Homework 2. Deadline 24.11. 14:00

- **1.** (6 points) Let $f, g : \mathbf{A} \to \mathbf{B}$ be homomorphisms.
 - (a) Prove that $\{a \in A : f(a) = g(b)\}$ is a subuniverse of **A**. (As a past-time, you can also prove that this is an equalizer in the sense of category theory.)
 - (b) Assume that $\mathbf{A} = Sg(X)$. Prove that if $f|_X = g|_X$, then f = g.
 - (c) Prove that the number of homomorphisms $\mathbf{A} \to \mathbf{B}$ is at most $|B|^{|X|}$, where X is the smallest generating set of \mathbf{A} .

2. (8 points) Find all subalgebras and all congruences of $(\mathbb{N}, *)$ where $a * b = \max(a, b) + 1$. Draw the lattices Sub, Con.

3. (6 points) Find all homomorphisms $(\mathbb{N}, \cdot)^2 \to (\{1, -1\}, \cdot)$. Here \mathbb{N} does *not* contain zero.