Universal Algebra 1 - Homework 3

Deadline 6.12.2018, 10:40

1. (6 points) Let \mathcal{V} and \mathcal{W} be two varieties of groups. Define $\mathcal{V} \cdot \mathcal{W}$ to be the class of all groups \mathbf{A} containing a normal subgroup \mathbf{B} such that $\mathbf{B} \in \mathcal{V}$ and $\mathbf{A} / \mathbf{B} \in \mathcal{W}$. Prove that $\mathcal{V} \cdot \mathcal{W}$ is a variety.
2. (6 points) Let \mathbf{L}, \mathbf{M} be two non-trivial lattices. By $\mathbf{L} \oplus \mathbf{M}$ we define the lattice with universe $L \cup M$ such that every element of L lies below every element on M. Prove that $\operatorname{HSP}(\{\mathbf{L}, \mathbf{M}\})=\operatorname{HSP}(\{\mathbf{L} \oplus \mathbf{M}\})$ (hint: subdirect representation)
3. (8 points) Let \mathbf{R} be a commutative ring with 1 . Further assume that $x \neq 0 \leftrightarrow \forall n$: $x^{n} \neq 0$ holds in \mathbf{R} (such a ring is also called reduced).

- Show that for every $a \in R \backslash\{0\}$ there is a prime ideal P_{a} with $a \notin P_{a}$ (Hint: Show that there is a maximal ideal that excludes a, a^{2}, a^{3}, \ldots)
- Prove that \mathbf{R} is the subdirect product of integral domains.

