic logic

non-associative algebra

quasigroups and loops (about 25, since 1996)
etc. (about 5)
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Types of computation

direct proofs of difficult open problems

proving tedious technical steps

quickly checking easy conjectures

exhaustive search
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Main problems

1 formalization in FOL

almost nothing formalizable directly
sometimes a highly non-trivial task
which formalization is optimal

2 finding a proof

which prover, setting up parameters

3 reading and understanding the proof

yes, we want to understand it! (usually)
simplifying the proof
improving readability (introducing concepts, lemmas, etc.)
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For every distribuive groupoid G , there exists a congruence α of G such
that G/α is symmetric and all blocks of α are medial.

cnf(sos,axiom,mult(A,mult(B,C)) = mult(mult(A,B),mult(A,C))).
cnf(sos,axiom,mult(mult(A,B),C) = mult(mult(A,C),mult(B,C))).

cnf(goals,negate conjecture,mult(mult(mult(a,b),mult(c,d)),
mult(mult(a,c),mult(b,d))) != mult(mult(mult(a,c),mult(b,d)),
mult(mult(a,b),mult(c,d)))).

cnf(goals,negated conjecture,mult(mult(mult(a,b),mult(c,d)),

mult(mult(mult(a,b),mult(c,d)),mult(mult(a,c),mult(b,d)))) !=

mult(mult(a,c),mult(b,d))).
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Bruck loops with abelian inner mapping group are centrally nilpotent.

cnf(sos,axiom,mult(unit,A) = A).
cnf(sos,axiom,mult(A,unit) = A).
cnf(sos,axiom,mult(A,i(A)) = unit).
cnf(sos,axiom,mult(i(A),A) = unit).
cnf(sos,axiom,i(mult(A,B)) = mult(i(A),i(B))).
cnf(sos,axiom,mult(i(A),mult(A,B)) = B).
cnf(sos,axiom,rd(mult(A,B),B) = A).
cnf(sos,axiom,mult(rd(A,B),B) = A).
cnf(sos,axiom,mult(mult(A,mult(B,A)),C) =
mult(A,mult(B,mult(A,C)))).
cnf(sos,axiom,mult(mult(A,B),C) =
mult(mult(A,mult(B,C)),asoc(A,B,C))).
cnf(sos,axiom,op l(A,B,C) =
mult(i(mult(C,B)),mult(C,mult(B,A)))).
cnf(sos,axiom,op r(A,B,C) = rd(mult(mult(A,B),C),mult(B,C))).
cnf(sos,axiom,op t(A,B) = mult(i(B),mult(A,B))).
cnf(sos,axiom,op r(op r(A,B,C),D,E) = op r(op r(A,D,E),B,C)).
cnf(sos,axiom,op l(op r(A,B,C),D,E) = op r(op l(A,D,E),B,C)).
cnf(sos,axiom,op l(op l(A,B,C),D,E) = op l(op l(A,D,E),B,C)).
cnf(sos,axiom,op t(op r(A,B,C),D) = op r(op t(A,D),B,C)).
cnf(sos,axiom,op t(op l(A,B,C),D) = op l(op t(A,D),B,C)).
cnf(sos,axiom,op t(op t(A,B),C) = op t(op t(A,C),B)).

cnf(goals,negated conjecture,asoc(asoc(a,b,c),d,e) != unit).
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Our work, so far

proving theorems

QPTP library

QPTP = Quasigroup problems for theorem provers

= a collection of results in loop theory obtained with assistance of ATP

all papers covered, about 100 problems selected (about 80%
equational)

both formal (TPTP) and informal (paper) description

downloadable at www.karlin.mff.cuni.cz/~stanovsk/qptp

a benchmark (selected provers from CASC):

Waldmeister >> E, Gandalf, Prover9, Vampire >> Spass
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Summary

(some) mathematicians use automated theorem provers

ATPs can prove difficult theorems

If you have a software that could solve our problems, let me know
immediately!
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