Domácí úlohy na Binární systémy 2018/19

Ke splnění části zkoušky týkající se pologrup je potřeba alespoň 22 bodů. Úlohy odevzdávejte přednášejícímu v libovolné formě.

1. (8 bodů) Determine the $\mathcal{L}, \mathcal{R}, \mathcal{D}, \mathcal{J}$ relations in (a) the matrix semigroup $M_{n}(F)$, (b) the symmetric inverse semigroup I_{X}.
2. (4 body) Show that in the matrix semigroup

$$
\left\{\left(\begin{array}{cc}
a & 0 \\
b & 1
\end{array}\right): a, b \in \mathbb{R}, a, b>0\right\}
$$

we have $i d=\mathcal{D} \neq \mathcal{J}$.
3. (4 body) Show that a semigroup is a group if and only if it contains no proper left ideals and no proper right ideals (proper means strictly smaller than S). Hint: use Green's theorem.
4. (6 bodů) Show that the following are equivalent for a regular semigroup:
(1) it has exactly one idempotent;
(2) it is cancellative (i.e., $x u=x v$ implies $u=v$, and $u x=v x$ implies $u=v$);
(3) it is a group.
5. (6 bodů) Determine whether a) $P T_{X}$ (partial transformations), b) B_{X} (binary relations), c) $M_{n}(F)(n \times n$ matrices over $F)$ are regular or inverse semigroups.
6. (4 body) Consider a \mathcal{D}-block D in an inverse semigroup. Show that the number of \mathcal{L}-blocks in D equals the number of \mathcal{R}-blocks in D. Hint: $L_{a} \rightarrow R_{a^{\prime}}$ is a bijection.
7. (4 body) Show that $\left(S, \cdot \cdot^{\prime}\right)$ is an inverse semigroup iff for every $x, y, z \in S$

$$
x(y z)=(x y) z, x x^{\prime} x=x, x^{\prime} x x^{\prime}=x^{\prime}, x x^{\prime} y y^{\prime}=y y^{\prime} x x^{\prime}
$$

We did (\Rightarrow) at the lecture. For (\Leftarrow), the hint is to prove that $e=e e^{\prime}$ for every e idempotent.
8. (6 bodů) [for students also attending Universal Algebra II] Show that $t(x, y, z, u, v)=$ $x y^{\prime} z u^{\prime} v$ is a Taylor term for the variety of inverse semigroups. Show that semigroups are not congruence modular (hint: find a semilattice violating the property) and not meetsemidistributive (hint: find a group violating the property). Show that inverse semigroups have a weak difference term.

